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Abstract 
 

 We study the role played by multiplicative noise perturbation in the 
oscillatory and non-oscillatory behaviour of the solution of first order linear 
scalar stochastic delay differential equation (SDDE) 
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We explain the interplay between the time lags and the multiplicative noise in 
the oscillatory behaviour of the solutions of the SDDE. It is proved that the 
presence of the multiplicative noise ensures that all solutions of the SDDE 
oscillate under negative feedback even if its corresponding deterministic 
equation has a non-oscillatory solution. 
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1.0 Introduction: 
In the application of stochastic differential equations, it is usually assumed that the system modeled is 

independent of the past states and hence determined only by the instantaneous position. However, as a result of 
the noise disturbances and fluctuations in the real World, we see that a good mathematical model must put into 
account the position of such system at some unit of time behind. Stochastic delay differential equations (SDDEs) 
and Deterministic delay differential equations (DDEs) are used to model systems that account for the fluctuation 
of the real World as well as undisturbed systems with dead times [1,2,3,4]. 

In the last few decades, attention has been focused on the study of solutions of DDEs which are 
oscillatory. For instance Agwo [1] studied the DDE with real coefficients of the form 
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and presented a set of necessary and sufficient conditions for the oscillation of (1.1) by extending a set of 
conditions given in Gyori and Ladas [13]. Later, Li [15] introduced a new technique to analyze the generalized 
characteristic equation to obtain some infinite integral conditions for oscillation of (1.1). For a survey on 
oscillatory and non-oscillatory results of solutions of first order linear delay differential equations, we refer to 
Wang et al.[18]  

Although a large number of paper articles and research monographs have been written on oscillation 
and non-oscillation in deterministic delay differential equations, very little attention has been focused on the 
contribution of multiplicative noise perturbation (of the Ito type) to the oscillatory and non-oscillatory behaviour 
in solutions of stochastic delay differential equations. The concepts of oscillation and non-oscillation were 
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introduced into stochastic processes by Appleby and Buckwar [3] when they studied the almost sure oscillatory 
properties of the linear SDDE 
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where r(t) is a variable time delay, σ is a positive number and {B(t)}t ≥ 0 is a one-dimensional Brownian motion. 
The authors showed that noise can induce oscillation in the solution of Equ. (1.2) whenever the feedback 
intensity b < 0. 
 In the present paper, we extend the formalism of Appleby and Buckwar [3] to guarantee the study of the 
effect of multiplicative noise on oscillatory behaviour of the more general SDDE with constant delays of the 
form 
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where 0 ≤ ri ≤ r, for i = 1, 2, …, n, are constant time lags, a, bi ∈ ℜ, I = 1, 2,…, n, µ is a positive number which 
measures the average impact of the fast fluctuating internal noise and {B(t)}t ≥ 0 is a one –dimensional Brownian 
motion defined on a complete probability space (Ω, F, P) with filtration {F(t)}t ≥ 0 satisfying the usual conditions 
and the initial function ψ ∈ C([-r, 0], ℜ) . By solution of the SDDE (1.3), we mean a stochastic process {X(t)}t ≥ 0 
defined on a probability triple (Ω, F, P) and with continuous sample paths which satisfies Equation (1.3) as well 
as its initial function ψ. Since the theory of oscillation of stochastic delay differential equations is a natural 
extension of the theory of oscillation of deterministic delay differential equations, we will always compare the 
oscillatory results of the SDDE with those of the corresponding deterministic delay differential equation 
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which satisfies the same initial function as equation. (1.3), where a, bi ≠ 0,  ri > 0. We use lower case letters for 
ease of notations.   

By solution of the deterministic delay differential equation (1.4), we mean a function x ∈ C([t* - ρ, 
∞),ℜ) for some t*, where ρ = max 1≤ i ≤ n {r i} satisfies Equation (1.4) for all t ≥ t*. 
 The paper is organized in three sections. Section 1 contains the general introduction. In section 2, we 
discuss certain preliminary results as well as the technique used in our main proofs. In section 3, we present the 
main results. 
 
2.0 Preliminaries: 

Throughout this paper, we let (Ω,F,P) be a complete probability space with filtration {F(t)} t ≥ 0, which is 
a natural one, that is, a family of increasing sub-σ - algebras of F such that for 0 ≤ s < t < ∞, we have Fs ⊂ Ft ⊂ 
F, it is right continuous and each {F(t)} t ≥ 0 contains all P-null sets in F. . By {B(t)} t ≥ 0, we mean a one-
dimensional Brownian motion defined on the probability triple (Ω,F,P). We denote by C([t0,∞), ℜ), the set of all 
functions from the interval [t0,∞) to ℜ, which are continuous for t ≥ t0.  
Definition 2.1 
 A solution x(t) of the deterministic delay differential equation (1.4) (equivalently of the SDDE (1.3)) is 
called an equilibrium or zero solution if x(t) ≡ 0 whenever the initial function ψ ≡ 0. 
 A solution x(t) of a DDE defined on the interval [Tx, ∞) and satisfies  

( ){ } 0: >≥ TttxSup , for all T > Tx 

is called a regular or non-trivial solution, that is ( ) 0≠tx  in any infinite interval [Tx, ∞). 

 A non-trivial solution x(t) of a DDE is said to be eventually or almost certainly positive if there exists t1 
> 0 such that x(t) > 0,for all t ≥ t1. 
 A non-trivial solution x(t) of a DDE is said to be eventually or almost certainly negative if there exists t1 
> 0 such that x(t) < 0,for all t ≥ t1. 
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Definition 2.2 
 As it is customary for the deterministic delay differential equation (1.4), a non-trivial solution x(t) is 
said to be oscillatory if it has arbitrarily large zeros. That is, for t ≥ t0, there exists a sequence {tn: x(tn) = 0} of 

x(t) such that ∞+=
∞→ n

n
tLim .  Otherwise x(t) is said to be non-oscillatory. 

 
 
 
 
 In 2005, Appleby and Buckwar [3] introduced this definition into stochastic processes as follows: 
Definition 2.3 
 A non-trivial continuous function f:[0, ∞) → ℜ is said to be oscillatory if the set Wf = {t ≥ t0: f(t) = 0} 
satisfies Sup Wf = ∞. If a function is not oscillatory, it is said to be non-oscillatory. This notion was extended to 
stochastic processes in the following intuitive manner: 
 A stochastic process {X(t,w)} t ≥ 0 defined on a probability space (Ω, F, P) and with continuous sample 
paths is said to be almost surely (a.s.) oscillatory if there exists Ω* ⊆ Ω with P[Ω*] = 1 such that for all w ∈ Ω*, 
the path X(., w) is oscillatory, otherwise it is said to be non-oscillatory. Hence a stochastic process {X(t,w)} t ≥ 0 
defined on a probability space (Ω, F, P) and with continuous sample paths is said to be almost surely (a.s.) non-
oscillatory if there exists Ω* ⊆ Ω with P[Ω*] = 1 such that for all w ∈ Ω*, the path X(., w) is non-oscillatory. 

For us to establish the existence of oscillatory solutions of the SDDE (1.3), we first associate the 
solution X of the SDDE with the solution of a scalar linear non-autonomous delay differential equation 
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Where ri are constant delays and Pi(.) ≥ 0 are random non –negative continuous functions defined on some 
almost sure set Ω* ⊂ Ω by  
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Here, Pi depend upon the increments of a standard Brownian motion {B(t)} t ≥ 0 The large deviations or 
differences in these increments ensure that Pi are large enough to stimulate oscillation in equation (2.1). Since 
the oscillatory results of the solutions of the stochastic delay differential equation (1.3) will often be compared 
with those of the deterministic delay differential equation (1.4), it becomes necessary to reduce the deterministic 
delay differential equation (1.4 ) to a pure delay differential equation in terms of z. We do this by setting x(t) = 
z(t)eat to equation (1.4), that is, 
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The proof of the main result relies upon invoking for use, on a path-wise basis, that is (for each w in 
some almost sure subset Ω* ⊆ Ω) to Equation (2.1). The result below which concerns oscillatory properties of 
solutions is extracted from Li [15], (Theorem 2). 
Proposition 2.1: 
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where h:[t0, ∞) →ℜ+ is a non-decreasing continuous function satisfying h(t) < t, h(t) → ∞ as t → ∞ . Then every 
solution of 

( ) ( ) ( )∑
=

−=′
n

i
i thZtPtZ

1

)(     (2.5) 

oscillates. 
We also have results pertaining to non- oscillatory solutions of Equation (2.5). The following is found 

in Ladde et al [14] (Theorem 2.7.4)  
Proposition 2.2: 

Assume that 
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Then equation (2.5) has an eventually positive solution and hence non-oscillatory. 
Remark 2.1 

We will show that if h(t) = t - r i satisfies the condition of proposition (2’1), then the solution of the 
SDDE (1.3) is almost certainly(a.c) oscillatory. Also we comment that by using proposition (2.2), where the 
noise perturbation is absent, the deterministic delay differential equation (1.4) can have a non-oscillatory 
solution. The pair of oscillatory and non-oscillatory results chosen from the deterministic theory of oscillation as 
in proposition 1 and proposition 2 applies directly to the random delay differential equation (2.1)  

We need the following Lemmas to prove the main results. The following is a special case extracted 
form Elabbasy et al [10] (Lemma 1.3). 
Lemma 2.1 

If ( )∫
+
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>irt

t i
t

dssPSupLim 0  for some i and x(t) is an eventually positive solution of 
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The following is found in Li [15] (Lemma 2) 
Lemma 2.2 

Consider the delay differential equation ( ) ( ) ( ) 0
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where Pi ≥ 0 are continuous and ri > 0 are constants. If the equation has an eventually positive solutions, then 
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eventually. 
The following conjugation relationship is a special case of the results found in Lisei [16] (Theorem 

3.5): 
Lemma 2.3: 

Consider the stochastic functional differential equation driven by continuous helix spatial Semi- 
martingale of the Kunita type 
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where Xt = X(t – r, w), t ≥ 0, w ∈ Ω and a random functional differential equation of the form 
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Also let ( ){ } 0, ≥Λ twt  be a stationary bijective random process. Let {X(t,w)} t ≥ 0 be the solution of the stochastic 

functional differential equation and {Y(t, w)} t ≥ 0 be solution of the random functional differential equation. If for 
t ≥ - r, we define  
 
 

Y(t) = X(t)Λ-1(t)      (2.11)  
Then the following transformation or conjugation relationship holds:  
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2.2.1 The Transformation of Solution 
 In order to prove the existence of oscillatory and non-oscillatory solutions of the stochastic delay 
differential equation (1.3), the solution X of the SDDE is decomposed into a product of a nowhere differentiable 
but positive geometric process η(t) with well understood properties and a process Z(t) with a continuously 
differentiable sample paths which solves the scalar random delay differential equation (2.1)  

To this end, we define a strictly positive process; {η(t)} t≥ -r, which satisfies η(t) = 1, for t∈ [-r, 0] and  

also satisfies for all  t ≥ 0,  ( ) 
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We also call the almost sure subset on which η exists Ω*⊆ Ω with P[Ω*] = 1.  We again define for all t 
≥ -r the process  

Z(t) = X(t)/η(t)      (2.14) 
where X(t) is the solution of Equation (1.3). Moreover, the process Z(t) is well defined since η is an entirely 
positive process and its properties are well known. This transformation in equation (2.14) above is important 
because it builds a relationship between Z and the solution X of the SDDE (1.3). The zeros of the process Z 
correspond to the zeros of the process X. Hence it is sufficient to analyze the oscillatory behaviour of Z in order 
to determine the oscillatory properties of X. This approach is of great benefit in the sense that there is a set of 
deterministic results (as we have in proposition 2.1 and proposition 2.2) that apply directly to the sample paths of 
the solution Z(t) of the random DDE (2.1). This technique was applied in Appleby and Buckwar [3]. We 
comment here that many similar results, for example of equations with a single constant delay and equations with 
positive and negative coefficients, exist in the deterministic literature. These results could be used together with 
the technique in Appleby and Buckwar [3] to develop more general results pertaining to oscillatory and non-
oscillatory behaviour of solutions of stochastic delay differential equations. Applying the result of Lemma 2.3 (or 
the stochastic integration by parts as in [3] to (2.7) and (2.8)) yields 
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From the continuity of the integrand on the right hand side of  (2.15), we see that Z ∈C((0, ∞), ℜ), the space of 
all continuous functions that are once differentiable from the interval (0, ∞) to ℜ and hence Equation (2.15) can 
be written as  
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Equation (2.16) is only a symbolic representation of Equation (2.15).  Hence the solution{X(t)} t≥ 0 of the 
stochastic delay differential equation (1.3) can be characterized using the following Lemma. It is a special case of 
the result extracted from Chilarescu et al [9](Theorem 2.2): 
Lemma 2.4 
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Moreover, the solution (2.18) has the following property 
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3 0 The main results 
 In the result below, we establish that whenever the feedback intensity is negative and for whatever 
selection of initial function, the solution of the SDDE(1.3) is almost certainly oscillaory.  
Theorem 3.1: 

Assume that 0 < r i ≤ r < ∞ and t → t – ri.is non-decreasing If bi < 0. Then for every continuous initial 
function ψ, equation (1.3) has an oscillatory solution on [0,∞) almost certainly. 

 
Proof 

By the relationship in equation (2.14), and since η(t) is strictly positive, the set W = {t> 0: X(t) = 0}can 
only satisfy sup W = +∞ if and only if the set W* = { t ≥ 0: Z(t) = 0} satisfies SupW* = 0 following from the 
definition of oscillation of a non-trivial continuous function. Since {X(t)}t≥0 is defined on the probability triple 

(Ω, F, P), we define for t≥0, w ∈Ω ( ) ( ) ( )wtwrtbwtP ii ,,, 1−−−= ηη .  Then Pi(.) is an almost certainly 

positive continuous function on [0,∞). Moreover, Z satisfies the equation 

( ) ( ) 0),,(,, >−−=′ twrtZwtPwtZ ii     (3.1) 

Hence it satisfies condition (2.4) of proposition 2.1 and thus almost certainly oscillatory, if not equation (2.1) 
may have an almost sure positive solution Z(t) which is in fact non-increasing.  We define α(t) = -Z/(t)/Z(t), then 
α(t) is non-negative and continuous and by definition, there exists t1 ≥ t0 such that Z(t1) > 0 for all t ≥ t1.such that 
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The following properties of the exponential function are easily established. Assume that x ≥ 0 
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Using (iii ) in (3.3) above, we have 
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Now choose K, T ∈[0,∞) with K > T. Then  
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By interchanging the order of integration, we obtain 
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From (3.6) and (3.7) it follows that 
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By Lemma 2.2, we have 
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eventually.  Using (3.8) and (3.9) 
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In view of condition (2.4) of proposition 1, we have 

( )
( ) ∞=
−∏
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n
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t tZ

rtZ
Lim

1

     (3.11) 

But by lemma 1, we obtain 
( )

( ) ∞<−
∞→ tx

rtx
Sup

t

lim , which contradicts (3.11). Hence Z(.,w) is almost surely 

oscillatory and satisfies condition (3.13) of proposition 1.   Suppose that there exists an almost sure set Ω* ⊂ Ω 
such that 
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 with P[Ω*] = 1 

Then as Pi(.) and h(t) = t- ri satisfy the hypothesis of proposition 2.1,  It follows that for each w∈Ω*  the 
trajectory Z(.,w) is oscillatory and so the path X(.,w) is oscillatory and hence as Ω* is an almost sure set, it 
follows that the solution X(t) of the SDDE (1.3) is almost certainly oscillatory. By the properties of the random 
function Pi(.), we observe that   
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It is observed (See [3]) that the sure event Ω* ⊆ Ω as defined above exists eventually whenever 

( ) ( )( )( ) .expsuplim ∫ −∞→
∞=−−−

t

rt i
t iii

dsrsBsBµ     (3.12) 

and hence (1.3) has an oscillatory solution almost certainly. 
 
 
 
 
4.0 Conclusion 

In the stochastic delay differential equation (1.3), under theorem 2, the important factor that stimulates 
oscillation is equation (3.12), which must always occur in the stochastic case as a result of the presence of the 
multiplicative noise. If ri are small enough, the integral in (3.12) is made so small that the condition in 
proposition 2 holds in the deterministic case (1.4) and at that instant, a non-oscillatory solution occurs in (1.4) but 
this cannot happen in the SDDE (1.3) as a result of (3.12). Hence the multiplicative noise sustains oscillation in 
the stochastic case (1.3) even when the non-stochastic equation (1.4) has a non-oscillatory solution. Therefore, 
the multiplicative noise stimulates oscillation about the zero equilibrium solution which may not necessarily be 
present in the deterministic case where µ = 0. It should be noted that the noise has not entirely replaced the time 
delay as the cause of the oscillation. However, the time delay is no longer the sole factor in the oscillatory 
phenomenon of the stochastic delay differential equation. 

The following result shows that the crucial condition (3.12) which ensures oscillation in the random 
equation must always hold in the stochastic case so that all solutions if the SDDE (1.3) are almost certainly 
oscillatory. It is a special case in Appleby [3] 
Lemma 4.1 

Assume that ri ∈ ℜ+ and satisfies 0 < r i ≤ r < ∞. If µ ≠ 0, then ∫ −∞→

t

rtt iii

expsuplim (-µ(B(s)-B(s – 

r i)))ds = ∞ almost certainly hold. 
In the result below, we prove that for positive feedback and any continuous initial function ψ ∈ ([-r, 

0],ℜ+), every solution of equation (1.3) is eventually positive.  
Corollary 4.2 

Assume that bi > 0 and ψ(t) ∈ ([-r, 0],ℜ+).for t ∈[-r, 0]. If 0 < r i ≤ r < ∞, then equation (1.3) has an 
eventually positive solution on [0, ∞) and hence non-oscillatory. 
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