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Abstract

We study the role played by multiplicative noise perturbation in the
oscillatory and non-oscillatory behaviour of the solution of first order linear
scalar stochastic delay differential equation (SDDE)

ax (t) = [ax 0+ bix(t -, )}dt + X (£)dB ),
t> O)I(_(t): k), to[-r0h

We explain the interplay between the time lags and the multiplicative noise in
the oscillatory behaviour of the solutions of the SDDE. It is proved that the
presence of the multiplicative noise ensures that all solutions of the SDDE
oscillate under negative feedback even if its corresponding deterministic
equation has a non-oscillatory solution.

Keywords: Stochastic delay differential equation, oscifiatinon-oscillation,
noise perturbation.

1.0 Introduction:

In the application of stochastic differential eqoas, it is usually assumed that the system modesled
independent of the past states and hence determaimigdy the instantaneous position. However, assalt of
the noise disturbances and fluctuations in the Waild, we see that a good mathematical model mustnto
account the position of such system at some urtitraf behind. Stochastic delay differential equai¢SDDES)
and Deterministic delay differential equations (BipEre used to model systems that account fordlseuation
of the real World as well as undisturbed systenib dead times [1,2,3,4].

In the last few decades, attention has been focosethe study of solutions of DDEs which are
oscillatory. For instance Agwo [1] studied the DidiEh real coefficients of the form

x(t)+zn:Pix(t—ri):0, whereP 00O, r 00" (1.1)
i=1

and presented a set of necessary and sufficierditamms for the oscillation of (1.1) by extendingsat of
conditions given in Gyori and Ladas [13]. Later,[Lb] introduced a new technique to analyze theegdized
characteristic equation to obtain some infiniteegmal conditions for oscillation of (1.1). For angey on
oscillatory and non-oscillatory results of solusoof first order linear delay differential equatsprwe refer to
Wang et al.[18]

Although a large number of paper articles and mefemonographs have been written on oscillation
and non-oscillation in deterministic delay diffetiah equations, very little attention has been el on the
contribution of multiplicative noise perturbatioof ¢he Ito type) to the oscillatory and non-ostdly behaviour
in solutions of stochastic delay differential edqomas. The concepts of oscillation and non-oscolativere
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introduced into stochastic processes by ApplebyBuckwar [3] when they studied the almost surellzdory
properties of the linear SDDE

dX (1) = (aX (t)+ bX (t = r(t)))+ oX (t)dB(t),t = 0 1.2)
X()=v) to[-r.o]

where r(t) is a variable time delay,is a positive number and {B(t)3, is a one-dimensional Brownian motion.
The authors showed that noise can induce osciflatiothe solution of Equ. (1.2) whenever the feetiba
intensityb < 0.

In the present paper, we extend the formalismpgléby and Buckwar [3] to guarantee the study ef th
effect of multiplicative noise on oscillatory bel@wr of the more general SDDE with constant delafyshe
form

ax (1) = [ax )+ 30X (- r)|at + 1x (om0 w3
X({t)=¢k), tO[ro]

where O<r;<r, fori=1, 2, ..., n, are constant time lags,;d&Jlal, | = 1, 2,..., ny is a positive number which
measures the average impact of the fast fluctuatirggnal noise and {B(t)} , is a one —dimensional Brownian
motion defined on a complete probability spa@e F, P) with filtration {F(t)} - o satisfying the usual conditions
and the initial functionp O C([-r, 0], O) . By solution of the SDDE (1.3), we mean a statiegorocess {X(t)}so
defined on a probability tripleQ), F, P) and with continuous sample paths whictsfesi Equation (1.3) as well
as its initial functiony). Since the theory of oscillation of stochasticagedlifferential equations is a natural
extension of the theory of oscillation of deterrstit delay differential equations, we will alwaysngpare the
oscillatory results of the SDDE with those of tlreresponding deterministic delay differential edprat

n
X (t)=axt) +> bx({t-r,) (1.4)
i=1
which satisfies the same initial function as equrati(1.3), where a,; i 0, > 0. We use lower case letters for
ease of notations.
By solution of the deterministic delay differentiedjuation (1.4), we mean a functiodXC([t - p,
o),00) for some t, wherep = max. <, {r;} satisfies Equation (1.4) for alxt .
The paper is organized in three sections. Sedtionntains the general introduction. In sectiomvé,
discuss certain preliminary results as well astéebnique used in our main proofs. In section 3 pvesent the
main results.

20 Preliminaries

Throughout this paper, we I&2,F,P) be a complete probability space with filtratiof()} ~ o, which is
a natural one, that is, a family of increasing subalgebras of such that for & s<t < o, we haveFs 7 F, [
F, it is right continuous and eaclr)}, » o contains all P-null sets iR. . By {B(t)}; - o, we mean a one-
dimensional Brownian motion defined on the proligbitiple (2,F,P). We denote b¥([t,,), /), the set of all
functions from the intervald,») to /7, which are continuous far t,.
Definition 2.1

A solution x(t) of the deterministic delay diffeiahequation (1.4) (equivalently of the SDIE3)) is
calledan equilibrium or zero solution if x(§ 0 whenever the initial functiogr =0.

A solution x(t) of a DDE defined on the interva},[«) and satisfies

sup{x(t):t=T}> 0, forall T>T,

is called a regular or non-trivial solution, thag Ix(t)‘ # 0 in any infinite interval [T, o).

A non-trivial solution x(t) of a DDE is said to lkeentually or almost certainly positive if thepasts §
> 0 such that x(t) > 0,for all &t;.

A non-trivial solution x(t) of a DDE is said to lkgentually or almost certainly negative if theréses §
> 0 such that x(t) < 0,for all &t;.
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Definition 2.2
As it is customary for the deterministic delay efihtial equation(1.4), a non-trivial solution x(t) is
said to be oscillatory if it has arbitrarily largeeros. That is, for £ t,, there exists a sequencg: §t(t,) = 0} of

X(t) such thatLimtn =+ 00. Otherwise x(t) is said to be non-oscillatory.

n-oo

In 2005, Appleby and Buckwar [3] introduced théfidition into stochastic processes as follows:
Definition 2.3

A non-trivial continuous function f:[0p) - /7is said to be oscillatory if the set W {t >ty f(t) = 0}
satisfies Sup W . If a function is not oscillatory, it is said te@mon-oscillatory This notion was extended to
stochastic processes in the following intuitive memn

A stochastic process{t,w)}, - o defined on a probability spac@,(F, P) and with continuous sample
paths is said to be almost surely (a.s.) oscilaifothere exist€) 0 Q with P[Q'] = 1 such that for all vid Q,
the pathX(., w) is oscillatory, otherwise it is said to bennascillatory. Hence a stochastic proceXét{v)};- o
defined on a probability spac@(F, P) and with continuous sample paths is said to besi surely (a.s.) non-
oscillatory if there exist® 0 Q with P[Q'] = 1 such that for allv 0 Q, the pathX(., w) is non-oscillatory.

For us to establish the existence of oscillatoriutsmns of the SDDE (1.3), we first associate the
solutionX of the SDDE with the solution of a scalar lineanrautonomous delay differential equation

Z'(t)= -z P()z(t-r) @.1)

Where r are constant delays ami.) = 0 are random non —negative continuous functiorfet® on some
almost sure s€@” 0 Q by
— bt g HERm-BE-W)  for t >t
P )= t 2.2)
. — e t-HBOW) fort<t

2

where)lz(a—’u?j, t=inf{t >0:t —r, =0} suchthat for all t >t,

t—-r,20and wQ

Here, P; depend upon the increments of a standard Browniatiom {B(t)}; - ¢ The large deviations or
differences in these increments ensure Bhatre large enough to stimulate oscillation in equat{@rl). Since
the oscillatory results of the solutions of thechiastic delay differential equation (1.3) will aftee compared
with those of the deterministic delay differentégjuation (1.4), it becomes necessary to reducdeterministic
delay differential equation (1.4 ) to a pure dedi#fferential equation in terms of z. We do thisdstting x{) =
z(t)e" to equation (1.4), that is,

X(t)= Z(t)e* +azt)e™

Z(t)e* +adt)e” = azft)e® + > bzt - Jp

i=1

Z(t)e™ = Zn: bz(t-r)e*e™
i=1

Z(t)e™ = Zn: bz(t-r)e™ (2.3)
i=1

The proof of the main result relies upon invoking éise, on a path-wise basis, that is (for each w i
some almost sure sub€et 0 Q) to Equation (2.1). The result below which consewscillatory properties of
solutions is extracted from Li [15], (Theorem 2).

Proposition 2.1:
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oot
Let I_n = ma>{r1, I’z,..,l’n}. Suppose thaEJ-h(t) P| (s)ds> O fort> to. for some¢> 0 and
i=1

. tn
that LimSug| " P,(s)ds>0 . ifin addition
too —Th

J_:( inl R(t)] In(ei:l J';m F?(s)ds)dt = o, 2.4)

whereh:[t,, ©) — 0" is a non-decreasing continuous function satisfyifiy<t, h(t) — o« ast — o . Then every
solution of

n
z'(t)=-3 R (t)z(hw) (25)
i=1
oscillates.

We also have results pertaining to non- oscillaswlutions of Equation (2.5). The following is faln
in Ladde et al [14] (Theorem 2.7.4)
Proposition 2.2:

Assume that

. 1
P —_ .
jt_rn ;  (s)ds< - 2.6)

Then equation (2.5) has an eventually positivetgmitand hence non-oscillatory.
Remark 2.1

We will show that ifh(t) =t - r; satisfies the condition of proposition (2'1), théme solution of the
SDDE (1.3) is almost certainlg(c) oscillatory. Also we comment that by using prdfios (2.2), where the
noise perturbation is absent, the deterministiaydlifferential equation (1.4) can have a non-tetcity
solution. The pair of oscillatory and non-oscillagtoesults chosen from the deterministic theorpsdillation as
in proposition 1 and proposition 2 applies direttithe random delay differential equation (2.1)

We need the following Lemmas to prove the main ItesThe following is a special case extracted
form Elabbasy et al [10] (Lemma 1.3).
Lemma 2.1

. tr;
If LimSu t Pi(S)dS>O for some i and x(t) is an eventually positive #olu of

| )
X'(t) =- i P (t)X(t -, ) then for the same i,

lim Sup% <o (2.7)

t oo

The following is found in Li [15] (Lemma 2)
Lemma 2.2

Consider the delay differential equatiod(t): - i P (t)x(t - ), t>t,
i=1

where R =0 are continuous and ¥ 0 are constants. If the equation has an evehyadsitive solutions, then

t+r; .
[ "R(s)ds<1i=12..n (2.8)
eventually.
The following conjugation relationship is a spediake of the results found in Lisei [16] (Theorem
3.5):
Lemma 2.3:

Consider the stochastic functional differential atjon driven by continuous helix spatial Semi-
martingale of the Kunita type
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dX (t) = H (X, X (t), X,)+M (dt, X (1)), t =0 2.9)
X(0)=vOo®, X,=n0L%([-r,0]0)
where X= X(t —r, w), t=0, w/J7 2 and a random functional differential equation lo€ form
dY(t) = G(t, Y(t),Y,)dt
d 5 (2.10)
Y(©) =vOo¢, Y,=p0L2(-r0,0)

Also let {/\(t, )}tZO be a stationary bijective random process. D€t,{\)}, - be the solution of the stochastic

functional differential equation andrt, w)}.- o be solution of the random functional differenggjuation. If for
t=>-r, we define

Y(t) = X(@OA(t) (2.11)
Then the following transformation or conjugatiofat®mnship holds:
X(E)=Y(t-r,wA-r,wA™*(t,w), for t=0,wlQ (2.12)

221 The Transformation of Solution

In order to prove the existence of oscillatory amh-oscillatory solutions of the stochastic delay
differential equation (1.3), the solutiotiof the SDDE is decomposed into a product of a reve/ldlifferentiable
but positive geometric procesgt) with well understood properties and a procg@¥ with a continuously
differentiable sample paths which solves the scaladom delay differential equation (2.1)

To this end, we define a strictly positive procgsyi)} . .., which satisfies)(t) = 1, fortO [-r, 0] and

2

also satisfies for all % 0, /7('[) = exr{(a—%)t + ,LIB('[)} That is,n(t) solves

dn(t) = an(t)dt + un (t)dB(t), t > O}
n{t)=1 tO[-r0]

We also call the almost sure subset on whjaxistsQ O Q with P[Q] = 1. We again define for al
> -r the process

(2.13)

Z(t) = X(t)/n(t) (2.14)
where X(t) is the solution of Equation (1.3). Moreover, {®cessZ(t) is well defined since) is an entirely
positive process and its properties are well knownris transformation in equation (2.14) above ipamant
because it builds a relationship betweeand the solutiorX of the SDDE (1.3). The zeros of the process Z
correspond to the zeros of the procEsslence it is sufficient to analyze the oscillatbighaviour of Z in order
to determine the oscillatory propertiesXfThis approach is of great benefit in the sensé ttere is a set of
deterministic results (as we have in propositidnghd proposition 2.2) that apply directly to tlenple paths of
the solutionZ(t) of the random DDE (2.1). This technique was applie Appleby and Buckwar [3]. We
comment here that many similar results, for exarpkequations with a single constant delay and gopswith
positive and negative coefficients, exist in théedministic literature. These results could be usggtther with
the technique in Appleby and Buckwar [3] to deveflopre general results pertaining to oscillatory aod-
oscillatory behaviour of solutions of stochastitagedifferential equations. Applying the resultladmma 2.3 (or
the stochastic integration by parts as in [3] tdY2and (2.8)) yields

z(t)= Z(O)+J';iblz(s— r 7(s=r)Jp(s)*ds t=0 (2.15)

From the continuity of the integrand on the righbt side of (2.15), we see taflC((0, ), ), the space of
all continuous functions that are once differerféddipom the interval (Op) to [0 and hence Equation (2.15) can

be written as
2'(t)= Y bzt - ot -1 )7 () (2.16)
i=1

Equation (2.16) is only a symbolic representatidnEquation (2.15). Hence the solutiof{)}. o, of the
stochastic delay differential equation (1.3) carcbaracterized using the following Lemma. It igpadal case of
the result extracted from Chilarescu et al [9](Tieew 2.2):

Lemma 2.4
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Consider

dX(t)=[aX(t)+Zn:QX(t‘ri) dt + £ (t)dB(t) 2.17)
X(t)=¢k), to[-ro

2
If 7(t), t =-ris a process which satisfiegt) = 1 for t /7[-r,0] and I7(t) =exp(a—’%} + yd E(t)} for all

t=0. Then the solution () of equation(2.17)is unique and is given by

X (t) =t { ijx s—r Jy(s)*d } (2.18)

Moreover, the solution (2.18) has the foIIowmg Eecty

E[ SugP(s) } [1+ 2ela )‘]E[ Suply(u)’ }eﬂt where A =
—r<s<t —-r<u<0
30 The main results

In the result below, we establish that wheneverfaezback intensity is negative and for whatever
selection of initial function, the solution of t&®ODE(1.3) is almost certainly oscillaory.
Theorem 3.1

Assume thad <r; st <o and t - t — r.is non-decreasing If;x 0. Then for every continuous initial
function ¢, equation(1.3)has an oscillatory solution 0f,0) almost certainly

Proof

By the relationship in equation (2.14), and sin¢® is strictly positive, the set W =t 0: X(t) = O}can
only satisfy supV = +oo if and only if the seWW* = {t = 0: Z(t) = 0} satisfies Sup* = 0 following from the
definition of oscillation of a non-trivial continus function. Since {X(t)}, is defined on the probability triple
(Q, F, P), we define for20, w1Q P (t,W) = —b/](t  f ,W)lfl(t,W). ThenPy(.) is an almost certainly
positive continuous function on f8). Moreover, Z satisfies the equation

Z'(t,w)=-P(t,w)Z(t-r,w), t>0 (3.1)

Hence it satisfies condition (2.4) of propositiorl 2nd thus almost certainly oscillatory, if nouation (2.1)

may have an almost sure positive soluf§t) which is in fact non-increasing. We defing) = -Z/(t)/Z(t), then
a(t) is non-negative and continuous and by definitibere exists, = t, such tha#(t,) > 0 for allt = t;.such that

t
Z(t) = Z(tl)ex;(— jt_pl a(s)dsj, for t > t, .Moreover, a(t) satisfies the generalized characteristic

alt)= .Z:‘ P (t)exp(fl_pa(s)ds) (3.2)

The following properties of the exponential functiare easily established. Assume that

equation
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(i)e* =re*+1-r, if r=1
(i) e <re*+1-r, if r<1 (3.3)
(iii ) ™ SLLCL IR TING

Using (ii) in (3.3) above, we have

al)= 3 Rext ol gy . al9ks] = SR0ent o aldase ™|

where

=3[!, Rles=[ 3" R6les]al)- R0 aleks

i=1 i=1 i=:. n (3.5)
z(z P (t)j In(ez:jtt+r P (s)dsj
i=1 i=1
Now choose, T [J[0,) with K > T. Then
K ¢t i
J.T (;Iti R( j dt ZIT i .[t - )d&jt
(3.6)

2 [ZP ] m(eij

at)]!, Rlsks-RE), als szR(t)In(eJ'twiR(s)ds)

By interchanging the order of |ntegrat|on we obtai

ITNiZ:,R(t)j dsdtsz U o dtjds-ij TKr )] " Rtkds @)

i=1
From (3.6) and (3.7) it foIIows that

n n

Z;:I:‘fii a(t)J‘t‘”“ P (s)dsdt= J'TK (z jln(eZJ't ds]dt (3.8)

i=1 i
By Lemma 2.2, we have

[ "R(s)ds<1, i=123..n (3.9)
eventually. Using (3.8) and (3.9)

Zl: "”(Z(ZK(;;)ri )j =[] (Z P (t)jln(ezn:j:”“ P (S)dsjdt (3.10)

i=1 i=1

In view of condition (2.4) of proposition 1, we leav

) = 6

xt-r)

But by lemma 1, we obtaifim SupT < oo, which contradicts (3.11). Henc#.,w) is almost surely

t o0

oscillatory and satisfies condition (3.13) of prejtion 1. Suppose that there exists an almost setQ’ [ Q
such that
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wOQ:limSud " P (sw)ds> 0, and

too t—-Thn

f@ R (t)J 'n(eiZ:l‘,Iht(t) P(s w)dsjdt = oo

Then asP,(.) andh(t) = t- r; satisfy the hypothesis of proposition 2.1, Itldais that for eactwQ" the
trajectory Z(.,w) is oscillatory and so the pat{..w) is oscillatory and hence &% is an almost sure set, it
follows that the solutiorX(t) of the SDDE (1.3) is almost certainly oscillatoBy the properties of the random
functionP;(.), we observe that

[ Rlekis =" -bexd ~(a- ) b exl- (Bl B(s-1 s
S —b(ma{l ex;{—(a—%z) |1 el ulele) - a(s—r s

It is observed (See [3]) that the sure eM@ht] Q as defined above exists eventually whenever
. t
lim supj't exp(- (B(s)- B(s-r,)))ds = c. (3.12)
| ) —riii

and hence (1.3) has an oscillatory solution almedtinly.

*

with P[Q] =1

4.0 Conclusion

In the stochastic delay differential equation (1i8)der theorem 2, the important factor that stated
oscillation is equation (3.12), which must alwaysur in the stochastic case as a result of theepoesof the
multiplicative noise. If rare small enough, the integral in (3.12) is madessall that the condition in
proposition 2 holds in the deterministic case (a4 at that instant, a non-oscillatory solutionws in (1.4) but
this cannot happen in the SDDE (1.3) as a resul8.df). Hence the multiplicative noise sustaingltadion in
the stochastic case (1.3) even when the non-stiictegiation (1.4) has a non-oscillatory soluti@herefore,
the multiplicative noise stimulates oscillation abthe zero equilibrium solution which may not rnesagily be
present in the deterministic case whgre 0. It should be noted that the noise has natedptreplaced the time
delay as the cause of the oscillation. However,time delay is no longer the sole factor in theiltzdory
phenomenon of the stochastic delay differentiabéqu.

The following result shows that the crucial coratiti(3.12) which ensures oscillation in the random
equation must always hold in the stochastic casthaball solutions if the SDDE (1.3) are almosttaaly
oscillatory. It is a special case in Appleby [3]

Lemma 4.1

. t
Assume that;r/7 [7* and satisfie) <r, st < o, If 4 # 0, then lim SUP,L exp(-u(B(s)-B(s —
| N —riii

r;)))ds = oo almost certainly hold.

In the result below, we prove that for positivedieack and any continuous initial functignO ([-r,
0],0%), every solution of equation (1.3) is eventualbsitive.
Corollary 4.2

Assume that;> 0 and (t) O ([-r, 0],0%).for t O[-r, 0]. If 0 <r; < r < o0, then equatior(1.3 has an
eventually positive solution df, «) and hence non-oscillatory
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