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Abstract 

 
Recursive backstepping nonlinear control technique has become a 

powerful tool for controlling and synchronizing chaotic systems, because 
backstepping enhances global stability. The purpose of this study is to make 
use of recursive backstepping technique in controlling chaotic dynamics and 
attractors generated by dynamic states of three nonlinear modified Bloch 
systems described with different values of system constants and initial 
conditions. Numerical simulations are performed to verify that the three 
controllers achieve the control goals for the three dynamic states equations. 
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1.0 Introduction 

In chaos theory, a control of chaos is based on the fact that any chaotic attractor contains an infinite 
number of unstable periodic orbits. Chaotic dynamic consists in a motion where the system state moves in the 
neighbourhood of one of these orbits for a while, then falls close to a different unstable periodic orbit where it 
remains for a limited time, and so forth. This results in a complicated and unpredictable wandering over longer 
periods of time. 

Control of chaos and bifurcation is concerned with using some designed control input(s) to modify the 
characteristics of a parameterized nonlinear system. The control can be static or dynamic feedback control or 
open – loop control. The result is to render an otherwise chaotic motion more stable and predictable which is 
often an advantage (Kapitaniak, 1996 [5]; Chen et al, 1998 [2]). 

Several techniques have been devised for chaos control, but most are development of two basic 
approaches: the OGY (Ott, Grebogi and Yorke) method (Ott, et al, 1990 [10]), closed loop feedback method, and 
Pyragas continuous control (Pyragas, 1992 [11]).  Of recent, there have been various approaches both linear and 
nonlinear methods have emerged. Specifically, recursive backstepping nonlinear control scheme has been 
employed recently for tracking, controlling and synchronizing chaotic systems (Harb, 2004; Ge, 2000, [4]; Zhang 
et al, 2005; Kotkotovic, 1992 [6]; Kristic et al, 1995 [7]).  Recursive backstepping is a systematic design 
approach and consists in a recursive procedure that skilfully interlaces the choice of a Lyapunov function with 
the control. 
 
2.0 The model 
     Motivated by the need to interpret different anomalies that had been observed in nuclear magnetic resonance 
(NMR) experiments, in terms of chaos theory, Abergel (Abergel, 2002 [1]) investigated the possibility of 
observing chaotic solutions of the Bloch equations which has been modified to account for the presence of back 
action from the probe. The model consists of three nonlinear modified Bloch equations (NBE) and includes a 
feedback field. This is given in dimensionless unit as  
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where the dots denotes time derivatives,δ ,γ  and ψ  are the system parameters 1τ  and 2τ  are longitudinal 

time and transverse relaxation time respectively. The dynamics of this system has been extensively studied by 

Abergel (2002 [1]) and Ucar et al (2007 [12]) for a fixed subset of the system parameters ( )21,,, ττγδ  and for 

a space range of the radiation damping.  The feedback ψ  that would admit chaotic solutions were obtained. 

System (2.1) exhibits chaotic behaviour for the following system parameters: 

  5,173.0,30,4.0 1 ===−= τψγπδ  and 5.22 =τ   

as shown in Figure 2.1. 
 Besides the study of the chaotic behaviour, Ucar et al (2007) also presented the synchronization of the 
NBE using the active control method.  The synchronization was study in a master–slave configuration.  In 
another development, Moukam et al (2006 [9]) studied the chaotic behaviour and chaos synchronization of a bi-
axial magnet modeled by Bloch equations. In all these reports, the control of the NBE chaotic behaviour to 
regular dynamics has not been addressed. In this present study, we set up a new chaos control scheme which we 
have recently developed for the NBE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: Chaotic attractor for the NBE for the parameters 5.2,5,173.0,30,4.0 21 ====−= ττψγπδ  and the 

initial conditions ( )0,2.0,2.0()0(),0(),0( −=zyx ) 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
x -0.4

-0.3
-0.2

-0.1
0

0.1
0.2

0.3
0.4

y

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

z



 
Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 49 - 54

 

Backstepping design for controlling chaos F. Ayedun and O. Sowole  J of NAMP 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.2: Corresponding time series for the state variables of the NBE for the same parameter set as in figure 2.1 when control is 

de–activated. 

 
 
 
3.0.  Backstepping design for chaos control in the NBE 
 To control the chaotic behaviour of the NBE depicted by the chaotic attractor of system (2.1), we 

introduce the control functions ( )3,2,1=iu i  as follows: 
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where ( )3,2,1=iui are the control functions to be determined.   

 To design the control functions ( )3,2,1=iui that will suppress the chaotic behaviour, the error signals 

are defined as follows: 
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where dd yx ,  and dz  are desired states of the state variables yx ,  and .z    

 For simplicity, let 
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where the ( )3,2,1' =isci are arbitrary chosen parameters; dx  is the reference output; dy  and dz are 

recursively introduced control inputs.  
 Now differentiating equations (3.2) and (3.3) with time we have: 
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Substituting equation (3,1) into equation (3.4) and using the error signals definition (3.2), we get the following 
error dynamic systems: 
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Consider the Lyapunov function: 
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Its time derivative along the error dynamic system (3.6) is: 
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Here, we fix 0321 === ccc  and 1321 === KKK .   

 Substitution of equation (3.6) into equation (3.8) gives: 
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then     
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hence V& is negative definite, and thus satisfying the Lasalle–Yoshizawa stability criteria (Lasalle, 1968 [8]; 
Yoshizawa, 1996 [14]).   

 Thus, from equation (3.10), the control functions are:  
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Figure 3.1: Corresponding time series for the state variables of the NBE when control is given by equation (13) is 
activated at time (t) = 50s 

 
4.0 Conclusion 

In this paper, we used three control signals simultaneously in suppressing the chaotic dynamic states of 
nonlinear Bloch equations studied by Ucar et al [13] by applying recursive backstepping technique. The 
proposed recursive backstepping is easy to implement. Numerical simulations have been employed to confirm 
our results. 
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