

Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

Journal of the Nigerian Association of Mathematical Physics
Volume 12 (May, 2008), 505 – 516

© J. of NAMP

Matrix and vector data structures-foundation for scientific computing in C++

Innocent Okoloko
Department of Computer Science, University of Benin

Benin City, Nigeria

Abstract

Matrices and vectors have a wide range of applications in science

and engineering, those applications require that vectors and matrices be
defined and used in systems design. However the matrix and vector data
structures and their operations are not generally defined in some modern
programming languages such as C++. Every C++ programmer who wishes to
use them must implement them from scratch using primitive data types, even
though the task he wants to perform may not be the development of data
structures per se; this is a difficult task even for experienced C++
programmers. This paper presents a set of reusable template C++ matrix and
vector classes capable of the basic allowable operations on vectors and
matrices; which can be used by the C++ programmer who requires the task
of defining and using vectors and matrices on the fly. They can therefore be
used as a basis in scientific computing and computational linear algebra.
They have been tested successfully on the Linux and Windows platforms.

1.0 Introduction
 Matrices have a very wide range of applications in science and engineering; these include
computer graphics and vision, computational geometry and modeling, artificial intelligence, electrical
networks, bioinformatics, industrial physics, and in many other areas. These applications require that, 1)
data be represented either as vectors and/or matrices, and 2) linear algebra functions are made available for
operation on the data. Some popular programming languages (such as C++) do not include the vector and
matrix as a standard or extended data structures, and as such a programmer or author who needs to use
them has to implement matrix and vector types and operations from scratch using C++ arrays and pointers
as in [1]. However there are several difficulties with using C++ arrays directly, some of them have been
identified in [2-4], they include the following:
1. Arrays cannot be dynamically created and used in C++.
2. Creating C++ arrays for an array intensive program is usually tedious and error prone. Array

operations will be written at each stage of the application where they are required. This is at best a
difficult task, and at worst impossible where the dimension of the required array can only be
determined at run time.

3. The use of pointers may help to solve some of these problems, but the concept of C++ pointers is
complex and difficult to apply to these kinds of applications, sometimes even for experienced C++
programmers.
For these reasons some authors have labelled C++ as an extremely difficult and unreliable

programming language, in spite of the beauty of C++ which is not immediately obvious to non-expert
programmers. This project is one of many attempts to make C++ a less difficult and more reliable
programming language, and to showcase its beauty and strength, by creating standard, easily reusable
vector and matrix data structures, and making same available to C++ programmers so that:

Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

e-mail: okolokoinno@hotmail.com, Phone: +234 08050580484

1. The C++ programmer can learn how to avoid the problem of defining C++ arrays dynamically at

run time.
2. The C++ programmer can easily define vector and matrix data structures, whose array elements

can be any of the C++ numeric data types (int, float or double).
3. Researchers and students who are building systems that require matrices in C++, can forgo the

onerous task of having to define arrays and array operations, and concentrate on developing the
application at hand.

4. Beginning C++ programmers can learn from these classes and improve on them.
5. The C++ programmer applying the classes can reduce coding to minimum.

Many authors have previously tutored or tried to implement classes for matrix operations in their
various ways, some of the literature are [2], where the design of C++ matrix classes is tutored; [3] where
vector and matrix classes were used for implementing numerical formulas and functions. Also, [5] provides
The Matrix Template Library, a set of tools for the C++ programmer. Popular complex numerical software
tools such as LAPACK [6], LINPACK [7], and ScaLAPACK, also have hidden matrix capabilities. My
own experience from familiarity with some of these tools listed above led me to embark on this project as a
necessity. In my attempt to implement navigation algorithms in C++ on small embedded hardware, I
needed to use vectors and matrices, without having to go about building them from scratch. I observed that
most of the tools above are set-up of black-boxes in which the matrices are not transparent; they are ready-
made software applications, so cannot be used in another program or on a small hardware. My attempt in
this paper, is therefore to present a simple but comprehensive system of building blocks which can be used
by the C++ programmer to create what suits him/her, with the freedom to improve on them. This is also
important because, using the Java Native Interface (JNI) capability of Java; these classes can also be used
in Java systems development, and so can become universal.

2.0 Implementation

This section concerns summary of the details of work done in creating the matrix, and vector data
structures, their operations, and some of the popular standard matrix algebras that have been implemented.
The linear algebras implemented here are common and have been tutored in [8-11] and in many other
mathematics texts. It is impossible to include most of the equations and source code listings here, but
sections that are required for use in explaining the design and functionalities are given.
2.1 Vector Class

This class enables the programmer to define the vector data structure. [8] defines a vector as a
matrix that has only one row (row vector), or only one column (column vector), denoted by:

][= jaa

Thus, a may be regarded as a 1 dimensional matrix denoted as:

][21 naaa Λ=a ,

while its transpose

=

n

T

a

a

a

a
Μ
2

1

Basic allowable operations on vectors are; transposition, addition, subtraction, dot (inner) product,
cross product, and vector norm.

In the design, the vector class forms the basis for defining the matrix class. The class is defined as
a C++ header file with the name vector_1D.h, a standard C++ definition is given by lines 1 to 3 in the code
listing below.
//Class Definition

Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

1. #ifndef _VECTOR_1D_H

2. #define _VECTOR_1D_H
 …
3. #endif

//Member Functions
1. void Allocate (int n);
2. void Allocate (int *n);
3. Int NumberElements () const
4. T& Data (int index);
5. const T& Data (int index) const;
6. void New (int new_n);

In the above code listings lines 1 and 2 define an overloaded function Allocate(), which performs
the task of allocating values to a vector internally.

Line 3 defines an integer function NumberElements(), which performs the task of returning the
number of elements in a vector.

Lines 4 and 5 define an overloaded function Data() which is used as the value of elements of the
vector (or Matrix). A template type T is returned, meaning that the value can be any of the C++ numeric
data types.

Line 6 defines a function New(),which performs the task of allocating new values to a previously
defined vector.
//Overloaded Operators
1. Vector& operator = (const Vector& v);
2. T& operator [] (int index);
3. const T& operator [] (int index) const;
4. Vector operator + (const Vector& v);
5. Vector operator - (const Vector& v);
6. Vector operator * (const Vector& v);

Operator overloading is a powerful feature in C++ that allows standard C++ arithmetic operators
to be redefined by a C++ programmer.

Line 1 above redefines the C++ assignment or equality operator as a vector equality operator.
Thus we can define two vectors a and b of the same dimension and use the expressionab = ; all

elements inb are replaced by those ina .
Lines 2 and 3 redefine the C++ array subscript symbol [] as a template vector subscript symbol.

Thus we can define a vectora , and be able to access its elements by using the expressions][a ix =

or xi =][a , where i is a positive integer.

Line 4 redefines the C++ addition operator as a vector addition operator. Thus we can define
vectorsa , bandcof the same dimension, and use the expression bac += .

Line 5 redefines the C++ subtraction operator as a vector subtraction operator. Thus we can define
vectorsa , bandcof the same dimension, and use the expression c=a-b.

Line 6 redefines the C++ multiplication operator as a vector multiplication operator. Thus we can

define vectorsa , bandc , and determine the inner product of the vectors ba=)b•a(T by using the

expression c = a*b in C++, the first vector on the right hand side of the equation is transposed by default
(though not shown).
//Friend Functions
1. friend ostream &operator << (ostream &s, const Vector<TYPE> &v);
2. friend istream &operator >> (istream &s, const Vector<TYPE> &v);

Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

Lines 1 and 2 above are friend functions which redefines the input (>>) and output (<<) operators as
overloaded vector input and output operators. These are used to write vector data to a file with the same
format as the vector dimension, and to read data directly from a file into a vector.
2.2 Matrix Class

A matrix (2-dimensional) is a rectangular array of numbers (or functions) enclosed in brackets [8],
and can be denoted by;

Allowable operations on matrices include; transposition, addition, subtraction, multiplication, determinant,
norm, trace, scalar multiplication, diagonalization, upper triangularisation, lower triangularisation, LU
decomposition, Cholesky factorization, singular value decomposition, and inverse. Some of these matrix
operations have been implemented here, together with extra algebra functions suchas Gauss elimination,
zeros, matrix expansion, and functions that return the dimensions of an unknown matrix. The matrix is
defined as a template header file with the name matrix_2D.h.
//Class Definition
1. #ifndef _MATRIX_2D_H
2. #define _MATRIX_2D_H
 …
3. #endif

Lines 1 to 3 above form a standard C++ definition of the header file matrix_2D.h.
//Member Functions
1. T& Data (int row, int col);
2. const T& Data (int row, int col) const;
3. int Rows () const {return rows;}
4. int Cols () const {return cols;}
5. Vector<T> GaussElimination (Vector<T>& b, Boolean& solved);
6. Matrix Diag (const Matrix& m);
7. Matrix Ut (const Matrix& m);
8. Matrix Lt (const Matrix& m);
9. Matrix Scalarmult (const Matrix& m, T val);
10. double Det (const Matrix& m);
11. double L2Norm (const Matrix& m);
12. double Trace (const Matrix& m);
13. Matrix Inv (const Matrix& m);
14. Matrix Zeros();
15. Matrix LuDecomp (Matrix& m, Vector<int>& indx, double& d);
16. Matrix LuBksub (Matrix& m, Vector<int>& indx, Vector<double>& b);
17. Matrix InsertRows(const Matrix& m, int& d);
18. Matrix InsertCols(const Matrix& m, int& d);
19. Matrix ReplaceRows(const Matrix& m, int& d);
20. Matrix ReplaceCols(const Matrix& m, int& d);
21. Matrix DeleteRows(int& c, int& d);
22. Matrix DeleteCols(int& c, int& d);

In the above listing, lines 1 and 2 define further overloading of the template function Data(). As
usual, the returned value is of the template type and the array elements must be homogeneous.

Lines 3 and 4 defines two functions Rows() and Cols() which returns integer values of the rows
and columns of the matrix respectively. So we may obtain matrixA of unknown dimension (probably as a
dynamic output of a process), and be able to determine its dimension. This is often required for performing
array operations and for dynamically creating new matrices at run time.

Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

 Line 5 defines the function GaussElimination(), which implements the Gauss elimination
process and returns a vector. Consider the linear system of m equations in n unknowns, this can be

written as a vector equation bAx = . The solutions may be obtained by Gauss elimination of the

augmented matrixA
~

.
Line 6 defines the function Diag(), which creates the diagonal matrix of an existing matrix, this

applies only to square matrices, a matrix is returned. The diagonal matrix of a matrix][ija is denoted

by ()][= ijaAdiag , where 0=ija ji ≠∀ .

Line 7 defines a function that obtains an upper matrix U , while line 8 defines a function that

returns a lower matrixL , of a matrixA ; such that we can write matrix A as a sum of the two
matrices A=U+L . The two matrices L and U look like triangular matrices.

Line 9 defines a function that performs scalar multiplication of a matrix, a matrix is returned. The

scalar multiplication of a matrix][ija by a constant value k is denoted by

ijkak ij ∀]*[=*A .

Line 10 defines a function that returns the determinant of the matrix, only if the matrix is non
singular. The determinant of order n is a scalar associated with a nn× matrix and is defined for 2≥n by

∑∑
1= 1=

==
n

j

n

k
kjkj CaD Adet , where ()

kj
kj

kj MC +1-= [8].

Line 11 defines a function that returns the L2 norm (norm) of a matrix, where the L2 norm is the

length or magnitude of a vector),,,(= 21 naaav Λρ
and is given as

22
2

2
1 +++= naaav Λρ

.

Line 12 defines a function that obtains the trace of a matrix, a value of type double is returned.
The trace of an nn× matrix is the sum of its diagonal elements, and is given as

() ∑
1

n

i
iiaA

=

=tr .

Line 13 defines a function that returns the inverse of a matrix of any dimension. The inverse
1-A of the matrix A is derived fromA such that IAA =1- . The method used in implementing the function

here is follows from [3].
Line 14 defines a function that reduces a matrix to the zero matrix. A zero matrix is returned.
Line 15 defines a function that performs the LU decomposition of a matrix, returns the two

decomposed matrices L and U. LU decomposition reduces a matrixA to its upper and lower triangular
matrices such that AUL =• , whereL is the lower triangular matrix andU is the upper triangular matrix.

Line 16 defines a function that performs the LU back substitution operation of a matrix. The
substituted matrix is returned.

Lines 17 and 18 define functions that performs row and column insertion respectively, so we can
use the expressions A=A.InsertRows(B, rNum) or A=A.InsertCols(B, cNum); where the matrix B is
inserted into A row wise starting from row rNum or column wise starting from column cNum. Certain
applications (e.g. neural networks [1]) require operations such as row and column insertion, replacement,
and deletion.

Lines 19 and 20 define functions that performs row and column replacement respectively, so we
can use the expressions A=A.ReplaceRows(B, rNum); or A=A.ReplaceCols(B, cNum). Where the matrix
B is used to replace rows in A row wise starting from row rNum; or to replace column wise starting from
column cNum.

Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

Lines 21 and 22 define functions that performs row and column deleting respectively, so we can
use the expressions A=A.DeleteRows(nRows, rNum); or A=A.DeleteCols(nCols, cNum). Where nRows
rows are deleted from A starting from row rNum, and nCols columns are deleted from A starting from
column cNum.
//Overloaded Operators
1. Matrix& operator = (const Matrix& m);
2. Vector<T>& operator [] (int index);
3. Matrix operator + (const Matrix& m);
4. Matrix operator - (const Matrix& m);

5. Matrix operator * (const Matrix& m);
6. Matrix operator ^= (const Matrix& m);
7. Matrix operator = = (const Matrix& m);
8. Matrix operator += (const Matrix& m);

Rather than implement the matrix operators as functions, here we utilise the powerful C++
capability of operator overloading. In the above code listing;

Line 1 redefines the equality operator for the matrix data type. Thus we can define matrices A
andB , and use the expression BA = , only if A and B are of same dimension; all elements of A are
replaced by those inB .

Line 2 redefines the C++ array subscript operator as a matrix subscript operator. Thus we can
define a matrixA , and be able to access its elements by using the expression]][[= jix A ; or assign a

value to an element xji =]][[A .

Line 3 redefines the C++ addition operator as a matrix addition operator. Thus we can define
matricesA , B andC , and use the expression BAC += , only if the three matrices are of same
dimension.

Line 4 redefines the C++ subtraction operator to be used as a matrix subtraction operator. Thus we
can define matricesA , B andC , and use the expression BAC -= , only if all matrices are of same
dimension.

Line 5 redefines the C++ multiplication operator to be used as a matrix multiplication operator.
Thus we can define matricesA , B andC , and use the expression BAC *= , only if

][*][=][jkijik bac

is satisfied.
Line 6 defines a new compound operator (consisting of the caret and equality sign) to be used as a

matrix transposition operator. Thus we can define matricesA , B and use the expression AB =^ , this

represents TAB = .
Line 7 defines a new compound operator (consisting of two equality signs) to be used as a matrix

row insertion operator. Some applications require that new rows be dynamically added to an existing
matrix thus changing its dimension and expanding the matrix at run time. With this we can define

matricesA , B and use the expression AB == in C++, only if for][ija and][klb , lj = . All elements

of A are stacked below the last row ofB . The new matrix B =][)+(lkib .

Line 8 defines a new compound operator (consisting of a plus sign followed by an equality) to be
used as a matrix column insertion operator. Some applications require that new columns be dynamically
added to an existing matrix thus changing its dimension and expanding the matrix. Thus we can define

matricesA , B and use the expression AB =+ , only if for][ija and][klb , ki = . All elements of A

are stacked to the right after the last column ofB . The new matrix B =][)+(ljib .

Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

//Friend Functions
1. friend ostream &operator << (ostream &s, const Matrix<TYPE> &m);
2. friend istream &operator >> (ostream &s, const Matrix<TYPE> &m);

Lines 1 and 2 above defines C++ friend functions for overloading the input operator >> and output
operator <<. The functions are the same as described in Section 2.1.
2.3 Matrix 3D Class

In the course of using the matrix and vector classes, one inadvertently faces a situation where a
process requires building an array of matrices over time, a one-dimensional array of two–dimensional
matrices thus results in a three-dimensional matrix. Manipulating data in 3D is the basis for many scientific
applications including computer graphics, vision, geometric modelling, fluid and rigid body navigation, and
many other areas, it is therefore necessary to include a 3D matrix class. Here we simply consider it as an
array of two dimensional matrices of the same dimension; this can be denoted as;

...

...

Although mathematical operations are basically defined for two dimensional matrices, some of

them can be applied directly to three dimensional matrices (e.g. matrix addition); while others can be
applied to the 2D matrix corresponding to the first two digits of the subscript array. The file is defined as a
template header file by the name matrix_3D.h.
//Class Definition
1. ifndef _MATRIX_3D_H
2. #define _MATRIX_3D_H
 …
3. endif

Lines 1 to 3 defines matrix_3D.h in C++.
//Member Functions
1. Matrix3D();
2. Matrix3D(int n, int m, int k);
3. inline T** operator[](const int i);
4. inline const T* const * operator[](const int i) const;
5. inline int dimX() const;
6. inline int dimY() const;
7. inline int dimZ() const;

In the code listings above, lines 1 and 2 define an overloaded Matrix3D function for defining a
three dimensional matrix.

Lines 3 and 4 define the operator [] (with a double pointer) as an overloaded operator for three
dimensional matrix subscripts.

Lines 5 to 7 define three inline functions that are used to return the dimensions of the matrix as
constant integer values.
//Friend Functions
1. friend ostream &operator << (ostream &s, const Matrix3D<TYPE> &m);
2. friend istream &operator >> (istream &s, const Matrix3D<TYPE> &m);

Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

The two lines in the code listings above are used to perform same functions as described for the
matrix class. The three classes that have been explained in this section make up the complete
implementation of the template matrix and vector classes.

3.0 Experimental results

To evaluate the efficiency of the template classes, a test program was written as a single C++
source code file to enable us automatically test most of the implemented functionalities.
3.1 Using the classes

To use the classes, the three header files are included to a C++ project. Remember to include them
into any source file where they will be used "vector_1D.h" is already included into "matrix_2D.h" and thus
may be omitted if "matrix_2D.h" is already included; The test file TemplateFilesTest.cpp produces the
output described in 3.2.
3.2 Results

This section contains the experimental results for running the test program TemplateFilesTest.cpp.
Running Automated Tests...

Matrix & Vector Definitions...
Vector<int> V(3, 0);

Matrix<double> A(3,3,0);
Matrix<double> B(3,3,0);
Matrix<double> C(3,3,0);
Matrix<int> Y(3,2,8);
Matrix<float> Z(3,4,0.5);
Matrix3D<double> H(2, 3, 4);
...Done

Initialisations...
V
[2, 4, 1]
A
[1.012126 5.012126 2.034544
 0.013226 9.013226 4.015556
 0.341612 3.341612 6.781612
]
B
[0.512126 2.452166 1.542126
 6.013226 3.516526 2.993226
 0.341612 7.441612 8.781612
]
... Done...

Testing Matrix Addition...
Addition: C=A+B
[1.524252 7.464292 3.576670
 6.026452 12.529752 7.008782
 0.683224 10.783224 15.563224
]

Testing Matrix Subtraction...
Subtraction: C=A-B
[0.500000 2.559960 0.492418
 -6.000000 5.496700 1.022330

Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

 0.000000 -4.100000 -2.000000
]

Testing Matrix Multiplication...
Multiplication: C=A*B
[31.352407 35.247459 34.429828
 55.577100 61.609886 62.262073
 22.585497 63.054680 70.082494
]

Testing Matrix Transpose...
Transpose: C^=A
A
[1.012126 5.012126 2.034544
 0.013226 9.013226 4.015556
 0.341612 3.341612 6.781612
]

C
[1.012126 0.013226 0.341612
 5.012126 9.013226 3.341612
 2.034544 4.015556 6.781612

]

Testing Matrix Determinant...
Determinant: double determinant =C.Det (C)=48.535645

Testing Matrix Trace...
Trace: double trace =C.Trace (C)=16.806964

Testing Matrix Norm...
Norm: double norm=C.L2Norm (C)=13.598589

Testing Matrix Diagonal...
Diagonal Matrix G=G.Diag (C);

[1.012126 0.000000 0.000000
 0.000000 9.013226 0.000000
 0.000000 0.000000 6.781612
]

Testing Matrix Scalar Multiplication...
Scalar multiplication: H=H.Scalarmult(C, 2.5)
C
[1.012126 0.013226 0.341612
 5.012126 9.013226 3.341612
 2.034544 4.015556 6.781612

Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

]

H
[2.530315 0.033065 0.854030
 12.530315 22.533065 8.354030
 5.086360 10.038890 16.954030
]

Testing Matrix Triangularisation...
Trianguarisation: of C; E=E.Lt(C); F=F.Ut(C);
C
[1.012126 0.013226 0.341612
 5.012126 9.013226 3.341612
 2.034544 4.015556 6.781612
]

E=Lt(C)
[0.000000 0.000000 0.000000
 5.012126 0.000000 0.000000
 2.034544 4.015556 0.000000
]

F=Ut(C)
[0.000000 0.013226 0.341612
 0.000000 0.000000 3.341612
 0.000000 0.000000 0.000000
]

Testing Matrix LU Decomposition...
LU Decomposition: of C;
C
[1.012126 0.013226 0.341612
 5.012126 9.013226 3.341612
 2.034544 4.015556 6.781612
]

C=C.LuDecomp (C, E, d)

[1.012126 0.013226 0.341612
 4.952077 8.947730 1.649923
 2.010169 0.445808 5.359365
]

Testing Matrix Inverse...
Inverse: K=K.Inv(C)
C
[1.012126 0.013226 0.341612
 4.952077 8.947730 1.649923
 2.010169 0.445808 5.359365

Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

]

K
[1.121747 0.001934 -0.072097
 -0.551705 0.112550 0.000517
 -0.374848 -0.010088 0.213588
]

Testing Dynamic Matrix Creation...
Dynamic Matrix Creation
D
41 18467 6334 26500
19169 15724 11478 29358
26962 24464 5705 28145
23281 16827 9961 491

Testing Elastic Matrices...
C
[1.012126 0.013226 0.341612
 4.952077 8.947730 1.649923
 2.010169 0.445808 5.359365
]

E
[2995.000000 11942.000000
 4827.000000 5436.000000
 32391.000000 14604.000000
]

F
[3902.000000 153.000000 292.000000
 12382.000000 17421.000000 18716.000000
]

Row insertion of F into C: C==F
[1.012126 0.013226 0.341612
 4.952077 8.947730 1.649923
 2.010169 0.445808 5.359365
 3902.000000 153.000000 292.000000
 12382.000000 17421.000000 18716.000000
]

Column insertion of E into C: C+=E
[1.012126 0.013226 0.341612 2995.000000 11942.000000
 4.952077 8.947730 1.649923 4827.000000 5436.000000
 2.010169 0.445808 5.359365 32391.000000 14604.000000
]

Testing Gauss Elimination...
A
[3.000000 2.000000 1.000000
 3.000000 5.000000 7.000000

Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

 4.000000 9.000000 2.000000
]

b
[2.000000, 4.000000, 1.000000]

Solution Ax = b; x = b.Inv(A)
[0.712963, -0.314815, 0.490741]
Done.

4.0 Conclusion and future work

In this paper, we presented a set of template C++ matrix and vector data structures developed as
building blocks for programmers and researchers developing scientific and other mathematical systems,
where matrices and vector algebras are applied. The rationale for developing the classes is to help C++
programmers to surmount some difficulties arising from the use of C++ arrays at run time, to present a set
of simple building blocks for the C++ developer, and to help new C++ developers learn the methods of
building reusable template classes in C++. Experimental tests show for efficiency, accuracy and robustness.
The classes had previously been used by the author to implement the Extended Kalman filter [12]
navigation algorithm on a mobility robot platform running Linux. Since these classes are building blocks
for matrix involved software, any matrix operations which are required can be added or developed by using
them. The classes are available at http://www.nampjournals.org. Users can freely experiment with them,
make extensions to them, make observations and send feedback. The classes can be compiled with any
ANSI compliant version of C++; the recent test run was done using Microsoft Visual C++ 2005 Express
Edition. A lot of future research work can continue from this foundation, for example the concept of three-
dimensional matrix algebras is unpopular; having this tool can help people perform simulated experimental
work on that. Some of the capabilities and the flexibility of the classes described here are not available in
the Java programming language. For example, the operator overloading capability used in the classes gives
me the ability to write out the Kalman filter equations (and other matrix equations) in the C++ programs,
almost exactly the way they are written on paper. This is one area I found C++ more beautiful than Java,
and for this reason I hope to make the classes work in Java programming.

References

[1] Rogers, J., (1997), Object-Oriented Neural Networks in C++, Academic Press Inc. London.
[2] Seed, G., (2002), Object Oriented Programming in C++, With Applications to Computer Graphics, Springer

Verlag, London.
[3] Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., (2002), Numerical Recipes in C++,

Cambridge University Press, Cambridge, M.A.
[4] Stroustrup B, (1997), The C++ Programming Language, 3rd ed., Addison-Wesley, Reading, M.A.
[5] Lumsdaine, A., and Seik, J. (1998), “The Matrix Template Library”, Available

http://www.lsc.nd.edu/researh/mtl.
[6] Anderson, E. et al., (2000) LAPACK User’s Guide, 3rd ed. SIAM, Philadelphia.
[7] Dongarra, J., Bunch, J., Moler, C. and Stewart, G. (1979), Linpack Users Guide, SIAM, Philadelphia.
[8] Kreyszig, E., (1999), Advanced Engineering Mathematics, John Wiley and Sons, N.Y.
[9] Kwak, J. H., and Hong, S. (2004), Linear Algebra, Bikhauser Boston.
[10] Roman, S., (2005), Advanced Linear Algebra, Springer Science+Business Media Inc. N.Y. 10013.
[11] Bar-Shalom, Y., Rong Li, X., Kirubarajan, T., (2001), Estimation with Applications to Tracking and

Navigation, John Wiley and Sons, N.Y.

