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Abstract

Recursive backstepping nonlinear control technique has become a
powerful tool for controlling and synchronizing chactic systems, because
backstepping enhances global stability. The purpose of this study is to make
use of recursive backstepping technique in controlling chaotic dynamics and
attractors generated by dynamic states of three nonlinear modified Bloch
systems described with different values of system constants and initial
conditions. Numerical simulations are performed to verify that the three
controllers achieve the control goals for the three dynamic states equations.
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1.0 Introduction

In chaos theory, a control of chaos is based orfabethat any chaotic attractor contains an itdini
number of unstable periodic orbits. Chaotic dynaotinsists in a motion where the system state movése
neighbourhood of one of these orbits for a whitent falls close to a different unstable periodicitowhere it
remains for a limited time, and so forth. This fesin a complicated and unpredictable wanderingrdonger
periods of time.

Control of chaos and bifurcation is concerned wising some designed control input(s) to modify the
characteristics of a parameterized nonlinear sysim control can be static or dynamic feedbackrobror
open — loop control. The result is to render arentiise chaotic motion more stable and predictabiiechvis
often an advantage (Kapitaniak, 1996 [5]; Chen,et398 [2]).

Several techniques have been devised for chaosotobut most are development of two basic
approaches: the OGY (Ott, Grebogi and Yorke) mefi@it et al, 1990 [10]), closed loop feedback rodtrand
Pyragas continuous control (Pyragas, 1992 [11])re@ent, there have been various approaches inetérland
nonlinear methods have emerged. Specifically, sdeerr backstepping nonlinear control scheme has been
employed recently for tracking, controlling and slyronizing chaotic systems (Harb, 2004; Ge, 204, 4hang
et al, 2005; Kotkotovic, 1992 [6]; Kristic et al995 [7]). Recursive backstepping is a systemadsigh
approach and consists in a recursive proceduresHilatlly interlaces the choice of a Lyapunov ftina with
the control.

2.0 The model

Motivated by the need to interpret differenbmalies that had been observed in nuclear magrestamance
(NMR) experiments, in terms of chaos theory, Abkrgebergel, 2002 [1]) investigated the possibiliby
observing chaotic solutions of the Bloch equatiséch has been modified to account for the presefidick
action from the probe. The model consists of thmeslinear modified Bloch equations (NBE) and inedadca
feedback field. This is given in dimensionless @sit
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where the dots denotes time derivati\ésy and {/ are the system parametefs and 7, are longitudinal
time and transverse relaxation time respectivehe @ynamics of this system has been extensivetliextuby
Abergel (2002 [1]) and Ucar et al (2007 [12]) fofix@ed subset of the system parameteﬁs Vil Tz) and for

a space range of the radiation damping. The fesdifa that would admit chaotic solutions were obtained.
System (2.1) exhibits chaotic behaviour for théofwing system parameters:

0=-04m y=30, ¢=0173 71,=5and7,=25
as shown in Figure 2.1.
Besides the study of the chaotic behaviour, Utal €2007) also presented the synchronizatiorhef t
NBE using the active control method. The synchratibn was study in a master—slave configuration.
another development, Moukam et al (2006 [9]) stlidiee chaotic behaviour and chaos synchronizatian -
axial magnet modeled by Bloch equations. In alk¢heeports, the control of the NBE chaotic behaviou

regular dynamics has not been addressed. In tagept study, we set up a new chaos control schériuh we
have recently developed for the NBE.

Figure 2.1 Chaotic attractor for the NBE for the parameters= —0.471, )y = 30,4 = 0.173,7, = 5,7, = 2.5 and the
initial conditions (x (0), y (0), z(0) = (0.2,-0.2,0))
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Figure 2.2 Corresponding time series for the state variabléke NBE for the same parameter set as in figutavhen control is
de—activated.

3.0. Backstepping design for chaos control in the NBE
To control the chaotic behaviour of the NBE deguicby the chaotic attractor of system (2.1), we

introduce the control functiond, (i = 1,2,3) as follows:

B Sy—11,yz+ yz{xsing - yco&ﬂ)—%wl’

2

$= —ox—z+(n,-n,)xz+yz(ysing + xcoa//)—rl +U,, (3.1)

2

. z-1
8= y+ny- P +y?)sing - £ =+,
N
where U; (i = 12,3) are the control functions to be determined.

To design the control functioris, (i = 1,2,3) that will suppress the chaotic behaviour, the esignals
are defined as follows:

G=X7%
&Y% (32)
&=274
where X, , Y4 and Z; are desired states of the state variabley and Z.
For simplicity, let

Journal of the Nigerian Association of Mathematical Physics Volume 13(November, 2008)49 - 54
Backstepping design for controlling chaos F. Ayeduand O. Sowole J of NAMP



X =0,
Ye =G € (3.3)
=6 1GE

where the Ci'S(i :1,2,3) are arbitrary chosen parameterX; is the reference outputy, and Z, are

recursively introduced control inputs.
Now differentiating equations (3.2) and (3.3) witihe we have:

&= %%

&= %% 3.4)
&=4"%

% =0

% =c & (3.5)
& =C,&+C&,

Substituting equation (3,1) into equation (3.4) aisthg the error signals definition (3.2), we de& following
error dynamic systems:

&=5(e,+c8)-1,(e, +c8)(e +c,8 +C8,)
+y(e, +c,6 +ce, ) e sing - (e, + ¢, )cosy] - %+ uj,

2

and

&=-0e-(e,+c,8+C8) +(7,-m)e (e, +c8 +ci8,) +
etce

2

y(e,+c,e +c8)l(e, +c8 )sing +ecosy] -

5(82 + Clel)_/72(e2 + Clel)(e3 +C,e + Csez)
)

-c, +y(e;+c,e +c,e, e sing — (e, +c,e )cos g ] - f_l+u2
2

€ +C,6 (36 -1

)

&=e,+ce+nele+ce)-Me’+ (e +ce ) )sing -
3(e, +ce)-1,(e,+ce)(e +c,6 +cye,)
e

-C .
!l + e+ e +eie esing - (e, + e )cosy] -
2 (3.6)
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: +
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2
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+
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7,

-

Consider the Lyapunov function;
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1 3
V:EZ Kiel2 = K1e1+ K2e2+ K3e3 3.7)
i=1
Its time derivative along the error dynamic sys{8m) is:

3
V=YK e&=K,e&+K,e,& +K, & (3.8)
i=1

Here, we fixC; =C, =C; =0 andK, =K, =K, =1.
Substitution of equation (3.6) into equation (3Bjes:
\E= g [de, -17,e, e, + ye, (e sing —e, cos//)—% +u,]

2

+e,[ -de-e,+(7,-n,)ee +ye,(esiny +e1cos¢/)—$—2+ u,] (3.9)

2

. e, -1
t € {ez +17.6€, - V(e12 + ez2 )Sm y - =2 +u3}

Iy
Suppose;
oe,~1,e, es+yes(918iﬂ¢/—ezcosw)—;iﬂjlz—el
2
; e (3.10)
—de-e+(n,-m)ee + ye (e siny +e1cos¢/)—r—2+ u,=-e,
2
€, t17.6€, - y(e12 + 922 )Sin(// - 637_1 +U, =—€,.
1
then
Ve-g-e’-e’ =-(g"+e +e/) (3.11)

hence\}& is negative definite, and thus satisfying the Las&oshizawa stability criteria (Lasalle, 1968 ;[8]
Yoshizawa, 1996 [14]).

Thus, from equation (3.10), the control functians:

U= 8- 08, +17,6,¢ - ye,(@sing -e,copp)+ -

2

_ . (3.12)
u,=-e,+36 +e,~(7,~71.)e e - yve,(esing +ecogp)+ 2
2
. -1
U =-e,-e,-nee,+ yle+e )sing + e3r
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Figure 3.1 Corresponding time series for the state variablése NBE when control is given by equation (3)
activated at timet) = 50s

4.0 Conclusion

In this paper, we used three control signals semeglbusly in suppressing the chaotic dynamic stdtes
nonlinear Bloch equations studied by Ucar et al] [g applying recursive backstepping technique. The
proposed recursive backstepping is easy to implendumerical simulations have been employed to iconf
our results.
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