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Abstract

The need to develop some efficient schemes that is suitable for
second order initial value problems in ordinary differential equations is of
interest. We observe that some second order differential equations do exists
that will not contain the first derivative of the dependent variable in the
equation. Such eguations may be highly oscillatory or periodic in nature and
require some efficient algorithms in terms of accuracy and stability. This
paper discusses some one-leg methods that are suitable for such problems.
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1.0 Introduction
Over the years, attentions of Numerical Analystgehlaeen on the solutions of first order ordinary

differential equations (ODE) with an initial valspecified. Many numerical methods have been deeeldp
handle the initial value problem (IVP)

y' =f(xy). y@=n (1.1)
The problem, be it a single equation or systemeqjofations (stiff or non-stiff) have the same thesri
and approaches. Henrici [9] and Fatunla [7] ganeirmber of ways of handling problem (1.1) which urdz
the one-step and multistep methods of various srder

In this paper, the focus is to discuss some k-stefhod for the numerical treatment of the secorntkror
differential equation

y'=1f(xy) (1.2)
which does not contair’ gxplicitly. One way is to turn equation (1.2) teystem of equations. On the other
hand, we intend to solve (1.2) as a second ordfareltial equation without introducing the firstri/ative
function y. One question that may be raised is whether theists a direct method that will not require the
introduction of first derivative explicitly into amquation in which it does not appear. In otherdspmwe
intend to examine some methods that could handlatem (1.2) with ease and yet satisfy some reduire
numerical conditions such as stability and convecge Thus our intention is to consider the secaomigro

IVP
y'=fxy),y@=a,y@=8 (1.3)

Its solution may sometimes be highly oscillatoryperiodic in nature. Although there exists some
known Runge-Kutta methods for general second o@d2E, however, we shall in this paper consider only
the linear k-step method or the multistep methothefform

P(E)y, =h*o(E)f, (1.4)
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k _ k _
where p(E) = Zai E', o(E) = 2,3] E'! and E is a shift operator.
j=0 j=0
As usual we accept the localizing assumptiQrs +1 and not botk, andf, vanish at the same time.
Using a direct k-step method (1.4) for the treath@nequation (1.3) is established by Ash [1] whbee
studied asymptotic errors of using method (1.4against turning equation (1.3) to a system of eqnsat
Dalquist [5] denotes a method of the form

PYn =hf(aX,,0¥n)
as a one-leg-twin multistep method for a first orfi&P (1.1). A one-leg twin multistep method suitffor
the treatment of second order ODE of type (1.3)aiaa be considered.

2.0 Derivation of methods

To derive a class of methods of for second ordeEEGI given by (1.4), we give the following
definition by Lambert [10].
Definition 2.1

If y(x) is an arbitrary function, which is continuousifferentiable many times on interva, (), then
the linear k-step method (1.4) has the associatedr difference operator

k
Ly(x);hl = > [a;y(x+ jh) —=h?B;y"(x + jh)] (2.1)
j=0
And on using Taylor’s expansion about the poinv&,obtain
LLY(X); h] = co¥(X) + ¢ hy'(X) + c,h?y"(X) +...+ ¢ hTy @ (x) +.... (2.2)
Where the care obtained from (2.1) and (2.2) as:
k
N
Co = z ay
r=0
k
G = Z ray (2.3)
=1 >

k k
=Y Lr%a -> B
r=1 r=0

k
= 1.9 __1 g-2 _

These expressions permit us to define the orderethod (1.4) in terms af, as given by Lambert [10]
Definition 2.2
The linear k-step method (1.4) is said to be otopdf in equation (2.2) or (2.3)

Co :Cl:CZ:___:Cp :Cp+1: 0 and Cp+2¢ 0

Cp+2 is then said to be the error constant @l » hp+2 y(p+2)(x) is the principal local truncation

error at the point x
Theorem 2.3
The k-step method given by eguation (1.4)is said to be p-stable if

i) Itisimplicit i.e. B, Z0
i) Itisat best of order p=2
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Theorem 2.3 is the barrier theorem given by LamBBeMvatson [11] and subsequently by Dalquist [5],
however, Cash [2] and Fatunla [7] independentlysdtbthat the order barrier imposed by theorem then
attainable order of p-stable method could be crbdseconsidering certain hybrid 2-step methods.yThe
further showed that orders 4 and 6 p-stable methagrids.

In the same spirit we shall derive some linear istelp methods (LMM) based on the definitions
above. It will be observed thgt can least be approximated by three discrete valfigsthus, it is expected
that a method of order k for a second order difféat equation requires k to be at least 2.

Thus, to construct the least explicit LMM that stiequation (1.4k=2,3,=0

We require a method of the form

—h2
aoyn + alyn+1 + az yn+2 =h (/80 fn + 181 fn+1)
From equation (2.3) se€y =C; =Cp =C3=0, for the determination of the unknowns. That is,
C,: a,+a,+a,=0
c,: a,+2a,=0
. 2 —
C,: %(al +2 0'2) _(/80 +/81) =0
. 3 —
Cs - %(0'1 +2°a,) - B, =0
With localizing assumption, = a, = +1 and solving, we obtain an explicit 2-step metas
— h?2
yn+2 - 2yn+1 + yn - h fn+1 (2-4)
Equation (2.4) is a member of Stormer Cowell mdttiambert [10]).
Since explicit methods are known to be somewha é&xurate than an implicit method, then an implici
scheme of the same or higher order can be deriyednburing thaf3, = B, # 0. Introducing one free

parameter, it will lead to the determination ofyofdur unknowns. Hence we must §gt=C, =C,=C3=0
Thus, an implicit 2-step method of the form (1) i

— h2
aO yn + alyn+l + az yn+2 =h (IBO fn + 181 fn+1 + 182 fn+2))
If we choose or s¢tl = a (a reasonable free parameter), then we haveet of equations
C,: a,+a,+a,=0
c:a +2a,=0
.1 2 —
Crt (a1 +2%a3) = (Bo+ B+ B) =0

.1 3 —
C3: gla1+27a3) = (B +205;)=0
Using the localizing assumption and the free patamee solve the above equations to arrive at
_ — k2|1 _ 1 —
Yne2 2yn+1 Y, = h [3 1-a) fn +ta 1:n+1 *t3 1-a) 1:n+2:| (2.5)
This equation has many structure depending ondhdition imposed on the free parameter

If a=1, we have the explicit method (2.4) in whickethe error constant =C

12
Furthermore, i = %2, we have
- —
Yns2 2yn+1 Y. =7 h [fn +2 fn+1 + fn+2] (2.6)
This method has an error const@y = —%, and it is of order 2.

By definition 2 however, if we sed = 5/6, we obtain the optimal 2-step method knownNammerov's
method. Thus, witla = 5/6 in (2.5) we have

yn+2 - 2yn+l + yn :%hz[fn +10fn+l + fn+2] (2-7)
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which is of order 4 since its error constant & = _ﬂ' Equation (2.7) is known to be p-stable and

unconditionally stable LMM.
Another method that is obtained when a is takeretés is

— 2 —
Yn+2 = 2Yn+1 T Yn _%h [fn +6fhg t+ fn+2]v C4__2_14 (2.8)
And with the choice & ¥4 we get

Y2 ~2Yna1 + Y :% h2[3fn +2fhu +3fn+2]: Cs == (2.9)

All the methods given in (2.6) through (2.9) areplitit and will require an explicit method such as
equation (2.4) to serve as the twin-multistep saeefar their implementation. The choice of impleta¢ion
between PECE and PE(CEjnodes depends on the level of accuracy achievedhigher accuracy we
implement our methods using the PE(CE)ode

By Dalquist [5] methods (2.6) or (2.7) can be relgar as a one-leg multistep method. We define a
multistep method for the treatment of second obfdBras a one-leg-twin multistep method for secordeo
ODE, if the method can be written as

— 2
P(E)yn =h“f(a(E) Xy, 0(E)yn)
Hence the method (2.7) is a one-leg-twin multistegthod for second order ODE.
The LMM of the form (1.4) is said to be zero-stalflao root of the first characteristic polynomig}(¢)

has modulus greater than one and if every rootarfutus one has multiplicity not greater than two.

The characteristic polynomial is conventionally dige describe the zero stability as well as the
consistency of a LMM. Thus, Lambert [10] statedt thanethod is said to be consistent if it has oofeat
least one defines the first and second charadtepstynomials as:

pO=Yad, o)=Y 5e’

Indeed method (1.4) is said to be consistent iff

I rn
P =p@®=0 0"1)=20(Q)

It is easily verified by this definition that ouratihods (2.4), (2.6) and (2.7) are all consistedtzero
stable.

To implement our one-leg twin methods on a secamli&roequation of the type (1.3), we require
some starting point in addition to the prescribeitigl points. Indeed, an approximation of the Ted
expansion will do. The other aim of this paper éfiere, is to implement and do comparison of acguodc
various orders of schemes of the one-leg methaddg BE(CE) mode.

3.0 Numerical experiments
Example 3.1
We consider a highly oscillatory test problem

] 2 — — ] -
'+ A7y =0, ¥y(%) =Y Y(X) =Y, (3.1
TakingA = 2 to be specific, the problem is solved withegivnitial conditions
y©0)=1 y'(0)=2
Due to the oscillatory nature of the problem, weplement with two different steps. The results

obtained with the methods derived above are gineFable3.1 below. The analytical solution of thiskdem
IS Y(X) = cosX + sinX

Table 3.1 Solution of problem 3.1

X Method (2.6) Method (2.7) Method (2.8)

0.2 1.3132673267 1.3129568106 1.3130348259
0.3 1.3945240663 1.3935698281 1.3938095592
0.4 1.420552130 1.4186252445 1.4191092851
0.5 1.390320703 1.3871241728 1.3879270495
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0.6 1.305027070 1.3003224695 1.3015039363
0.7 1.168049197 1.1616806679 1.1632796714
0.8 0.984811950 0.9767260156 0.9787557180
0.9 0.762572249 0.7528321202 0.7552763132
1.0 0.510131667 0.4989249842 0.5017361597
Table 3.2 Error analysis of numerical experiment 3.1. Semthh=0.1
X Error Error Error
Method (2.6) Method (2.7) Method (2.8)
0.2 2.79 E-03 2.48 E-03 2.56 E-03
0.3 4.55 E-03 3.59 E-03 3.83 E-03
0.4 6.49 E-03 4.56 E-03 5.05 E-03.
0.5 8.55 E-03 5.35 E-03 6.15 E-03
0.6 1.06 E-02 5.93 E-03 7.11 E-03
0.7 1.26 E-02 6.26 E-03 7.86 E-03
0.8 1.44 E-02 6.35 E-03 8.38 E-03
0.9 1.59 E-02 6.19 E-03 8.63 E-03
1.0 1.70 E-02 5.77 E-03 8.59 E-03

It would be observed that though all the methodsehamilar accuracy but the integration formula
(2.6) performed worst in terms of error, while Medh(2.7) has the least error.
The next table gives the error analysis for thet tien values when a step lenpth 0.01 is used.

Table 3.3 Error analysis of numerical experiment 3.1. Semthh = 0.01

X Error Error Error
Method (2.6) Method (2.7) Method (2.8)

0.02 2.68E-06 2.65E-06 2.66E-06
0.03 4.06E-06 3.98E-06 4.01E-06
0.04 5.47E-06 5.30E-06 5.39E-06
0.05 6.90E-06 6.62E-06 6.68E-06
0.06 8.36E-06 7.94E-06 7.99E-06
0.07 9.84E-06 9.25E-06 9.65E-06
0.08 1.14E-05 1.06E-05 1.26E-05
0.09 1.29E-05 1.19E-05 1.29E-05
0.1 1.45E-05 1.32E-05 1.41E-05

The result in Table 3.3 shows a very high degreacofiracy. This is achieved by reducing the stapgtke
because of the oscillatory nature of the problem.
Example 3.2

We shall also consider the nearly periodic IVP désed by Lambert and Watson [11].

y'+y=0.001e", y(0) =1, y'(0)=0 (3.2)
Without changing this problem to a first order systof equations, we shall solve the problem usiag o

derived formulas above. The starting point usesTdador's approximation on the predictor and thsutts
were corrected by the implicit schemes (2.6) —)(2v&th h = 0.1. The exact solution is

y = 0.9995c0sx — 0.0005sin x + 0.000%

Petzold [12] described the solution of this problam highly oscillatory. After implementation of Hee
methods on Problem 3.2, the results with the acgushtained are given in the Tables 4 and 5 below.
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Table 3.4 Solution of problem 3.2

X Method 10 Method 11 Method 12 Method 13

0.2 0.98009581 0.980079287 0.980083424 0.980108175
0.3 0.95542233 0.955373155 0.955385463 0.955459099
0.4 0.92123194 0.921134745 0.921159074 0.921304627
0.5 0.87786713 0.877707575 0.877747512 0.877986446
0.6 0.82576202 0.825527126 0.825585921 0.825937690
0.7 0.76543811 0.765116500 0.765196998 0.765678635
0.8 0.69749904 0.697081217 0.697185796 0.697811537
0.9 0.62262463 0.622103181] 0.622233696 0.623014650
1.0 0.54156410 0.540933890 0.541091623 0.542035488

Table 3.5: Error analysis of Numerical methods on problenmtepSength h = 0.1
X Error Error Error Error
Method Method (11) Method (12) Method
(10) (13)

0.2 7.90E-06 8.62E-06 4.49E-06 2.03E-05
0.3 3.63E-05 1.28E-05 5.27E-07 7.31E-05
0.4 8.03E-05 1.69E-05 7.41E-06 1.53E-04
0.5 1.39E-04 2.08E-05 1.91E-05 2.58E-04
0.6 2.10E-04 2.46E-05 3.42E-05 3.86E-04
0.7 2.94E-04 2.80E-05 5.25E-05 5.34E-04
0.8 3.87E-04 3.12E-05 7.33E-05 6.99E-04
0.9 4.87E-04 3.41E-05 9.64E-05 8.77E-04
1.0 5.94E-04 3.67E-05 1.21E-04 1.06E-03

The result above shows that the integrating form{#@&’) performs best with least error in
computation. This was earlier confirmed with itsoerconstant being the least among the methodslewhi
Lambert and Watson has an error order of d@r order 4 formula (2.7) has maximum error t6>1Thus
some class of second order differential equatianidcbe solved by the scheme given in this papenowit
the traditional way of converting them firstly tegstem of first order differential equations.

4.0 Conclusion

This paper has discussed intelligently the dervetf some new multistep schemes that can be used
in solving some highly oscillatory second order GDE
The schemes proposed in this paper are seen torbgacable to other known results in terms of aaura
without necessarily reducing the second order énuab a system of first order ODEs. It was alsoveh
that the methods given in this paper are consisteditsatisfy the zero stability conditions. Thistisufficient
condition that an efficient numerical scheme needsatisfy. Hence, the methods given in this paerof
great usefulness in the literature.
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