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1.0 Introduction 

Let X be a normed linear space with dual X*.  We denote by J the normalized duality mapping form X 
to 2X*  defined by 

    },:*{
22

fxfxXfJx =>=<∈= , 

Where <.,.> denotes the generalized duality pairing.  It is well-known that if X* is strictly convex then J is single-
valued and if X* is uniformly convex then J is uniformly continuous on bounded subsets of X, (see e.g. [8]).  We 
shall denote the single-valued duality map by j.  Let E be a Banach space.  We recall the definition of the 
generalized projection operator recently introduced by ALbr-Delabriere (see e.g. [1, 2]) as follows: with E as 

above, EK ⊆  , closed, convex subset of E .  Let  

     KEK →Π :  

defined by xxPiK = , where x  is the solution to the minimization problem 

),(inf),( ζxVxxV =  

and  

   )()(,)(,2),(
22 ζζζζζ JjjxxxV ∈+><−= . 

 It is shown [2] that ),( ζxV  can be considered not only as square of distance between points x and ζ 

but also as a Lyapunov function withrespect to ζ with fixed x.  In Hilbert (and only in Hilbert) spaces, 
generalized projection coincides with the usual metric project.  Some of the properties of ΠK are shown in [2]. 

 The Banach space E is said to be uniformly convex if ∈∀≥ εεδ 0)(E (0,2], where the function 

]1,0[]2,0(: →Eδ  is defined by 

  






 ≥==+−= εεδ yxyx

yx
E ,,1:

2
1inf)(  

The modulus of smoothness of E is the function ρE defined by 

  









>==−
−++

= 0,,1:1
2

sup)( τττρ yx
yxyx

E . 

E is said to be uniformly smooth if 0
)(

lim
0

=
+→ τ

τρ
τ

E . 
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 A map T with domain D(T) and range R(T) in E is called weakly contractive (see e.g. [1, 2]) if there 

exists a continuous and nondecreasing function +ℜ→∞),0[:φ  such that φ  is positive 

∞==−ℜ
∞→

+ )(lim,0)0(,0 t
t

φφ  and for )(, TDyx ∈ , there exits )()( yxJyxj −∈−  such that  

    )( yxyxTyTx −−−≤− φ . 

T is called strongly suppressive on a closed convex set EG ⊆  if there exists )1,0(∈c  such that for all 

Gyx ∈,, ,   ),(),( yxcVTyTxV ≤  

T is called weakly suppressive of class )(tCφ  on a closed convex set BG ⊆  if there exists a continuous and 

none decreasing function φ(t) defined on 
+ℜ  such that φ is positive on ∞==−ℜ

∞→

+ )(lim,0)0(,0 t
t

φφ  

and Gyx ∈∀ , ,   )),((),(),( yxVyxVTyTxV φ−≤  

T is called nonextensive on a closed convex set BG ⊆  if for all Gyx ∈,, , 

     ),(),( yxVTyTxV ≤ . 

It is clear that every weakly suppressive mapping is nonextensive and every strongly suppressive mapping is 
weakly suppressive by setting tct )1()( −=φ .  In Hilbert spaces, strongly suppressive operators are weakly 

contractive and nonextensive mappings are nonexpansive and vice versa. 
 In [1,2], Alber-Guerre proved convergence results with the generalized projection for the suppressive 
and contractive-type operators.  The author (with C.E. Chidume and H. Zegeye) also generalized some of these 
results in different directions, see [4]. 
 Let K be a nonempty subset of a normed space E.  A mapping KKT →:  is called asumptotically 

nonextensive (see e.g. [6] if there exists a sequence 1},{ ≥nn kk , such that 1lim =
∞→ n

n
k , and 

    yxkyTxT n
nn −≤−  

for each Kyx ∈,  and for each integer 1≥n .  T is called asymptotically pseudocontractive (see e.g. [6] if 

there exists a sequence 1lim,1},{ =≥
∞→ n

n
nn kkk  such that 

    
2

)(, yxkyxjyTxT n
nn −≤−− , 

for each, Kyx ∈, .  The asymptotic operators were first introduced by Goebel and Kirk, while the contractive 

and suppressive mappings were first introduced by ALber-Guerre (see for e.g. [1, 2, 6].  These classes of 
mappings have been studied by various authors (see e.g. . [1, 2, 3, 4].  Motivated by Alber-Guerre and Goebel-
Kirk, we now introduce the class of asymptotically weakly suppressive maps. 
Definition 1.1 

The map EGEGT ⊆→ ,: , will be called asymptotically weakly suppressive of class )(tCφ  if there exists 

a nondecreasing continuous map ++ ℜ→ℜ:φ  such that ∞=≥=
∞→t

tt lim,)(,0)0( φφ  and a sequence 

}{ nk  such that 1≥nk , 1lim =
∞→ n

n
k  and Gyx ∈∀ , , there exists )()( yxjyxj −∈−  such that 

  )).,((),()( yxVyxVkyTxTV n
nn φ−≤−  

 In this paper, we obtain some new results with the generalized projection operator involving the 
Ishikawa-type iteration and some contractive and suppressive-type mappings.  We study the asumptotic operators 
involving the weakly suppressive mappings with the help of the generalized projection. 
 
2.0 Main result 
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Lemma 2.1 

Let ){ iρ  be a sequence of nonnegative numbers and }{ ik  a sequence of positive numbers such that 

1lim,1 =≥
∞→ i

i
i kk .  Let the recursive inequality Κ,2,1),(1 =−≤+ nk nnnn ρφρρ  be given where  

 
 
 

φ(t) is a continuous and non decreasing function from 
+ℜ  to 

+ℜ  such that it is positive on 

∞=≥=−ℜ
∞→

+ )(lim,)(,0)0(,0 ttt
t

φφφ .  Then 0→nρ  as ∞→n . 

Proof. 

Let αρ =ninflim .  We claim that 0=α .  For if not, then there is N1 such that 1Nn ≥∀ , 

     0inflim >= αρ n     (2.1) 

Thus there is a subsequence ){ njρ  such that, )(1 njnjnjnj k ρφρρ −>+ , 

that is    )(1 njnjnjnjk ρφρρ <− +      (2.2) 

Since njρ  and 1+njρ  have same limit, we obtain from 2.1, ,)()1(
1 1

∑ ∑
∞

= ≥

∞=<−
Nj Nn

njNjK αφρ  

that is,      ,)1(
1

∑
∞

=
∞<−

Nj
njNjK ρ     (2.3) 

Since ki is bounded, say by M, then we get from 2.2 that∑
∞

=

∞<
1Nj

njρ .  Thus the sequence 0}{ →njρ  as 

∞→n .  This contradicts 1.  Thus 0=α . 

Claim 0→nρ  as ∞→n .   

For if not, there is a subsequence njρ * such that njρ * does not tend to zero.  Since ρnj→0, given 

0>ε , there is N2 such that 22 Nnnj >∀< ερ .  We show that for any 2},0{ ερ <∈ +mnjNm Υ .  For k= 

0, there is trivial. Assume true for any m, we show that it is true for m +1, i.e. 21
ερ <++mnj .  Assume for 

contradiction that 21
ερ <++mnj , then 

  )( 112 ++++++ −≤< mnjmnjmnjmnj k ρφρρε 






−






 +≤ + 22
1

εφρε
mnj  

i.e.    ,
4222

2

1

εερερρε <−+≤< ++++ mnjmnjmnj  

i.e.      
42

2

1

ερε << ++mnj , 

a contradiction.  Hence 0→nρ  as ∞→n . 

Theorem 2.2 
Let E be a uniformly convex and uniformly smooth Banach space. EGT →:  be an asymptotically 

weakly suppressive map on a closed convex set EG ⊆ .  Then the sequence }{ nx  generated by  

   n
n

Gn xTx π=+1  

converges strongly to the fixed point of T. 
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Proof 

 *),(*),( 1 TxxTVxxV kn
n

Kn ππ=+ *),( TxxTV n
n≤ )),((),( ** xxVxxVk nnn φ−≤  

Using Lemma 2.1, we have that 0→nρ  as ∞→n .  , i.e.  0),( * →xxV n  as ∞→n . We now invoke 

Alber-Guerre ([1], pg. 24) to get 0lim * =−
∞→

xxn
n

, i.e. *xxn →  as ∞→n , concluding the proof of the 

theorem. 

 
 
 
Theorem 2.3 

Let E be a uniformly convex and unfiromly smooth Banach space and EGT →:  be an 

asymptotically nonextensive operator. Then the sequence n
n

Gn xTx π=+1 converges to the fixed point of T, 

 
Proof 

 *),(*),( 1 xTxTVxxV n
Gn

n
Gn ππ=+ ),( *xTTV nn≤ *),( xxVk nn≤ *).,( 11 xxVk≤  

We now invoke Aber-Guerre ([1], pg. 25) to conclude that *xxn → ∞→n .  We now state and prove the 

following theorem involving the Ishikawa iteration scheme. 
Theorem 2.4. 

Let H be a Hilbert space and HG ⊆  be a weakly contractive map from HG →  of the class )(tCφ  

and Gx ∈*  its fixed point.  Then the iterative sequence defined by 

  ))1((1 nnnnGn TyxPx αα +−=+ , ))1( nnnnn Txxy ββ +−=  

and 1)1()1( <+−+− nnnnn βαβαα , converges strongly to the fixed point of T. 

 
Proof 

*)1((||*1 xPTyxPxx GnnnnGn −+−=−+ αα  

*)1( xTyx nnnn −+−≤ αα )(* nnnn xTyxx −+−= α  

*)(*))(1( TxTyxx nnnn −+−−= αα **)1( TxTyxx nnnn −+−−≤ αα  

*])1(*)1( TxTxxTxx nnnnnnn −+−+−−≤ ββαα  

*]})1{[(*)1[(*)1( xTxxxTxxxx nnnnnnnnnnnn −+−−−+−+−−= ββφαββαα  

(.)}*)*)1{(*)1( φαββαα nnnnnnnn TxTxxxxx −−+−−+−−=  

(.))*(**)1(*)1( φαφβββαα nnnnnnnnnn xxxxxxxx −−−−+−−+−−=  

(.))*(**)1(*)1( φαφβαβαβαα nnnnnnnnnnnn xxxxxxxx −−−−+−−+−−=

(.))*(*])1()1[( φαφβαβαβαα nnnnnnnnnn xxxx −−−−+−+−=  

)*(*])1()1[( xxxx nnnnnnnnn −−−+−+−≤ φβαβαβαα  

Since 1)1()1( <+−+− nnnnn βαβαα , then last inequality satisfies 

   ( )***1 xxxxxx nnnn −−−≤−+ φγ  

with 1<nγ .  With *xxnn −=ρ , the last inequality reduces to )(1 nnnn ρφγρρ −≤+ .  We now 

invoke ALber-Guerre ([1], pp.33) to conclude that 0→nρ , i.e. *xxn → as ∞→n . 
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