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Abstract 
 

In this paper, the solution of the Gross-Pitaevskii equation is 
obtained numerically and the spread of the boson molecules in the vortex 
examined. In our study, we considered the attractive interaction for which the 
coupling constant is negative and the vortex is generated in harmonic 
potential. Our results show that, for attractive interaction, the boson 
molecules spread out from the centre of the vortex as the strength of the 
interaction increases. 
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1.0 Introduction 
Bose-Einstein condensation (BEC) has commanded intense research efforts since its theoretical 

inception in 1925, and its experimental observation in 1995 [1-3].  BEC exhibits a topological defect (TD) which 
appears in cross-disciplinary subfields of physics.  This is the consequence of the topology of the order parameter 
in the condensate [4].  Quantized vortex is a prime example of this.  In 2004, Kasamatsu et al [5] obtained a new 
effective vortex-molecular field that features a pseudospin texture with meron pairs in Bose-Einstein condensates 
(BECs).  

When a trapped gas is cooled to BEC, laser beams can be used to stir the condensate such that the phase 
of the condensate wave function is moderated to produce a desired velocity field.  In this method of vortex 
formation, if the stirring or rotation frequency Ω is below certain critical value Ωc1, no special motion is 
observed, for a rotational frequency above this critical value, lines of singularity appear in the velocity field of 
the trapped condensate.  These singularities are called the vortex filaments and they correspond to a quantized 
circulation of the velocity along a closed contour around the vortex [6]. For Ω = Ωc1, a single vortex is formed 
while Ω > Ωc1 produces more vortices. At different occasions, Abo-Shaeer et al [10] and Haljan et al [11] 
reported the creation of lattices with up to ~ 200 vortices. However, the number of vortices that can be generated 
is different in harmonic and anharmonic traps. The radial trap frequency ω, which sets the scale of Ωc1, limits the 
rotational rate in harmonic trap. In other words, as the angular frequency of rotation of the gas approaches the 
transverse trapping frequency, the centrifugal force approaches the restoring force exerted by the trap and the 
atoms become more and more weakly contained. This limitation is overcome in anharmonic trapping potential 
[12]. In this present paper, we limit ourself to a vortex generated in harmonic trapping potential since our aim is 
to isolate a single vortex for analysis.  Vortex has also been observed in a number of BECs trapped in magnetic 
potential [7, 8, 9].  Despite this work on single – component condensates, the spread of the molecules of the 
condensates within the vortex has not been reported to the best of our knowledge. 

In this paper we investigate the particular characteristic of boson molecules within the vortex in the 
condensate using a numerical scheme developed Laoye et al [15].  The rest of the paper is organized as follows: 
in section 2. we present the derivation of the Gross-Pitaevskii (GP) equation, a mean-field model, used to 
describe the dynamical behaviour of the condensate molecules.  In section 3, we seek the solution of the GP 
equation by a numerical scheme. We conclude the paper in section 4.   
 

*Corresponding author: e-mail address: semiu01ng@yahoo.com 



 
Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 55 - 58

 

Numerical solution of the Gross-Pitaevskii equation J. A. Laoye and S. O. Kareem J of NAMP 
 

The authors would like to thank Dr. Vincent U.E., Department of Physics, Olabisi Onabanjo University, 
Ago-Iwoye, Nigeria, for his constructive and contributive criticism, which improved our literature search in the 
domain. 

 
 
2.0 The GP equation 

A trapped gas of N interacting bosons that is under the influence of an external magnetic potential of 

)(rVest can be described by many-body Hamiltonian in second quantization as  

           (2.1) 
 
where Ψ(r) and Ψ(r ') are boson field operators that annihilate and create a particle at position r respectively and 
V(r - r') is the two-body interatomic potential. The field operator Ψ(r) can be considered in Heisenberg picture. 
This means that we can determine the time evolution of the operator Ψ(r,t) using the Heisenberg equation with 
the many-body Hamiltonian in equation (2.1) 
 
           (2.2) 
 
BEC is observed in an ultra-cold situation.  In a dilute and cold gas, only binary collisions at low energy are 
relevant, which are characterized by only the s-wave scattering length [13].  In this condition, the particle 
interaction is independent of the details of the two-body potential. Consequently, the two-body interatomic 
potential V(r' - r) in equation (2.2) can be replaced as follows; 
           (2.3) 
In this presentation, the right hand side measures the effective interaction in the condensate, where g is the 
coupling constant, which measures the strength of the interaction.  Equation (2.3) allows the replacement of field 
operator Ψ(r,t) with the condensate wave function Φ(r,t).  Using equation (2.3), equation (2.2) becomes 
 
           (2.4) 
 
The equation is known as the GP equation.  The condensate wave function can be written as  
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where µ is the chemical potential.  
The wave function Φ is normalized to the total number of particles as ∫dr|Φ|2 = N 

 
           (2.6) 
 
This equation is a form of the nonlinear Schrodinger equation, the nonlinearity arises from the mean-field term. 
The external magnetic potential which is the trapping potential is usually represented by the harmonic potential 
 
           (2.7) 

where 3
0 zyxh ωωωω = is the geometric average of the oscillator frequency 0hω , also defines the harmonic 

oscillator length as 00 / hh mωω η= .  If length is measured in terms of 0hω , equation (2.6) becomes 

           (2.8) 
All quantities in this equation are now dimensionless and the normalization condition now satisfies  

.1)(
2

=∫ rdr φ  To incorporate vortex structure, φ  equation (2.8) can be written as  

           (2.9) 
 
Caroli et al [14] used equation (2.9) to describe a cylindrical vortex structure with µ the orbital angular 
momentum quantum number which takes on integral values 0, ±1, ±2, ±3, … and kz the z-component of the 
momentum.  Equation (2.8) becomes  
 
           (2.10) 
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In Ref. [15], equation (2.10) was solved for µ = 0 where no vortex structure is observed. We considered the case 
where µ > 0 for which vortex structure is incorporated. The solution of equation (2.10) is sought near the origin 
of the vortex core, which reduces equation (2.10) to  
 
 
           (2.11) 
 

By making the substitution ( ) ,2
2/12 rkx z−= ε , we otain a Bessel equation (2.12). For ,12 2 =− zkε  we 

obtain equation (2.13) whose solution is ).()( rJr µφ =   Equation (2.13) gives the initial conditions required 

for the solution of equation (2.10).  
 
           (2.12) 
 
 
           (2.13) 
 
  
3.0 Results  

The variations of the wave function of the BECs are shown in fig. 1.In this result, we implemented the 
quartic Runga-Kutta algorithm for equation (2.10); equation (2.13), which is the Bessel equation of the first 

order, gives the initial condition for the problem with 
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 estimated for  µ = 1 

and r = 0.01.  The solution is sought for g = (-1, -45, -50), which shows attractive interaction within the 
condensate molecules. We observe that as the strength of interaction increases the wave function peaks away 
from the centre of the vortex core and the particles tend to spread out. In other words, the radius of the vortex 
increases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.0 Conclusion 

This paper solved the GP equation numerically and examined the spread of  the molecules in the vortex 
using the quartic Runga-Kutta method. The presented numerical results show that, for attractive interaction, the 
boson molecules spread out from the centre of the vortex as the strength of the interaction increases. 
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Figure 3.1:  Condensate wave function for attractive interaction 
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