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Abstract  
 

We give, in this note, a simple proof of the identity. 
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by relating it to the coefficients of the series expansion of a holomorphic 
function of several complex variables where the summation is taken over all 
non-negative integers i, j, k such that i + j + k = n. 
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1.0 Introduction  

Let 







 +







 +







 +
= ∑

=++ k

ik

j

kj

i

ji
S

nkji
n

, where the summation is taken over all non-negative integers i, 

j, k such that i + j + k = n. It is required to establish the identity. 
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Direct combinatorial arguments have often been the method of proof [cf 2]. This note employs the coefficients of 
the series expansion of a holomorphic function of several complex variables. The precise result to be employed is 
the following: 
1.1 Theorem (Osgood) 

If a complex-valued function f is continuous in an open domain kD ⊄⊆  and is holomorphic in each of 

the variables kzzz ...,, 21 separately, then it is holomorphic in ( )kzzzz ...,, 21=  and  
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( ) ( ) jjjkk rwDwww =−∈∈ ςςςς ...,,;...,, 2121
 and f is a holomorphic function of jς  in jjj rw <−ς . 

  
2.0 We employ formula (1.2) to establish the identity (1.1) as follows 
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For a fixed i, j + k = n – i, hence k = n – i – j and j varies between 0 and n – i with j + k = n - i, k + i = n – j. 

Indeed, putting i + j + k = n , then j + k = n – i, k = n – i – j, k + i = n – j and 
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For a fixed i, we have  
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Consider the function f(z, w) given by  
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The coefficient of wi in f(z, w) is  
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Hence, the coefficient of wizi in f(z,w) is  
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Hence according to formula (1.2) we have  

  
( )

∫ ∫
= =

++






=
rz rw

iiin wz

dwdzwzf

i 11

2

,

,

2

1

π
σ  

Let 0 < r < 1 and Γ = Cr × Cr where Cr: |z| = r, then   
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Hence by (2.1) and (2.2) we have  
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Hence, we have,  
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Since |z| < r < 1, |w| < r < 1, then |zw| < 1 
Hence,  
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are holomorphic in Γ and  
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is the coefficient of (zw)n in the expansion of the function (1 + z)n (1 + w)n (1 - zw)-1 in powers of z, w and is 
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Finally, consideration of absolute terms in the identity  

( ) ( )
n

n

x

n

x
xx

2

1 1
11 







 +=++  

gives  



 
Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 17 - 20 
Holomorphic functions J. A. Adepoju and A. A. Mogbademu J of NAMP 
 

∑
=









=







n

k n

n

k

n

0

2
2

 

Hence,      







=− − n

n
SS nn

2
1  

 
3.0 Conclusion 

The coefficients of the series expansion of a holomorphic function of several complex variables are 
employed to establish a combinatorial identity. 
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