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Abstract 
 

We examine the electron density obtained from two embedding 
functions, regarded as model I  and model II,  from the Separable Potential 
Method for six FCC metals; Ni, Cu, Pd, Pt, Au and Ag. The purpose is to 
investigate whether a unique electron density could be obtained from the two 
functions using Johnson’s alloy model. Experimental dilute limit heats of 
solution of the binary alloys of these metals were used as input parameters. 
The embedding functions are essentially the same for the two models from ρρρρ 
= 0 up to ρρρρ = 5ρρρρe for Ni, Cu and Ag. The functions diverge from about 1.3ρρρρe 

upwards for Pd and from about 1.8ρρρρe upwards for Pt and Au.  The 
equilibrium electron density, ρρρρe, was taken as k/ΩΩΩΩ, where k is an integer and 
ΩΩΩΩ is the atomic volume. Two different electron densities were derived from 
each model for k < 30 but at higher values of k the two electron densities 
became identical. The lower electron density in each case was found to 
increase linearly with k. Though the two embedding functions were identical 
in some density regions, the observed differences between them may be the 
reason for non-uniqueness of the electron densities derived from them.  
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1.0 Introduction 

An appealing aspect of EAM is that each atom is embedded in a host of electron gas created by its 
neighboring atoms. Thus, the same embedding function is used to calculate the energy of an atom in an 
alloy and in the pure material. To apply this method to the study of pure metals, surface defects, alloy 
energetic and allied defects, atomic densities which could be taken from Hartree-Fock calculations or some 
other source are usually required as input. Also some form of embedding function will have to be assumed. 
While these provide sufficient information about the embedding function for many calculations in pure 
metals, the atoms in an alloy are embedded in electron densities that are substantially different from that in 
pure metals [1]. One ambiguity that may arise in using these electron densities is that the electronic 
configuration in a free atom may not be the best representation of the electron density in the pure 
monoatomic solid or in an alloy. 

An attempt to solve this problem gave rise to Johnson’s analytical model in which simple 
exponential functions are employed for both the electron density, ρ(r), and the two-body potential ϕ(r) [2]. 
The embedding function is thereby determined simply by fitting these functions to the universal equation of 
state [3]. 
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However, the theoretical predictions for the dilute limit heats of solution for the binary alloys of six FCC 
metals using Johnson’s model showed a significant disagreement from the experimental values, especially 
in the case of Palladium.  Besides, the atomic density parameter in Johnson’s equation can only be 
determined from alloy properties [4]. The problem before us is therefore to determine the electron density 
function and the two-body potential function that will yield the correct dilute limit heat of solution 

The search for an appropriate electron density is partly responsible for this study. In this work, we 
examine the electron densities arising from two different embedding functions derived from the Separable 
Potential Method (SPM), [4] and we inquire whether a unique electron density could be obtained from the 
two different functions. Electron densities derived from identical embedding functions are not expected to 
differ. Hence, the parameters in the two embedding functions were carefully chosen so that the two 
functions are identical as far as possible, beginning from ρ = 0. First, the relevant EAM theory and 
equations are reviewed in section 2. Rather than propose analytic expressions for calculation of dilute limit 
heat of solution, we set out to find expressions for ρ(r) from the experimental values of heat of solution. 
Results and discussion of our findings are presented in section 3 and concluding remarks in section 4. 
 
2.0 Theory 

Daw and Baskes [5] originally evolved the EAM theory, and its basic ideas can be interpreted in 
the framework of density-functional theory as developed by Hohenberg and Kohn [6]. The significant 
contribution of Baskes et al, is that they have used the basic ideas of density functional theory to write out 
the total internal energy for the collection of atoms constituting the metallic solid, as an embedding energy 
plus a core-core repulsive potential that can be fully determined by experimental data. The electron density 
in the vicinity of each atom can then be expressed as a sum of the density of the atom in question plus the 
electron density from surrounding atoms [1]. Hence, the total energy for a monoatomic solid is given as 

(2.1) 
 
Fi(ρ(rij)) is the embedding energy as a function of background electron density ρ. ϕ(rij) is the core-core 
repulsion between atoms i and j separated by distance ri,j. The electron density ρ at an impurity site due to 
the contribution from neighboring host atoms is 
 
  (2.2) 

The subscripts h and i refer to the host and impurity atoms respectively. The summation over n in 
Equation (2.2) refers to the number of the neighboring atoms at some interatomic separation distance, r(h,i) , 
from the impurity atom, each of these neighboring atoms contributing  the same density ρn(rh,i).  

There are three fundamental quantities in Equations (2.1) and (2.2). These are the embedding 
energy function, Fi(ρ(rij), the electron density function, ρ(rij) and the pair potential, ϕ(rij). Idiodi and Obodi 
[4], have derived two embedding functions for FCC metals from the Separable Potential Method as.  
 

(2.3) 
 
 
 
 

(2.4) 
 
 
 

Following Johnson [2], the relevant equation for the dilute limit heat of solution, ∆Q, of an 
impurity atom in a host metal is given by  

(2.5a) 
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where 
           (2.5b) 
 
 

(2.5c) 
 

(2.5d) 
 

 
(2.5e) 

 
 
 

(2.5f) 
 
 

The only unknown in the full expression for equation (2.5a) is the electron density, ρi. This 
quantity is obtained by iterating the expression, (2.5a), in order to reproduce the exact heat of solution for 
each combination of impurity/host atom as presented in Table 2.1. Other material properties of the FCC 
pure metals used as input for the calculation are given in Table 2.2. 

 
Table 2.1. Experimental heats of solution [in eV] of binary alloys of Cu, Ag, Au, Ni, Pd and Pt. Unrelaxed values from 

[1], denoted with superscript a, are used where experimental values are not available. 
 

 

 

 

 

 

 

 

 

 

 

asee ref. [1]  
 

Table 2.2: Properties of pure FCC metals. Lattice constants (in Å), Bulk modulus ( in 1012ergs/cm3), and cohesive 
energies (in eV) are from Ref. [3] and Ref. [1], elastic constants (in 1012ergs/cm3). 

 

 Ni Cu Pd Pt Au Ag 

B[1012ergs/cm3] 1.804 1.380 1.950 2.830 1.670 1.040 

C1 [1012ergs/cm3] 2.465 1.700 2.341 3.470 1.860 1.240 

C[1012ergs/cm3] 1.473 1.225 1.760 2.510 1.570 0.934 

C44[1012ergs/cm3] 1.247 0.758 0.712 0.765 0.420 0.461 

a(Å) 3.520 3.615 3.890 3.910 4.080 4.090 

Ω(Å3)[= a3/4] 10.9036 11.8104 14.7160 14.9441 16.9793 17.1045 

    
Impurity 

    
Ni Cu Pd Pt Au Ag 

Ni  0.11 0.06 -0.28 0.28 a 0.42 a 
Cu 0.03  -0.44 -0.53 -0.19 0.39 

Pd -0.09 -0.39  -0.04a -0.2 -0.11 

Pt -0.33 -0.30 -0.03a  0.07a 0.18a 

Au 0.22 -0.13 -0.36 0.09a  -0.16 

H
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Ag 0.38a 0.25 -0.29 0.07 a -0.19   

12
ih ρρρ +=∆

( ))()(
6
1

hehhhhh FEr ρϕ −=

( ))()(
6
1

ieiiiii FEr ρϕ −=









−= )()()( 2

1
iii

i

h
hhh

h

i
hhi rrr ϕ

ρ
ρϕ

ρ
ρϕ

















−

















−+−=









−−

)(11)(
1

6
1

iei
r

r

i

h
ihii Fe

r

r
Er i

h

ραϕ
α



 
Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 517 - 524 
Comparative study of two different embedding functions Azi, Aghemenloh, and Idiodi       J of NAMP 
 

re(Å)[=a/√2] 2.4890 2.5562 2.7506 2.7648 2.8850 2.8921 

Ec[eV] 4.45 3.54 3.91 5.77 3.93 2.85 
 
 
 
 
 
3.0 Results and discussions 

The input parameters for EAM calculations for the Six FCC metals are presented in Table 
3.1.Forthese calculations, and F(ρe), f, α, λf and λG were taken from [4]. To examine the sensitivity and to 
reconcile our calculations with earlier studies [4,8], ρ was simply taken as k/Ω, where k was increased from 
1 to 200. Calculated electron densities at k=1 are shown in Table 4. Calculations show that ρ is sensitive to 
the choice of  k. Generally below k = 30, there are two values for each impurity at k = 1, which are 
regarded here as upper and the lower roots. The two roots generally converge as from k ~ 40. It is noted 
here that the lower root scales linearly with k as can be seen in Figure 1 for Cu. 

The results of electron densities (lower roots for the two models), are plotted in Figure 2 for k = 1 
for all six elements. Electron densities derived from the two embedding functions are surprisingly different 
without exception. The curves do not seem to indicate any specific functional form and can hardly be fitted 
with some exponential functions. We remark here that two instabilities were noted during the calculations 
with Cu impurity in Ni and Ag impurity in Pt. 

For embedding function calculations in pure metals, small changes in ρe, less than ± 10%, can be 
sufficiently estimated by a harmonic approximation [7]. This is often inadequate for most defect 
calculations, which require a wider range. Certainly, a better approximation of electron density is obtained 
from alloy calculations. Thus, we have calculated the embedding functions up to 10ρe for models I and II as 
shown in Figure 3 for the six FCC metals. The calculated embedding functions are essentially the same for 
the two models up to 5ρe for Ni, Cu and Ag. This is likely due to the fact that they are derived from the 
same atomic cluster arrangement. The functions diverge from about 1.3ρe for Pd and at about 1.8ρe for Pt 
and Au. For all the six metals, embedding functions arising from model I show a positive curvature even up 
to 10ρe. It is desirable that F″(ρ) > 0 for all ρ. We remark here that the expressions for F(ρ) were taken 
from [4]. 

Perhaps, it is noteworthy to mention that the embedding function from model I consistently gave 
electron density that is comparable to published results [8].  Why that of Equation (2.4) gave 
extraordinarily high electron densities especially in Pd host is a subject for further investigation.  

 
Table 3.1: Calculated EAM parameters for Six FCC metals. ρ0 is simply taken as the inverse of the atomic volume and 

F(ρ0), f1, α, and λ were taken from [4]. 
 

 Ni Cu Pd Pt Au Ag 

ρ0 =ρ(r0)[Å -3] 0.0917 0.0847 0.0680 0.0669 0.0589 0.0585 

ρ'(r)[ρ0/Å] -0.0861 -0.1340 -0.1599 -0.1465 -0.1333 -0.1149 

ρ''(r)[ρ0/Å
2] 0.1261 0.0819 1.0074 0.2951 0.6381 0.0494 

F(ρ0)[eV] -8.7025 -7.3643 -3.9234 -9.0164 -4.8356 -6.1665 

F'(ρ0)[eV/ρ0] -62.626 -59.56075 -18.955 -68.368 -28.77 -74.50739 

F''(ρ0)[eV/ρ 0
2] 301.281 264.24996 447.782 892.922 741.266 411.33117 

 φ(eV) 0.7088 0.6374 0.0022 0.5411 0.1509 0.5528 

φ'[eV/Å] -0.8989 -1.3297 -0.5052 -1.6693 -0.6393 -1.4272 
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φ''[eV/Å2) 3.9159 2.3581 4.8250 5.3489 4.0527 1.6995 

V11[ρ0] -0.0714 -0.1141 -0.1466 -0.1350 -0.1282 -0.1108 

W[ρ0] -0.0382 -0.0429 0.8488 0.1535 0.6893 -0.0407 

W2[ρ0] 0.0585 0.1043 0.4406 0.2289 0.3711 0.1077 

α 4.9829 5.0855 6.4208 6.4166 6.3663 5.9213 
 
 
 
 
 

 Ni Cu Pd Pt Au Ag 

θ 0.2143 0.3424 0.4399 0.4050 0.3847 0.3324 

α G 0.0668 0.0414 0.3065 0.1935 0.3041 0.0206 

λG 0.7268 0.7262 0.6348 0.7009 0.6545 0.7270 

α f 0.1905 0.1194 1.3767 0.6833 1.3121 0.0580 

λf 0.7273 0.7273 0.7273 0.7273 0.7273 0.7273 

f 93.3412 122.7647 2.2118 20.9773 3.2177 204.2780 
 

Table: 3.2 Calculated electron densities ρ(r) for the six FCC metals for the two models. Equilibrium 
electron density for each host metal is simply taken as k/Ω, where k = 1. 

 

Model I       

r (Å) Ni1 Cu1 Pd1 Pt1 Au1 Ag1 

2.489016 
0.09171 2.333708 0.025883 0.020852 0.003293 0.006552 

2.556191 
0.083402 0.08467 0.034901 0.031699 0.011787 0.017694 

2.750645 
0.047099 0.041652 0.06795 0.060152 0.034194 0.038194 

2.764788 
0.041585 0.041792 0.059642 0.06692 0.039785 0.884774 

2.884996 
0.041194 0.03796 0.041285 0.054084 0.0589 0.04586 

2.892067 
0.042123 0.044103 0.040713 0.051285 0.041672 0.05846 

 
Model II       

r (Å) Ni2 Cu2 Pd2 Pt2 Au2 Ag2 

2.489016 0.09171 2.288085 0.024975 0.020596 0.002811 0.006549 

2.556191 0.083399 0.08467 0.135157 0.108821 0.13932 0.094282 

2.750645 0.076508 0.078317 0.06795 0.068595 0.079681 0.07133 

2.764788 0.080573 0.075904 0.068542 0.06692 0.069538 0.06616 

2.884996 0.06956 0.070741 0.10213 0.060432 0.0589 0.061253 
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2.892067 0.065606 0.062386 0.085191 0.060504 0.064509 0.05846 

 
4.0 Conclusion 

Generally the calculated embedding functions, F(ρ), from models I and II appear to be the same 
for all the six FCC metals, from ρ = 0 to  1.8ρe. This is likely due to the fact that they are derived from the 
same atomic cluster arrangement. Perhaps, it is noteworthy to mention that the embedding function from 
model I consistently gave electron densities that are comparable to published results.  Two different 
electron densities were derived from each model for k < 30.  The lower roots were found to scale linearly 
with k. ρ is sensitive to k and above k ~ 30, the two roots from each embedding function became identical.  
Electron densities derived from identical embedding functions are not expected to differ.  

 

 
 

 
Though the two embedding functions were identical in some density regions, the observed 

differences may be the reason for non-uniqueness of the electron densities derived from them.  This surely 
raises several questions. How transferable are the electron densities obtained in this study? Are the 
densities of relevance in a different experimental situation? Given the sensitivity of the electron density to 
the form of the embedding function, what is the correct form of the embedding function? These questions 
are currently under the investigation and the outcome of our studies will be reported in the future. 

(a) (b) 
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Figure 1:  Electron density versus atomic distance for Model I : 
 higher roots and ------- lower roots. 

(c) (d) 

(e) (f) 
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Figure 2:- Electron density versus k for Cu using model I:  
 lower roots, ◊ higher roots. 

The plot is typical of all the six FCC metals. 
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