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Abstract 
 

The need to develop some efficient schemes that is suitable for 
second order initial value problems in ordinary differential equations is of 
interest. We observe that some second order differential equations do exists 
that will not contain the first derivative of the dependent variable in the 
equation. Such equations may be highly oscillatory or periodic in nature and 
require some efficient algorithms in terms of accuracy and stability.  This 
paper discusses some one-leg methods that are suitable for such problems. 
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1.0 Introduction 

Over the years, attentions of Numerical Analysts have been on the solutions of first order ordinary 
differential equations (ODE) with an initial value specified. Many numerical methods have been developed to 
handle the initial value problem (IVP)  

η==′ )(,),( ayyxfy      (1.1) 

The problem, be it a single equation or systems of equations (stiff or non-stiff) have the same theories 
and approaches. Henrici [9] and Fatunla [7] gave a number of ways of handling problem (1.1) which include 
the one-step and multistep methods of various orders. 
In this paper, the focus is to discuss some k-step method for the numerical treatment of the second order 
differential equation  

),( yxfy =′′       (1.2) 

which does not contain y′ explicitly. One way is to turn equation (1.2) to a system of equations. On the other 
hand, we intend to solve (1.2) as a second order differential equation without introducing the first derivative 
function y′. One question that may be raised is whether there exists a direct method that will not require the 
introduction of first derivative explicitly into an equation in which it does not appear. In other words, we 
intend to examine some methods that could handle equation (1.2) with ease and yet satisfy some required 
numerical conditions such as stability and convergence. Thus our intention is to consider the second order 
IVP 

    βα =′==′′ )(,)(,),( ayayyxfy     (1.3) 

Its solution may sometimes be highly oscillatory or periodic in nature. Although there exists some 
known Runge-Kutta methods for general second order ODE, however, we shall in this paper consider only 
the linear k-step method or the multistep method of the form  

    nn fEhyE )()( 2σρ =     (1.4) 
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As usual we accept the localizing assumption αk = +1 and not both α0 and β0 vanish at the same time.  
Using a direct k-step method (1.4) for the treatment of equation (1.3) is established by Ash [1] where he 
studied asymptotic errors of using method (1.4) as against turning equation (1.3) to a system of equations. 
Dalquist [5] denotes a method of the form 

    ),( nnn yxhfy σσρ =   

as a one-leg-twin multistep method for a first order IVP (1.1). A one-leg twin multistep method suitable for 
the treatment of second order ODE of type (1.3) can also be considered. 
 
2.0 Derivation of methods 

To derive a class of methods of for second order ODE as given by (1.4), we give the following 
definition by Lambert [10]. 
Definition 2.1 

If y(x) is an arbitrary function, which is continuously differentiable many times on interval (a, b), then 
the linear k-step method (1.4) has the associated linear difference operator 
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And on using Taylor’s expansion about the point x, we obtain 
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Where the cj are obtained from (2.1) and (2.2) as: 
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These expressions permit us to define the order of method (1.4) in terms of cj, as given by Lambert [10] 
Definition 2.2 

The linear k-step method (1.4) is said to be of order p if in equation (2.2) or (2.3)  

   1 2 1 2... 0 0o p p pc c c c c and c+ += = = = = = ≠  

2pc +  is then said to be the error constant and 2 ( 2)
2 ( )p p

pc h y x+ +
+   is the principal local truncation 

error at the point xn. 
Theorem 2.3 

The k-step method given by equation (1.4) is said to be p-stable if 

i) It is implicit   i.e.  0≠kβ   

ii)  It is at best of order p = 2 
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Theorem 2.3 is the barrier theorem given by Lambert & Watson [11] and subsequently by Dalquist [5], 
however, Cash [2] and Fatunla [7] independently showed that the order barrier imposed by theorem 1 on the 
attainable order of p-stable method could be crossed by considering certain hybrid 2-step methods. They 
further showed that orders 4 and 6 p-stable methods exist. 
 

 
 
 

In the same spirit we shall derive some linear multistep methods (LMM) based on the definitions 
above. It will be observed that y″ can least be approximated by three discrete values of y, thus, it is expected 
that a method of order k for a second order differential equation requires k to be at least 2. 
Thus, to construct the least explicit LMM that satisfy equation (1.4) k = 2, β2 = 0 

We require a method of the form 

)( 110
2

22110 +++ +=++ nnnnn ffhyyy ββααα  

From equation (2.3) set  1 2 3 0oc c c c= = = = ,  for the determination of the unknowns. That is, 

    0: 2100 =++ αααc  

02: 211 =+ ααc  
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With localizing assumption αk = α2 = +1 and solving, we obtain an explicit 2-step method as 

   1
2

12 2 +++ =+− nnnn fhyyy      (2.4) 

Equation (2.4)  is a member of Stormer Cowell method (Lambert [10]). 
Since explicit methods are known to be somewhat less accurate than an implicit method, then an implicit 
scheme of the same or higher order can be derived by ensuring that βk = β2 ≠ 0. Introducing one free 
parameter, it will lead to the determination of only four unknowns. Hence we must set C0, = C1 = C2 = C3 = 0 
Thus, an implicit 2-step method of the form (1.4) is 

))( 22110
2
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If we choose or set β1 = a (a reasonable free parameter), then we have the set of equations 

    0: 2100 =++ αααc  

02: 211 =+ ααc  
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Using the localizing assumption and the free parameter we solve the above equations to arrive at  
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This equation has many structure depending on the condition imposed on the free parameter a  

If a = 1, we have the explicit method (2.4) in which case the error constant   c =
12
1

4 =c  

Furthermore, if a = ½, we have 
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4
1

12 22 ++++ ++=+− nnnnnn fffhyyy    (2.6) 

This method has an error constant 
6
1

4 −=c , and it is of order 2. 

By definition 2 however, if we set a = 5/6, we obtain the optimal 2-step method known as Numerov’s 
method. Thus, with a = 5/6 in (2.5) we have 
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which is of order 4 since its error constant is  
240

1
6 −=c . Equation (2.7) is known to be p-stable and 

unconditionally stable LMM. 
Another method that is obtained when a is taken to be ¾ is  
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24
1

4 −=c   (2.8) 

And with the choice a = ¼ we get  
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All the methods given in (2.6) through (2.9) are implicit and will require an explicit method such as 
equation (2.4) to serve as the twin-multistep schemes for their implementation. The choice of implementation 
between PECE and PE(CE)m modes depends on the level of accuracy achieved. For higher accuracy we 
implement our methods using the PE(CE)m mode  

By Dalquist [5] methods (2.6) or (2.7) can be regarded as a one-leg multistep method.  We define a 
multistep method for the treatment of second order IVP as a one-leg-twin multistep method for second order 
ODE, if the method can be written as 

   ))(,)(()( 2
nnn yExEfhyE σσρ =  

 Hence the method (2.7) is a one-leg-twin multistep method for second order ODE. 
The LMM of the form (1.4) is said to be zero-stable if no root of the first characteristic polynomial )(ξρ  

has modulus greater than one and if every root of modulus one has multiplicity not greater than two. 
The characteristic polynomial is conventionally used to describe the zero stability as well as the 

consistency of a LMM. Thus, Lambert [10] stated that a method is said to be consistent if it has order of at 
least one defines the first and second characteristic polynomials as: 
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Indeed method (1.4) is said to be consistent iff 

   )1(2)1(,0)1()1( σρρρ =′′=′=  

It is easily verified by this definition that our methods (2.4), (2.6) and (2.7) are all consistent and zero 
stable. 

To implement our one-leg twin methods on a second order equation of the type (1.3), we require 
some starting point in addition to the prescribed initial points. Indeed, an approximation of the Taylor’s 
expansion will do. The other aim of this paper therefore, is to implement and do comparison of accuracy of 
various orders of schemes of the one-leg methods using PE(CE)m mode. 
 
3.0 Numerical experiments 
Example 3.1 

We consider a highly oscillatory test problem  

  0000
2 )(,)(,0 yxyyxyyy =′==+′′ λ          (3.1) 

Taking λ = 2 to be specific, the problem is solved with given initial conditions  
    2)0(,1)0( =′= yy  

Due to the oscillatory nature of the problem, we implement with two different steps. The results 
obtained with the methods derived above are given in Table3.1 below. The analytical solution of this problem 
is y(x) = cos2x + sin2x 

 
Table 3.1: Solution of problem 3.1 

 
x Method (2.6) Method (2.7) Method (2.8) 
0.2 1.3132673267 1.3129568106 1.3130348259 
0.3 1.3945240663 1.3935698281 1.3938095592 
0.4 1.420552130 1.4186252445 1.4191092851 
0.5 1.390320703 1.3871241728 1.3879270495 
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0.6 1.305027070 1.3003224695 1.3015039363 
0.7 1.168049197 1.1616806679 1.1632796714 
0.8 0.984811950 0.9767260156 0.9787557180 
0.9 0.762572249 0.7528321202 0.7552763132 
1.0 0.510131667 0.4989249842 0.5017361597 

 
 
 
 

 
 
 

Table 3.2: Error analysis of numerical experiment 3.1.  Step-length h = 0.1 
 

x Error 
Method (2.6) 

Error 
Method (2.7) 

Error 
Method (2.8) 

0.2 2.79 E-03 2.48 E-03 2.56 E-03 
0.3 4.55 E-03 3.59 E-03 3.83 E-03 
0.4 6.49 E-03 4.56 E-03 5.05 E-03. 
0.5 8.55 E-03 5.35 E-03 6.15 E-03 
0.6 1.06 E-02 5.93 E-03 7.11 E-03 
0.7 1.26 E-02 6.26 E-03 7.86 E-03 
0.8 1.44 E-02 6.35 E-03 8.38 E-03 
0.9 1.59 E-02 6.19 E-03 8.63 E-03 
1.0 1.70 E-02 5.77 E-03 8.59 E-03 

 
It would be observed that though all the methods have similar accuracy but the integration formula 

(2.6) performed worst in terms of error, while Method (2.7) has the least error.  
The next table gives the error analysis for the first ten values when a step length h = 0.01 is used. 
 

Table 3.3: Error analysis of numerical experiment 3.1.  Step-length h = 0.01 
 

x Error 
Method (2.6) 

Error 
Method (2.7) 

Error 
Method (2.8) 

0.02 2.68E-06 2.65E-06 2.66E-06 
0.03 4.06E-06 3.98E-06 4.01E-06 
0.04 5.47E-06 5.30E-06 5.39E-06 
0.05 6.90E-06 6.62E-06 6.68E-06 
0.06 8.36E-06 7.94E-06 7.99E-06 
0.07 9.84E-06 9.25E-06 9.65E-06 
0.08 1.14E-05 1.06E-05 1.26E-05 
0.09 1.29E-05 1.19E-05 1.29E-05 
0.1 1.45E-05 1.32E-05 1.41E-05 

 
The result in Table 3.3 shows a very high degree of accuracy. This is achieved by reducing the step length 
because of the oscillatory nature of the problem.  
Example 3.2 

We shall also consider the nearly periodic IVP discussed by Lambert and Watson [11]. 

  0)0(,1)0(,001.0 =′==+′′ yyeyy x     (3.2) 

Without changing this problem to a first order system of equations, we shall solve the problem using our 
derived formulas above. The starting point uses the Taylor’s approximation on the predictor and the results 
were corrected by the implicit schemes (2.6) – (2.9), with h = 0.1. The exact solution is  

   xexxy 0005.0sin0005.0cos9995.0 +−=  

Petzold [12] described the solution of this problem as highly oscillatory. After implementation of these 
methods on Problem 3.2, the results with the accuracy obtained are given in the Tables 4 and 5 below. 
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Table 3.4: Solution of problem 3.2 
 

x Method 10 Method 11 Method 12 Method 13 
0.2 0.98009581 0.980079287 0.980083424 0.980108175 
0.3 0.95542233 0.955373155 0.955385463 0.955459099 
0.4 0.92123194 0.921134745 0.921159074 0.921304627 
0.5 0.87786713 0.877707575 0.877747512 0.877986446 
0.6 0.82576202 0.825527126 0.825585921 0.825937690 
0.7 0.76543811 0.765116500 0.765196998 0.765678635 
0.8 0.69749904 0.697081217 0.697185796 0.697811537 
0.9 0.62262463 0.622103181 0.622233696 0.623014650 
1.0 0.54156410 0.540933890 0.541091623 0.542035488 

 
 

Table 3.5: Error analysis of Numerical methods on problem 2 Step-length h = 0.1 
 

x Error 
Method 
(10) 

Error 
Method (11) 

Error 
Method (12) 

Error 
Method 
(13) 

0.2 7.90E-06 8.62E-06 4.49E-06 2.03E-05 
0.3 3.63E-05 1.28E-05 5.27E-07 7.31E-05 
0.4 8.03E-05 1.69E-05 7.41E-06 1.53E-04 
0.5 1.39E-04 2.08E-05 1.91E-05 2.58E-04 
0.6 2.10E-04 2.46E-05 3.42E-05 3.86E-04 
0.7 2.94E-04 2.80E-05 5.25E-05 5.34E-04 
0.8 3.87E-04 3.12E-05 7.33E-05 6.99E-04 
0.9 4.87E-04 3.41E-05 9.64E-05 8.77E-04 
1.0 5.94E-04 3.67E-05 1.21E-04 1.06E-03 

 
The result above shows that the integrating formula (2.7) performs best with least error in 

computation. This was earlier confirmed with its error constant being the least among the methods. While 
Lambert and Watson has an error order of 10–3 our order 4 formula (2.7) has maximum error to 10–5. Thus 
some class of second order differential equation could be solved by the scheme given in this paper without 
the traditional way of converting them firstly to a system of first order differential equations. 
 
4.0 Conclusion 

This paper has discussed intelligently the derivation of some  new multistep schemes that can be used 
in solving some highly oscillatory second order ODEs. 
The schemes proposed in this paper are seen to be comparable to other known results in terms of accuracy 
without necessarily reducing the second order equation to a system of first order ODEs. It was also shown 
that the methods given in this paper are consistent and satisfy the zero stability conditions. This is a sufficient 
condition that an efficient numerical scheme needs to satisfy. Hence, the methods given in this paper are of 
great usefulness in the literature.  
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