Some results on the generalized projection and asymptotic operators

S. J. Aneke Department of Mathematics University of Nigeria, Nsukka, Nigeria

Keywords: Asymptotic Operators, Contractive and Suppressive mappings, fixed point, Generalized projection, Ishikawa iteration, uniformly convex and uniformly smooth Banach spaces.

2000 Mathematics Subject Classification: 47H04, 47H06, 47H10, 47J05, 47J25.

1.0 Introduction

Let X be a normed linear space with dual X*. We denote by J the normalized duality mapping form X to 2^{X^*} defined by

$$Jx = \{ f \in X^* :< x, f \ge \|x\|^2 = \|f\|^2 \},\$$

Where <.,.> denotes the generalized duality pairing. It is well-known that if X^* is strictly convex then J is single-valued and if X^* is uniformly convex then J is uniformly continuous on bounded subsets of X, (see e.g. [8]). We shall denote the single-valued duality map by j. Let E be a Banach space. We recall the definition of the generalized projection operator recently introduced by ALbr-Delabriere (see e.g. [1, 2]) as follows: with E as above, $K \subseteq E$, closed, convex subset of E. Let

$$\Pi_{\kappa}: E \to K$$

defined by $Pi_{K}x = \overline{x}$, where \overline{x} is the solution to the minimization problem

$$V(x, \overline{x}) = \inf V(x, \zeta)$$

and

$$V(x,\zeta) = ||x||^2 - 2 < x, \, j(\zeta) > + ||\zeta||^2, \, j(\zeta) \in J(\zeta)$$

It is shown [2] that $V(x, \zeta)$ can be considered not only as square of distance between points x and ζ but also as a Lyapunov function with respect to ζ with fixed x. In Hilbert (and only in Hilbert) spaces, generalized projection coincides with the usual metric project. Some of the properties of Π_K are shown in [2].

The Banach space *E* is said to be uniformly convex if $\delta_E(\varepsilon) \ge 0 \forall \varepsilon \in (0,2]$, where the function $\delta_E: (0,2] \rightarrow [0,1]$ is defined by

$$\delta_{\varepsilon}(\varepsilon) = \inf\left\{1 - \left\|\frac{x+y}{2}\right\| : \|x\| = \|y\| = 1, \|x, y\| \ge \varepsilon\right\}$$

The modulus of smoothness of *E* is the function ρ_E defined by

$$\rho_E(\tau) = \sup\left\{\frac{\|x+y\| + \|x-y\|}{2} - 1 : \|x\| = 1, \|y\| = \tau, \tau > 0\right\}.$$

E is said to be uniformly smooth if $\lim_{\tau \to 0^+} \frac{\rho_E(\tau)}{\tau} = 0$.

e-mail: sylvanus_aneke@yahoo.com

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 27 - 30 Generalized projection and asymptotic operators S. J. Aneke *J of NAMP*

The author is grateful to Professor M. A. Virasoro, Director of ICTP, for hospitality at the ICTP, where this research was begun.

A map *T* with domain D(T) and range R(T) in *E* is called weakly contractive (see e.g. [1, 2]) if there exists a continuous and nondecreasing function $\phi:[0,\infty) \to \Re^+$ such that ϕ is positive $\Re^+ - 0, \phi(0) = 0, \lim_{x \to \infty} \phi(t) = \infty$ and for $x, y \in D(T)$, there exits $j(x - y) \in J(x - y)$ such that

$$||Tx - Ty|| \le ||x - y|| - \phi(||x - y||)$$

T is called strongly suppressive on a closed convex set $G \subseteq E$ if there exists $c \in (0,1)$ such that for all $x, y, \in G$, $V(Tx, Ty) \leq cV(x, y)$

T is called weakly suppressive of class $C_{\phi(t)}$ on a closed convex set $G \subseteq B$ if there exists a continuous and none decreasing function $\phi(t)$ defined on \Re^+ such that ϕ is positive on $\Re^+ - 0$, $\phi(0) = 0$, $\lim_{t \to \infty} \phi(t) = \infty$

and $\forall x, y \in G$, $V(Tx, Ty) \le V(x, y) - \phi(V(x, y))$

T is called nonextensive on a closed convex set $G \subseteq B$ if for all $x, y \in G$,

 $V(Tx,Ty) \leq V(x,y)$.

It is clear that every weakly suppressive mapping is nonextensive and every strongly suppressive mapping is weakly suppressive by setting $\phi(t) = (1 - c)t$. In Hilbert spaces, strongly suppressive operators are weakly contractive and nonextensive mappings are nonexpansive and vice versa.

In [1,2], Alber-Guerre proved convergence results with the generalized projection for the suppressive and contractive-type operators. The author (with C.E. Chidume and H. Zegeye) also generalized some of these results in different directions, see [4].

Let K be a nonempty subset of a normed space E. A mapping $T: K \to K$ is called asumptotically nonextensive (see e.g. [6] if there exists a sequence $\{k_n\}, k_n \ge 1$, such that $\lim k_n = 1$, and

$$\left\|T^{n}x - T^{n}y\right\| \leq k_{n}\left\|x - y\right\|$$

for each $x, y \in K$ and for each integer $n \ge 1$. T is called asymptotically pseudocontractive (see e.g. [6] if there exists a sequence $\{k_n\}, k_n \ge 1$, $\lim_{n \to \infty} k_n = 1$ such that

$$\langle T^n x - T^n y, j(x-y) \rangle \leq k_n ||x-y||^2,$$

for each, $x, y \in K$. The asymptotic operators were first introduced by Goebel and Kirk, while the contractive and suppressive mappings were first introduced by ALber-Guerre (see for e.g. [1, 2, 6]. These classes of mappings have been studied by various authors (see e.g. [1, 2, 3, 4]. Motivated by Alber-Guerre and Goebel-Kirk, we now introduce the class of asymptotically weakly suppressive maps. **Definition 1.1**

The map $T: G \to E, G \subseteq E$, will be called asymptotically weakly suppressive of class $C_{\phi(t)}$ if there exists a nondecreasing continuous map $\phi: \mathfrak{R}^+ \to \mathfrak{R}^+$ such that $\phi(0) = 0, \ \phi(t) \ge t, \lim_{t \to \infty} = \infty$ and a sequence $\{k_n\}$ such that $k_n \ge 1, \lim_{n \to \infty} k_n = 1$ and $\forall x, y \in G$, there exists $j(x-y) \in j(x-y)$ such that

$$V(T^n x - T^n y) \le k_n V(x, y) - \phi(V(x, y)).$$

In this paper, we obtain some new results with the generalized projection operator involving the Ishikawa-type iteration and some contractive and suppressive-type mappings. We study the asumptotic operators involving the weakly suppressive mappings with the help of the generalized projection.

2.0 Main result

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 27 - 30Generalized projection and asymptotic operatorsS. J. AnekeJ of NAMP

Lemma 2.1

Let $\{\rho_i\}$ be a sequence of nonnegative numbers and $\{k_i\}$ a sequence of positive numbers such that $k_i \ge 1$, $\lim_{n \to \infty} k_i = 1$. Let the recursive inequality $\rho_{n+1} \le k_n \rho_n - \phi(\rho_n), n = 1, 2, K$ be given where

 $\phi(t)$ is a continuous and non decreasing function from \Re^+ to \Re^+ such that it is positive on $\Re^+ - 0, \phi(0) = 0, \phi(t) \ge t, \lim \phi(t) = \infty$. Then $\rho_n \to 0$ as $n \to \infty$.

Proof.

Let $\lim \inf \rho_n = \alpha$. We claim that $\alpha = 0$. For if not, then there is N_1 such that $\forall n \ge N_1$,

$$\liminf \rho_n = \alpha > 0 \tag{2.1}$$

(2.2)

Thus there is a subsequence $\{\rho_{nj}\}$ such that, $\rho_{nj+1} > k_{nj}\rho_{nj} - \phi(\rho_{nj})$, that is $k_{nj}\rho_{nj} - \rho_{nj+1} < \phi(\rho_{nj})$

Since ρ_{nj} and ρ_{nj+1} have same limit, we obtain from 2.1, $\sum_{j=N1}^{\infty} (K_{Nj} - 1)\rho_{nj} < \sum_{n \ge N1} \phi(\alpha) = \infty$,

that is,
$$\sum_{j=N1}^{\infty} (K_{Nj} - 1)\rho_{nj} < \infty, \qquad (2.3)$$

Since k_i is bounded, say by M, then we get from 2.2 that $\sum_{j=N_1}^{\infty} \rho_{nj} < \infty$. Thus the sequence $\{\rho_{nj}\} \to 0$ as $n \to \infty$. This contradicts 1. Thus $\alpha = 0$.

Claim $\rho_n \to 0$ as $n \to \infty$.

For if not, there is a subsequence ρ_{nj}^* such that ρ_{nj}^* does not tend to zero. Since $\rho_{nj} \rightarrow 0$, given $\varepsilon > 0$, there is N_2 such that $\rho_{nj} < \frac{\varepsilon}{2} \forall n > N_2$. We show that for any $m \in N Y\{0\}$, $\rho_{nj+m} < \frac{\varepsilon}{2}$. For k=0, there is trivial. Assume true for any m, we show that it is true for m+1, i.e. $\rho_{nj+m+1} < \frac{\varepsilon}{2}$. Assume for contradiction that $\rho_{nj+m+1} < \frac{\varepsilon}{2}$, then

$$\begin{split} \frac{\varepsilon}{2} < \rho_{nj+m+1} &\leq k_{nj+m} \rho_{nj+m} - \phi(\rho_{nj+m+1}) \leq \left(1 + \frac{\varepsilon}{2}\right) \rho_{nj+m} - \phi\left(\frac{\varepsilon}{2}\right) \\ \frac{\varepsilon}{2} < \rho_{nj+m+1} \leq \rho_{nj+m} + \frac{\varepsilon}{2} \rho_{nj+m} - \frac{\varepsilon}{2} < \frac{\varepsilon^2}{4}, \\ \frac{\varepsilon}{2} < \rho_{nj+m+1} < \frac{\varepsilon^2}{4}, \end{split}$$

i.e.

i.e.

a contradiction. Hence $\rho_n \to 0$ as $n \to \infty$.

Theorem 2.2

Let *E* be a uniformly convex and uniformly smooth Banach space. $T: G \to E$ be an asymptotically weakly suppressive map on a closed convex set $G \subseteq E$. Then the sequence $\{x_n\}$ generated by

$$x_{n+1} = \pi_G T^n x_n$$

converges strongly to the fixed point of T.

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 27 - 30Generalized projection and asymptotic operatorsS. J. AnekeJ of NAMP

Proof

$$V(x_{n+1}, x^*) = V(\pi_k T^n x_n, \pi_k T x^*) \le V(T^n x_n, T x^*) \le k_n V(x_n, x^*) - \phi(V(x_n, x^*))$$

Using Lemma 2.1, we have that $\rho_n \to 0$ as $n \to \infty$., i.e. $V(x_n, x^*) \to 0$ as $n \to \infty$. We now invoke Alber-Guerre ([1], pg. 24) to get $\lim_{n \to \infty} ||x_n - x^*|| = 0$, i.e. $x_n \to x^*$ as $n \to \infty$, concluding the proof of the theorem.

Theorem 2.3

Let *E* be a uniformly convex and unfirmly smooth Banach space and $T: G \to E$ be an asymptotically nonextensive operator. Then the sequence $x_{n+1} = \pi_G T^n x_n$ converges to the fixed point of *T*,

Proof

$$V(x_{n+1}, x^*) = V(\pi_G T^n x_n, \pi_G T^n x^*) \| \le V(T^n, T^n x^*) \le k_n V(x_n, x^*) \le k_1 V(x_1, x^*).$$

We now invoke Aber-Guerre ([1], pg. 25) to conclude that $x_n \to x^* n \to \infty$. We now state and prove the following theorem involving the Ishikawa iteration scheme. *Theorem* 2.4.

Let H be a Hilbert space and $G \subseteq H$ be a weakly contractive map from $G \to H$ of the class $C_{\phi(t)}$ and $x^* \in G$ its fixed point. Then the iterative sequence defined by

$$x_{n+1} = P_G((1 - \alpha_n)x_n + \alpha_n Ty_n), \ y_n = (1 - \beta_n)x_n + \beta_n Tx_n)$$

and $(1 - \alpha_n) + \alpha_n(1 - \beta_n) + \alpha_n\beta_n < 1$, converges strongly to the fixed point of *T*.

with $\gamma_n < 1$. With $\rho_n = ||x_n - x^*||$, the last inequality reduces to $\rho_{n+1} \le \rho_n - \gamma_n \phi(\rho_n)$. We now invoke ALber-Guerre ([1], pp.33) to conclude that $\rho_n \to 0$, i.e. $x_n \to x^*$ as $n \to \infty$.

References

- [1] Alber Ya, Guerre-Delabriere S., On the projection methods for fixed point problems, Analaysis 21, (2001), 17-39
- [2] Alber Ya, Guerre-Delabriere S., Problems of fixed point theory in Hilbert and Banach spaces, Functional Differential Equations, 2 (1994) 5-10.
- [3] Alber Ya, Guerre Delabriere S., Principle of weakly contractive maps in Hilbert spaces, Operator theory, Adenaces and Applications 98 (1997) 7-22.
- [4] C.E. Chidume, S. J. Aneke and H. Zegeye, Approximations of fixed points of weakly contractive Non-self maps in Banach spaces, J. Math. Anal. Appl. 270 (2002), 189-199.
- [5] T. Figiel, On the moduli of convexity and smoothness, Studia Mathematica, 56(1976), 121-155.
- [6] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically non expansive mappings, Proc. Amer. Math. Soc. 35(1) 1972, 171-174.
- [7] S. Ishikawa, Fixed points by a new iteration method, Pro. Amer. Math. Soc. 44(1) (1974) 147 150.
- [8] J. Lindestrauss, L. Tzafriri, Classical Banach spaces II, Springer-Verlag, Berlin-Heidelberg, New York, 1979.