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Abstract 
 

Convex functions play important roles in the study of optimization. 
These functions have many important properties which can be used to 
develop suitable optimality conditions and computational schemes for 
optimization problems. With a growing need for deeper understanding of 
these properties comes the need for a wider definition of convex functions.  
In this work we present a characterization of real valued convex functions of 
several variables through the derivative and integral. This characterization 
provides an equivalence for the definitions of convexity. 
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1.0 Introduction 

The subject of convexity is often treated quite extensively in optimization texts. However the ever-
increasing need for its application calls for suitable and easy means of recognizing convex functions. It is 
possible to give a quite strong (and simple) characterization of convexity by a combination of the first order 
condition (stated below in Theorem 2.5); a monotone mapping; and the integral, thereby revealing an equivalent 
definition of convexity. 
 
2.0 Basic Concepts 
Definition 2.1 

A set  is convex if  

    (2.1) 

It follows from this that  can have no re-entrant corners. A more general definition of convex set which readily 

follows is that: 
  

     (2.2) 

where . The vector  in (2.1) or (2.2) is referred to as a convex combination of the 

points ... 

Definition 2.2 
Let   be a nonempty convex set. A function  is said to be convex on  if for any 

 and all  we have 

   (2.3) 
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The right hand side of (2.3) is the chord joining  to  on the graph of  and the 

inequality expresses the fact that the graph of a convex function always lie below    (or along) the chord. 

 
 
 
 

Now for any  , if   then 

.    (2.4) 

Thus 
   (2.5) 

Similarly, for   we have   

  (2.6) 

or 

  (2.7) 

Now we will introduce the concept of monotone mapping, which is very useful in the characterization of convex 
functions 
Definition 2.4 

Let , then 

(1)  is monotone on   if for any  , . 

(2)  is strictly monotone on   if for any  , . 

Theorem 2.5 (First order characterizations of convex functions) 
Let  be a nonempty open convex set and  be a differentiable function, then 

(a) f is convex if, and only if, for any ,  

 
(b) f  is strictly convex on  if, and only if, for any   with  

 
(c) f is strongly convex (or uniformly convex) on S if, and only if, for any  

, 

where m > 0 is a constant. 
 
3.0 Characterization of convex functions through the derivative and the integral 
Theorem 3.1 

Suppose ,    and    is open and convex, then the following 

statements are equivalent 
(i) f is convex. 

(ii)  is monotone. 

(iii)   

(iv) . 

Proof 
(i) (ii): Since f is convex  

    (3.1) 

and          (3.2) 
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From (3.1) and (3.2), we have that 

 
As , we have that   

 
 
 
 

      (3.3 

(ii) (iii): Since  is monotone, for any    with , we 

have 

 

 

 

By the mean value theorem  

  

    (3.4) 

(Thus we observe that the value of integral of a gradient of a convex function between any two points is the same 
as the difference in the value of the function between the two points). 
(iii) (iv): From (iii), we have that 

 (3.5) 

But we observe that 

  (3.6) 

Thus from (3.5), (3.6) implies that 

    (3.7) 

(iv) (i): Assume that (iv) holds, and consider the convex combination  

, . 
Then 

 
   

 
. 

Remark 3.2 
Thus we can see from (iv) that the graph of f must lie above (along) the linearization of f about x1 and 

hence this linearization acts as a supporting hyperplane for the convex function.  A demonstration of the 
equivalence of (iv) is (ii) which illustrates that the slope of a convex function is non-decreasing along any line. In 
fact this result (for the directional derivative) can also be proved to hold for non-differentiable convex functions. 
The integral of this slope between any two points along any line is the same as the difference in the value of the 
function between the two points along this line. This is revealed in (iii). Thus under appropriate hypothesis this 
characterization gives an equivalence for the definitions of convexity. 
 

4.0 Contribution  
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A presentation with any of (ii) to (iv) without a pre-information on the convexity of a function implies 
not only that the function is convex but also a presentation with all of (i) to (iv). Although these properties (the 
first order condition; the integral; and monotonicity) are in optimization texts, this combination which gives a 
wider definition of a convexity has not been achieved. Thus this work places us at a better horizon for 
recognizing convex functions which are widely used in optimization.  
 

 
 
 
 
 
 

5.0 Conclusion 
A version of this characterization for functions on  can be proved. For functions enjoying the 

Geometric Chord property this version can be proved to show that a convex function need not be necessarily 
differentiable. This result can also be extended to incorporate the Hessian matrix of a function on . 
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