Journal of the Nigerian Association of Mathematical Physics
 Volume 13 (November, 2008), 17-20
 © J. of NAMP

On the coefficients of holomorphic functions and the identity

J. A. Adepoju and A. A. Mogbademu
Department of Mathematics, University of Lagos.

Abstract

$$
\begin{gathered}
\text { We give, in this note, a simple proof of the identity. } \\
S_{n}-S_{n-1}=\binom{2 n}{n}, n \geq 1 \text { where } S_{n}=\sum_{i+j+k=n}\binom{i+j}{i}\binom{j+k}{j}\binom{k+i}{k}
\end{gathered}
$$

by relating it to the coefficients of the series expansion of a holomorphic function of several complex variables where the summation is taken over all non-negative integers i, j, k such that $i+j+k=n$.

Keywords: Holomorphic functions, series expansion of holomorphic functions, coefficients of series expansion, absolute terms of an identity.

2000 Mathematics Subject Classification: 05A19, 32A10, 32A05

1.0 Introduction

Let $S_{n}=\sum_{i+j+k=n}\binom{i+j}{i}\binom{j+k}{j}\binom{k+i}{k}$, where the summation is taken over all non-negative integers i, j, k such that $i+j+k=n$. It is required to establish the identity.

$$
\begin{equation*}
S_{n}-S_{n-1}=\binom{2 n}{n}, n \geq 1 \tag{1.1}
\end{equation*}
$$

Direct combinatorial arguments have often been the method of proof [cf 2]. This note employs the coefficients of the series expansion of a holomorphic function of several complex variables. The precise result to be employed is the following:

1.1 Theorem (Osgood)

If a complex-valued function f is continuous in an open domain $D \subseteq \not \subset^{k}$ and is holomorphic in each of the variables $z_{1}, z_{2}, \ldots z_{k}$ separately, then it is holomorphic in $\underline{z}=\left(z_{1}, z_{2}, \ldots z_{k}\right)$ and

$$
f(\underline{z})=\sum_{n_{1}, n_{2}, \ldots n_{k}=0} a_{n_{1}, n_{2}, \ldots n_{k}}\left(z_{1}-w_{1}\right)^{n_{1}}\left(z_{2}-w_{2}\right)^{n_{2}} \ldots\left(z_{k}-w_{k}\right)^{n_{k}}
$$

where

$$
\begin{equation*}
a_{n_{1}, n_{2}, \ldots n_{k}}=\left(\frac{1}{2 \pi i}\right)^{k} \iint \ldots \int \frac{f\left(\varsigma_{1}, \varsigma_{2,}, \ldots \varsigma_{k}\right) d \varsigma_{1} d \varsigma_{2} \ldots d \varsigma_{k}}{\left(\varsigma_{1}-w_{1}\right)^{n_{1}+1}\left(\varsigma_{2}-w_{2}\right)^{n_{2}+1} \ldots\left(\varsigma_{k}-w_{k}\right)^{n_{k}+1}}, \tag{1.2}
\end{equation*}
$$

$\left(w_{1}, w_{2}, \ldots w_{k}\right) \in D ;\left(\varsigma_{1}, \varsigma_{2}, \ldots \varsigma_{k}\right) \in\left|\varsigma_{j}-w_{j}\right|=r_{j}$ and f is a holomorphic function of ς_{j} in $\left|\varsigma_{j}-w_{j}\right|<r_{j}$.

2.0 We employ formula (1.2) to establish the identity (1.1) as follows

Write $\sigma_{n, i}=\sum_{i=0}^{n}\binom{i+j}{i}\binom{n-i}{j}\binom{n-j}{i}$, then

$$
\begin{equation*}
S_{n}=\sum_{i=0}^{n} \sigma_{n, i} \tag{2.1}
\end{equation*}
$$

For a fixed $i, j+k=n-i$, hence $k=n-i-j$ and j varies between 0 and $\mathrm{n}-i$ with $j+k=n-i, k+i=n-\mathrm{j}$. Indeed, putting $i+j+k=n$, then $j+k=n-i, k=n-i-j, k+i=n-j$ and $\binom{k+i}{k}=\binom{k+i}{i}=\binom{n-j}{i}$.
For a fixed i, we have

$$
\binom{i+j}{i}\binom{j+k}{j}\binom{k+i}{k}=\binom{i+j}{i}\binom{n-i}{j}\binom{n-j}{i} ; j=0,1, \ldots n-1
$$

and thus

$$
S_{n}=\sum_{i=0}^{n} \sum_{i=0}^{n-i}\binom{i+j}{i}\binom{n-i}{j}\binom{n-j}{i}=\sum_{i=0}^{n} \sigma_{n, i} .
$$

Consider the function $f(z, w)$ given by

$$
\begin{aligned}
f(z, w) & =(1+z)^{i}(1+w)^{i}(2+z+w)^{n-i}=(1+z)^{i}(1+w)^{i}(1+z+1+w)^{n-1} \\
& =(1+z)^{n}(1+w)^{i} \sum_{j=0}^{n-i}\binom{n-j}{j}\left(\frac{1+w}{1+z}\right)^{j} \\
& =(1+w)^{i} \sum_{j=0}^{n-i}\binom{n-i}{j}\left(\begin{array}{c}
\\
1+w
\end{array}\right)^{j}\binom{-j}{1+z}^{i} \\
& =\sum_{j=0}^{n-i}\binom{n-i}{j}\left(\begin{array}{c}
i+j \\
1+w-j
\end{array} \sum_{m=0}^{n-j} \begin{array}{c}
n \\
m
\end{array}\right) z^{m}
\end{aligned}
$$

The coefficient of w^{i} in $f(z, w)$ is

$$
\sum_{j=0}^{n-i}\binom{n-i}{j}\binom{i+j}{i} \sum_{m=0}^{n-j}\binom{n-j}{m} z^{m}
$$

Hence, the coefficient of $w^{i} z^{i}$ in $f(z, w)$ is

$$
\sum_{j=0}^{n-i}\binom{i+j}{i}\binom{n-i}{j}\binom{n-j}{i}=\sigma_{n, i}
$$

Hence according to formula (1.2) we have

$$
\sigma_{n, i}=\left(\frac{1}{2 \pi i}\right)^{2} \int_{|z|=r} \int_{|w|=r} \frac{f(z, w) d z d w}{z^{i+1} w^{i+1}}
$$

Let $0<r<1$ and $\Gamma=\mathrm{C}_{\mathrm{r}} \times \mathrm{C}_{\mathrm{r}}$ where $\mathrm{C}_{\mathrm{r}}:|z|=r$, then

$$
\begin{equation*}
\sigma_{n, i}=\frac{-1}{4 \pi^{2}} \int_{\Gamma} \frac{(1+z)^{i}(1+w)^{i}(2+z+w)^{n-i}}{(z w)^{i+1}} d z d w \tag{2.2}
\end{equation*}
$$

Hence by (2.1) and (2.2) we have

$$
\begin{aligned}
S_{n} & =\frac{-1}{4 \pi^{2}} \int_{\Gamma}\left\{\sum_{i=0}^{n} \frac{(1+z)^{i}(1+w)^{i}(2+w+z)^{n-i}}{(z w)^{i+1}}\right\} d z d w \\
& =\frac{-1}{4 \pi^{2}} \int_{\Gamma} \frac{(2+z+w)^{n}}{z w} \sum_{i=0}^{n}\left\{\frac{(1+z)(1+w)}{(z w)(2+z+w)}\right\}^{i} d z d w
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{4 \pi^{2}} \int_{\Gamma} \frac{(2+z+w)^{n}}{z w}\left(\frac{1-\frac{(1+z)^{n+1}(1+w)^{n+1}}{(z w)^{n+1}(2+z+w)^{n+1}}}{1-\frac{(1+z)(1+w)}{(z w)(2+z+w)}}\right) d z d w \\
& \quad=\frac{-1}{4 \pi^{2}} \int_{\Gamma} \frac{1}{(1+z+w)}\left\{(2+z+w)^{n+1}-\left(\frac{(1+z)(1+w)}{(z w)}\right)^{n+1} d z d w\right\}
\end{aligned}
$$

Hence, we have,

$$
\begin{aligned}
S_{n}-S_{n-1} & =\frac{-1}{4 \pi^{2}} \int_{\Gamma} \frac{1}{(1+z+w)(z w-1)}\left[\begin{array}{l}
(2+z+w)^{n+1}-(2+z+w)^{n}-\left\{\frac{(1+z)(1+w)}{z w}\right\}^{n+1} \\
+\left\{\frac{(1+z)(1+w)}{z w}\right\}^{n}
\end{array}\right] d z d w \\
& =\frac{-1}{4 \pi^{2}} \int_{\Gamma} \frac{1}{1-z w}\left\{\frac{(1+z)^{n}(1+w)^{n}}{(z w)^{n+1}}-(2+z+w)^{n}\right\} d z d w
\end{aligned}
$$

Since $|z| \leq r<1,|w| \leq r<1$, then $|z w|<1$
Hence,

$$
\frac{1}{1+z w} \text { and } \frac{(2+z+w)^{n}}{1-z w}
$$

are holomorphic in Γ and

$$
\int_{\Gamma} \frac{(2+z+w)^{n}}{1-z w} d z d w=0
$$

Thus,

$$
S_{n}-S_{n-1}=\frac{-1}{4 \pi^{2}} \int_{\Gamma} \frac{(1+z)^{n}(1+w)^{n}(1-z w)^{-1}}{(z w)^{n+1}} d z d w
$$

is the coefficient of $(z w)^{n}$ in the expansion of the function $(1+z)^{n}(1+w)^{n}(1-z w)^{-1}$ in powers of z, w and is equal to $\sum_{k=0}^{n}\binom{n}{k}^{2}$.
Finally, consideration of absolute terms in the identity

$$
(1+x)^{n}\left(1+\frac{1}{x}\right)^{n}=\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2 n}
$$

gives

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n} \\
& S_{n}-S_{n-1}=\binom{2 n}{n}
\end{aligned}
$$

Hence,

3.0 Conclusion

The coefficients of the series expansion of a holomorphic function of several complex variables are employed to establish a combinatorial identity.

References

[1] Adepoju, J.A. Functions and Basic Sets of Polynomials of Several Complex Variables. Seminar Notes 1991.
[2] American Mathematical Monthly Vol. 23 No 7; August-Sept. 1966.
[3] Bochner, S. and Martin, W.T. Several Complex Variables. Princeton University Press, 1944..
[4] Fuchs, B.A. Theory of Analytic Functions of Several Complex Variables, Americ. Math. Soc. Providence RI, 1963.
[5] Gunning, R.C. and Rossi, H. Analytic Functions of Several Complex Variables, Princeton Hall Inc. 1965.
[6] Ross, S., A First Course in Probability, Second Edition, Macmillan Publishing Comp, New York, 1984.

