On the isomorphism of aut(\mathbb{Z}_n), *U*-group U(n) and permutation group $U(n)^*$

H. Praise Adeyemo Department of Mathematics University of Ibadan, Nigeria.

Abstract

In this paper, we compute $Aut(\mathbb{Z}_n)$ and U-group, U(n) and establish that these groups are isomorphic and give the systematic construction of the permutation group, $U(n)^*$ which is isomorphic to to U(n). Hence we establish the isomorphism of $Aut(\mathbb{Z}_n)$, U-group U(n) and Permutation group $U(n)^*$. We consider only when n = 20.

1.0 Introduction.

Given a positive integer n, it is not a mere routine matter to find how many isomorphism types of groups of order n are there. Every group of prime order is cyclic. Since Langrage's theorem implies the cyclic group generated by any of its non-identity elements is the whole group.

Theorem A [5]

Suppose φ is an isomorphism from a group X to a group Y then

(*i*) φ preserves the identity elements

(*ii*) Commutativity is invariant under φ

(iii) $|x| = |\varphi(x)| \quad \forall x \in X \text{ i.e } \varphi \text{ preserves order}$

(iv) X is cyclic if and only if Y is cyclic

(v) If T is a subgroup of X, then $\varphi(T) = \{\varphi(t) : t \in T\}$ is a subgroup of Y.

Definition 1.1

An isomorphism from a group (X, \bullet) to itself is called an automorphism of this group.

Definition 1.2

The set of all automorphism in X is given by Aut(X).

Lemma B

A function from a finite set to itself is injective if and only if it is surjective.

2.0 The main results

In this section, we give the result when n = 20. We suppose β is an element of Aut(Z_{20}) and try to discover enough information about β to determine how β must be defined.

Theorem C

There are only eight distinct automorphisms in $Aut(Z_{20})$ *.*

Proof

Let $\beta \in \text{Aut}(Z_{20})$, we consider $\beta(1)$ and give the choices which turn it to be an automorphism in Z_{20} . Theorem A(iii), gives

 $\beta(1)=1, \beta(1)=3, \beta(1)=7, \beta(1)=9, \beta(1)=11, \beta(1)=13, \beta(1)=17, \beta(1)=19$

These eight automorphisms are defined as follows: $\beta_1:Z_{20} \rightarrow Z_{20}$

 $\beta_1(x) = x, \forall x \in Z_{20}$

e-mail: adepraise5000@yahoo.com.au, Mobile Phone: +2348068288896.

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 31 - 34 Isomorphism of $aut(\mathbb{Z}_n)$, U-group U(n) and permutation group $U(n)^*$ H. Praise Adeyemo J of NAMP The author would like to thank International Center For Theoretical Physics (ICTP) and Crawford University, Ogun State for providing a conducive atmosphere for me while carrying out this research. I would also like to thank Mr Seun Fagbamila for his support.

$$\beta_{3}:Z_{20} \rightarrow Z_{20}$$

$$\beta_{3}(x) = 3x, \forall x \in Z_{20}$$

$$\beta_{7}:Z_{20} \rightarrow Z_{20}$$

$$\beta_{7}(x) = 7x, \forall x \in Z_{20}$$

$$\beta_{9}:Z_{20} \rightarrow Z_{20}$$

$$\beta_{9}(x) = 9x, \forall x \in Z_{20}$$

$$\beta_{11}:Z_{20} \rightarrow Z_{20}$$

$$\beta_{11}:Z_{20} \rightarrow Z_{20}$$

$$\beta_{13}:Z_{20} \rightarrow Z_{20}$$

$$\beta_{13}(x) = 13x, \forall x \in Z_{20}$$

$$\beta_{17}:Z_{20} \rightarrow Z_{20}$$

$$\beta_{17}(x) = 17x, \forall x \in Z_{20}$$

$$\beta_{19}:Z_{20} \rightarrow Z_{20}$$

 $\beta_{19}(x) = 19x \forall x \in \mathbb{Z}_{20}$

We claim that these are the only distinct automorphisms of Z_{20} and any other one will be equal to one of these eight.

Next, we give the Cayley table to show the structure of $Aut(Z_{20})$ is a group under the composition of functions.

0	β_1	β ₃	β_7	β_7	β_{11}	β_{13}	β_{17}	β ₁₉
β_1	β_1	β ₃	β_7	β ₉	β11	β_{13}	β_{17}	β ₁₉
ß ₃	β_3	βg	β_1	β ₇	β_{13}	β ₁₉	β ₁₁	β_{17}
β_7	β_7	β1	βş	ß3	β_{17}	β11	β_{19}	β ₁₃
ßg	βg	β_7	β ₃	β_1	β_{19}	β_{17}	β ₁₃	β_{11}
β ₁₁	β_{11}	β_{13}	β ₁₇	β19	β1	β_3	β_7	β ₉
β_{13}	β_{13}	β_{19}	β_{11}	β_{17}	β_3	β	β_1	β7
β_{14}	β_{17}	β ₁₁	β_{19}	β_{13}	β_7	β_1	βş	β ₃
β_{19}	β_{19}	β_{17}	β_{13}	β_{11}	β_9	β_7	β ₃	β_1

Figure 2.1

3.0 Construction of group of units modulo n, (U-group, U(n)), n = 20 *Definition* 3.1

U(n) is the set of all positive integers less than n and relatively prime to n.

Remark 3.2

U(n) is a group under multiplication, (•) modulo n called the group of units modulo n (U-group). Theorem 3.1

Let U(n) consist of a reduced system of residue modulo n such that $|U(n)| = |\varphi(n)|$, the Euler's phi-

function. Then (U(n),*) is an Abelian group.

For n = 20, we have: $U(n) = \{1, 3, 7, 9, 11, 13, 17, 19\}.$

The Cayley table gives:

•	1	3	7	9	11	13	17	19
1	1	3	7	9	11	13	17	19
3	3	9	1	7	13	19	11	17
7	7	1	9	3	17	11	19	13

9	9	7	3	1	19	17	13	11
11	11	13	17	19	1	3	7	9
13	13	19	11	17	3	9	1	7
17	17	11	19	13	7	1	9	3
19	19	17	13	11	9	7	3	1
Figure 3.1								

4.0 Construction of permutation group $U(20)^*$ which is isomorphic to U-group U(20)

In this section, we give a result of how to construct the permutation group U(20) that is isomorphic to the *U*-group U(20).

Definition 4.1

A permutation of a set G is a function from G to itself which is one-to-one and onto. Next, we give the result in the section.

4.2 Lemma 4.2

There is one-to-one correspondence between the U-group, U(20) and the permutation group $U(20)^*$

Proof

For any
$$r \in U(20)$$
, define a mapping: $\alpha_r: U(20) \to U(20)$ by
 $\alpha_r(y) = yr \forall y \in U(20)$
(4.1)

ous that each g bijective. Therefore, it is a permutation. Define

It is obvious that each α_r bijective. Therefore, it is a permutation. Define

$$U(20)^* = \{ \alpha_r : r \in U(20) \ \forall r \in U(20) \}$$
(4.2)

 $U(20)^*$ is a group under the composition of functions. In fact, $U(20)^*$ is a group on the set U(20). Next, define a map $\Gamma: U(20) \to U(20)^*$ by

$$\Gamma(r) = \alpha_r \,\forall r \in \mathrm{U}(20) \tag{4.3}$$

I[°] gives the following permutations

$$\begin{split} & \Gamma(1) = \alpha_1 = \begin{pmatrix} 1 & 3 & 7 & 9 & 11 & 13 & 17 & 19 \\ 1 & 3 & 7 & 9 & 11 & 13 & 17 & 19 \end{pmatrix} \\ & \Gamma(3) = \alpha_3 = \begin{pmatrix} 1 & 3 & 7 & 9 & 11 & 13 & 17 & 19 \\ 3 & 9 & 1 & 7 & 13 & 19 & 11 & 17 \end{pmatrix} \\ & \Gamma(7) = \alpha_7 = \begin{pmatrix} 1 & 3 & 7 & 9 & 11 & 13 & 17 & 19 \\ 7 & 1 & 9 & 3 & 17 & 11 & 19 & 13 \end{pmatrix} \\ & \Gamma(9) = \alpha_9 = \begin{pmatrix} 1 & 3 & 7 & 9 & 11 & 13 & 17 & 19 \\ 9 & 7 & 3 & 1 & 19 & 17 & 13 & 11 \end{pmatrix} \\ & \Gamma(11) = \alpha_{11} = \begin{pmatrix} 1 & 3 & 7 & 9 & 11 & 13 & 17 & 19 \\ 11 & 13 & 17 & 19 & 1 & 3 & 7 & 9 \end{pmatrix} \\ & \Gamma(13) = \alpha_{13} = \begin{pmatrix} 1 & 3 & 7 & 9 & 11 & 13 & 17 & 19 \\ 13 & 19 & 11 & 17 & 3 & 9 & 1 & 7 \end{pmatrix} \\ & \Gamma(17) = \alpha_{17} = \begin{pmatrix} 1 & 3 & 7 & 9 & 11 & 13 & 17 & 19 \\ 17 & 11 & 19 & 13 & 7 & 1 & 9 & 3 \end{pmatrix} \\ & \Gamma(19) = \alpha_{19} = \begin{pmatrix} 1 & 3 & 7 & 9 & 11 & 13 & 17 & 19 \\ 19 & 17 & 13 & 11 & 9 & 7 & 3 & 1 \end{pmatrix} \end{split}$$

Therefore, U(20)*= { $\alpha_1, \alpha_3, \alpha_7, \alpha_{11}, \alpha_{13}, \alpha_{17}, \alpha_{19}$ }. It is a group under the composition of functions. The Cayley table is given by :

•	α1	α3	α_7	α9	<i>a</i> ₁₁	<i>a</i> ₁₃	α ₁₇	a_{19}
<i>a</i> 1	α _{1,}	α ³	α_7	αg	α ₁₁	α ₁₃	α ₁₇	α_{19}
α3	α3	α,	α1	α_7	a ₁₃	a ₁₉	α_{11}	a_{17}
α_7	α_7	α1	α ₉	α3	α ₁₇	<i>a</i> 11	<i>a</i> 19	α_{13}
αg	α ₉	α_7	α3	α1	a ₁₉	α_{17}	a ₁₃	α_{11}

a ₁₁	<i>a</i> ₁₁	<i>a</i> ₁₃	α_{17}	<i>a</i> 19	a_1	α3	α_7	α9
α ₁₃	α ₁₃	α ₁₉	<i>a</i> 11	α ₁₇	α ₃	α ₉	α_1	α_7
a ₁₇	a ₁₇	a ₁₁	α ₁₉	<i>a</i> 13	α_7	α1	α9	<i>a</i> 3
<i>α</i> ₁₉	α ₁₉	α ₁₇	<i>a</i> ₁₃	α ₁₁	α ₉	α_7	α3	<i>a</i> ₁

Figure 4.1

From Theorem A, Γ is an isomorphism and hence U(20) is isomorphic to U(20)*. The same arguments go for Aut(Z₂₀) and U(20), hence, these groups are isomorphic.

5.0 Conclusion

In this paper, we compute a very special case of a well-motivated problem. Further work is in progress to generalize these results using recent developments in group theory.

References

- [1] P. Hall. A Contribution to the Theory of Groups of Prime Orders, Proc. Lond. Math. Soc.(2), 36 (1933), pp 77-141.
- W.Burnside . On Criteria for the finiteness of the Order of a Group of Linear Substitutions, Proc. Lond. Math. Soc(2), 3 (1905), pp435-440.
- [3] R. Baer. Finiteness Properties of Groups, Duke Math. J. 15 (1948) pp 1021-1032.
- [4] O. Ore, Contribution to the Theory of Groups of Finite Order, Duke Math. J., 5 (1939) pp431-460.
- [5] J.A Gallian, Contemporary Abstract Algebra, D.C Heath and Company Toronto 1986.