Journal of the Nigerian Association of Mathematical Physics
Volume 12 (May, 2008), 505 — 516
© J. of NAMP

Matrix and vector data structures-foundation for scientific conputing in C++

Innocent Okoloko
Department of Computer Science, University of Benin
Benin City, Nigeria

Abstract

Matrices and vectors have a wide range of applications in science
and engineering, those applications require that vectors and matrices be
defined and used in systems design. However the matrix and vector data
structures and their operations are not generally defined in some modern
programming languages such as C++. Every C++ programmer who wishes to
use them must implement them from scratch using primitive data types, even
though the task he wants to perform may not be the development of data
structures per se; this is a difficult task even for experienced C++
programmers. This paper presents a set of reusable template C++ matrix and
vector classes capable of the basic allowable operations on vectors and
matrices; which can be used by the C++ programmer who requires the task
of defining and using vectors and matrices on the fly. They can therefore be
used as a basis in scientific computing and computational linear algebra.
They have been tested successfully on the Linux and Windows platforms.

1.0 Introduction
Matrices have a very wide range of applicationssaience and engineering; these include

computer graphics and vision, computational gegmatitd modeling, artificial intelligence, electrical

networks, bioinformatics, industrial physics, andnmany other areas. These applications require that
data be represented either as vectors and/or emtand 2) linear algebra functions are made alaifar
operation on the data. Some popular programmingulages (such as C++) do not include weetor and
matrix as a standard or extended data structures, asdcaisa programmer or author who needs to use
them has to implement matrix and vector types getations from scratch using C++ arrays and panter
as in [1]. However there are several difficultieghwusing C++ arrays directly, some of them haverbe
identified in [2-4], they include the following:

1. Arrays cannot be dynamically created and used . C+

2. Creating C++ arrays for an array intensive progfanusually tedious and error prone. Array
operations will be written at each stage of theliappion where they are required. This is at best a
difficult task, and at worst impossible where thenehsion of the required array can only be
determined at run time.

3. The use of pointers may help to solve some of thesklems, but the concept of C++ pointers is
complex and difficult to apply to these kinds oplpations, sometimes even for experienced C++
programmers.

For these reasons some authors have labelled C+anasxtremely difficult and unreliable
programming language, in spite of the beauty of @vhich is not immediately obvious to non-expert
programmers. This project is one of many attemptanbke C++ a less difficult and more reliable
programming language, and to showcase its beawtystrength, by creating standard, easily reusable
vector and matrix data structures, and making sara#able to C++ programmers so that:

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

e-mail: okolokoinno@hotmail.com, Phone: +234 080586484

1. The C++ programmer can learn how to avoid the gmbbf defining C++ arrays dynamically at
run time.

2. The C++ programmer can easily define vector andirdata structures, whose array elements
can be any of the C++ numeric data types (inttftsalouble).

3. Researchers and students who are building systeatge¢quire matrices in C++, can forgo the

onerous task of having to define arrays and arggrations, and concentrate on developing the

application at hand.

4, Beginning C++ programmers can learn from thesesekaand improve on them.
5. The C++ programmer applying the classes can rededi®g to minimum.

Many authors have previously tutored or tried tplement classes for matrix operations in their
various ways, some of the literature are [2], whaeedesign of C++ matrix classes is tutored; [Bere
vector and matrix classes were used for implemgntimmerical formulas and functions. Also, [5] paas
The Matrix Template Library, a set of tools for the C++ programmer. Popular gleminumerical software
tools such as LAPACK [6], LINPACK [7], and ScaLAPKCalso have hidden matrix capabilities. My
own experience from familiarity with some of thdeels listed above led me to embark on this progsca
necessity. In my attempt to implement navigatiogogthms in C++ on small embedded hardware, |
needed to use vectors and matrices, without hawirggp about building them from scratch. | obsertreat
most of the tools above are set-up of black-bomeshich the matrices are not transparent; theyeady-
made software applications, so cannot be usedathanprogram or on a small hardware. My attempt in
this paper, is therefore to present a simple baotprehensive system of building blocks which carubed
by the C++ programmer to create what suits him/th the freedom to improve on them. This is also
important because, using the Java Native Interfai) capability of Java; these classes can alsoskee
in Java systems development, and so can becomersaiv

2.0 Implementation

This section concerns summary of the details okvemme in creating the matrix, and vector data
structures, their operations, and some of the pomthndard matrix algebras that have been impleden
The linear algebras implemented here are commonharnd been tutored in [8-11] and in many other
mathematics texts. It is impossible to include maofsthe equations and source code listings herg, bu
sections that are required for use in explainirgdésign and functionalities are given.
2.1 Vector Class

This class enables the programmer to define théowvefata structure. [8] defines a vector as a
matrix that has only one row (row vector), or oahe column (column vector), denoted by:

a=[a]
Thus, @ may be regarded as a 1 dimensional matrix denated a
a=[a a,N\ a,],
while its transpose
&
a = a,
M
a

Basic allowable operations on vectors aransposition, addition, subtraction, dot (inner) product,
cross product,andvector norm.

In the design, the vector class forms the basiglédining the matrix class. The class is defined as
a C++ header file with the namector_1D.h,a standard C++ definition is given by lines 1 tm 3he code
listing below.
/IClass Definition

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

1. #ifndef VECTOR_1D_H

2. #define _VECTOR_1D_H

3. #endif

/IMember Functions

1. void Allocate (int n);

2. void Allocate (int *n);

3. Int NumberElements () const
4. T& Data (int index);

5. const T& Data (int index) const;

6. void New (int new_n);

In the above code listings lines 1 and 2 definewarloaded functiodllocate(), which performs
the task of allocating values to a vector integnall

Line 3 defines an integer functicdumberElements() which performs the task of returning the
number of elements in a vector.

Lines 4 and 5 define an overloaded functideta() which is used as the value of elements of the
vector (or Matrix). A template type T is returnedeaning that the value can be any of the C++ numeri
data types.

Line 6 defines a functioNew(),which performs the task of allocating new valuesa fpreviously
defined vector.

/[Overloaded Operators

1. Vector& operator = (const Vector& v);
2. T& operator [] (int index);

3. const T& operator [] (int index) const;
4, Vector operator + (const Vector& v);
5. Vector operator - (const Vector& v);
6. Vector operator * (const Vector& v);

Operator overloading is a powerful feature in Chattallows standard C++ arithmetic operators
to be redefined by a C++ programmer.
Line 1 above redefines the C++ assignment or eguaperator as a vector equality operator.

Thus we can define two vector@ and b of the same dimension and use the expre$siora; all
elements ifD are replaced by thoseén.

Lines 2 and 3 redefine the C++ array subscript syrflbas a template vector subscript symbol.
Thus we can define a vec@®t and be able to access its elements by using xpeessionsX = a[i]
ora[i] = X, wherei is a positive integer.

Line 4 redefines the C++ addition operator as aoreaddition operator. Thus we can define
vectorsa, b andC of the same dimension, and use the expressio@+D .

Line 5 redefines the C++ subtraction operator @aschor subtraction operator. Thus we can define
vectorsa, bandC of the same dimension, and use the expressiarb.

Line 6 redefines the C++ multiplication operatoraagector multiplication operator. Thus we can
define vector@, bandC, and determine the inner product of the vect@e b) =a'b by using the

expressiorc = a*b in C++, the first vector on the right hand sidetlod equation is transposed by default
(though not shown).

/[Friend Functions

1. friend ostream &operator << (ostream &s, consttdr<TYPE> &v);

2. friend istream &operator >> (istream &s, consCOr<TYPE> &v);

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

Lines 1 and 2 above are friend functions which fiede the input (>>) and output (<<) operators as
overloaded vector input and output operators. Tlaeseused to write vector data to a file with thene
format as the vector dimension, and to read da&ztly from a file into a vector.

2.2 Matrix Class
A matrix (2-dimensional) is a rectangular arraynafmbers (or functions) enclosed in brackets [8],
and can be denoted by;

Q11 7 Q4n
A= [“:;] = : :

Qmi " Gpn
Allowable operations on matrices include; transpasj addition, subtraction, multiplication, detenant,
norm, trace, scalar multiplication, diagonalizatiarpper triangularisation, lower triangularisatidr)
decomposition, Cholesky factorization, singularugadecomposition, and inverse. Some of these matrix
operations have been implemented here, togethér exira algebra functions suchas Gauss elimination,
zeros, matrix expansion, and functions that retbendimensions of an unknown matrix. The matrix is
defined as a template header file with the nama&rix_2D.h.
/IClass Definition

1. #ifndef MATRIX_2D_H
2 #define MATRIX_2D_H
3. #endif

Lines 1 to 3 above form a standard C++ definitibthe header filenatrix_2D.h.
/IMember Functions

1 T& Data (int row, int col);

2 const T& Data (int row, int col) const;

3 int Rows () const {return rows;}

4, int Cols () const {return cols;}

5. Vector<T> GaussElimination (Vector<T>& b, Boat&asolved);
6 Matrix Diag (const Matrix& m);

7 Matrix Ut (const Matrix& m);

8 Matrix Lt (const Matrix& m);

9. Matrix Scalarmult (const Matrix& m, T val);

10. double Det (const Matrix& m);

11. double L2Norm (const Matrix& m);

12. double Trace (const Matrix& m);

13. Matrix Inv (const Matrix& m);

14. Matrix Zeros();

15. Matrix LuDecomp (Matrix& m, Vector<int>& ind>Jouble& d);
16. Matrix LuBksub (Matrix& m, Vector<int>& indxy/ector<double>& b);
17. Matrix InsertRows(const Matrix& m, int& d);

18. Matrix InsertCols(const Matrix& m, int& d);

19. Matrix ReplaceRows(const Matrix& m, int& d);

20. Matrix ReplaceCols(const Matrix& m, int& d);

21. Matrix DeleteRows(int& c, int& d);

22. Matrix DeleteCols(int& c, int& d);

In the above listing, lines 1 and 2 define furtbeerloading of the template functid@ata(). As
usual, the returned value is of the template tygkthe array elements must be homogeneous.

Lines 3 and 4 defines two functioRows()andCols() which returns integer values of the rows
and columns of the matrix respectively. So we miataio matrixA of unknown dimension (probably as a
dynamic output of a process), and be able to déterits dimension. This is often required for penfong
array operations and for dynamically creating neatrives at run time.

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

Line 5 defines the functiotGaussElimination(), which implements the Gauss elimination
process and returns a vector. Consider the lingstem of M equations inN unknowns, this can be

written as a vector equatidhX = b. The solutions may be obtained by Gauss eliminatid the
augmented matriA .

Line 6 defines the functioBiag(), which creates the diagonal matrix of an existimatrix, this
applies only to square matrices, a matrix is retdrriThe diagonal matrix of a matr[>aij]is denoted

bydiag(A) = [a;], wherea; =0 V i #]j.

Line 7 defines a function that obtains an upperrim&d , while line 8 defines a function that
returns a lower matrik , of a matrixA ; such that we can write matriA as a sum of the two

matriced. + U = A . The two matriced. and U look like triangular matrices.
Line 9 defines a function that performs scalar iplittation of a matrix, a matrix is returned. The

scalar multiplication of a matri[<aij] by a constant valu is denoted by
A*k=[a,*k] V ij.
Line 10 defines a function that returns theterminant of the matrix, only if the matrix is non
singular. The determinant of ord&ris a scalar associated withrex N matrix and is defined fon =2 by

n n
D =detA = 2 Zajkcjk ,whereCjk = (-l)”k M i [8l.
j=1 k=1
Line 11 defines a function that returns tt®norm (norm) of a matrix, where the2 norm is the
length or magnitude of a vectdt = (a,a,,/\ ,a,)and is given as

Mi=\a®+a,+A +a,” .
Line 12 defines a function that obtains th&ce of a matrix, a value of type double is returned.
The trace of am X N matrix is the sum of its diagonal elements, anghisn as

w(4)= Za,

Line 13 defines a function that returns fheerse of a matrix of any dimension. The inverse

Alof the matrix Ais derived fromA such thath A = | . The method used in implementing the function
here is follows from [3].

Line 14 defines a function that reduces a matrithéozero matrix. A zero matrix is returned.

Line 15 defines a function that performs thg decomposition of a matrix, returns the two
decomposed matricds and U. LU decompositionreduces a matriR to its upper and lower triangular

matrices such that e U = A, wherel is the lower triangular matrix aid is the upper triangular matrix.

Line 16 defines a function that performs thd back substitution operation of a matrix. The
substituted matrix is returned.

Lines 17 and 18 define functions that performs eow column insertion respectively, so we can
use the expressions=A.InsertRows(B, rNum) or A=A.InsertCols(B, cNum); where the matrix B is
inserted into A row wise starting from rosNum or column wise starting from coluneNum. Certain
applications (e.g. neural networks [1]) require ragiens such as row and colurimsertion, replacement,
anddeletion.

Lines 19 and 20 define functions that performs eowd column replacement respectively, so we
can use the expressioAsA.ReplaceRows(B, rNum);or A=A.ReplaceCols(B, cNum) Where the matrix
B is used to replace rows & row wise starting from row rNum; or to replacewnh wise starting from
column cNum.

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

Lines 21 and 22 define functions that performs eowd column deleting respectively, so we can
use the expressioms=A.DeleteRows(nRows, rNum);or A=A.DeleteCols(nCols, cNum)Where nRows
rows are deleted from starting from row rNum, and nCols columns are ®@eldromA starting from
column cNum.

/[Overloaded Operators

1. Matrix& operator = (const Matrix& m);
2. Vector<T>& operator [] (int index);

3. Matrix operator + (const Matrix& m);
4 Matrix operator - (const Matrix& m);
5. Matrix operator * (const Matrix& m);
6. Matrix operator "= (const Matrix& m);
7. Matrix operator = = (const Matrix& m);
8. Matrix operator += (const Matrix& m);

Rather than implement the matrix operators as fonst here we utilise the powerful C++
capability of operator overloading. In the abovdetisting;

Line 1 redefines the equality operator for the madata type. Thus we can define matricAs
andB , and use the expressiBn= B, only if A and B are of same dimension; all elementsAfare

replaced by those I8 .
Line 2 redefines the C++ array subscript operagranatrix subscript operator. Thus we can

define a matriA , and be able to access its elements by usingxeessiorX = Al][j]; or assign a

value to an elemed[i][j] = X.
Line 3 redefines the C++ addition operator as arimaddition operator. Thus we can define

matricesA , BandC, and use the expressiagh= A +B, only if the three matrices are of same
dimension.
Line 4 redefines the C++ subtraction operator tader as a matrix subtraction operator. Thus we

can define matriceA , B andC, and use the expressiah= A - B, only if all matrices are of same
dimension.
Line 5 redefines the C++ multiplication operatorb® used as a matrix multiplication operator.

Thus we can define matrics, B andC, and use the expressiah= A* B, only if
[ci] =[ay] * [by]
is satisfied.

Line 6 defines a new compound operator (consigiirtje caret and equality sign) to be used as a
matrix transposition operator. Thus we can defiraritesA , B and use the expressiBf = A, this
represent8 = A"

Line 7 defines a new compound operator (consigiingvo equality signs) to be used as a matrix

row insertion operator. Some applications requirat hew rows be dynamically added to an existing
matrix thus changing its dimension and expanding thatrix at run time. With this we can define

matricesA , B and use the expressid® == A in C++, only if for[a;] and[b,], j =1. All elements

of A are stacked below the last rowBbf The new matrixB =[B,,] -

Line 8 defines a new compound operator (consigiing plus sign followed by an equality) to be
used as a matrix column insertion operator. Sonpdicgtions require that new columns be dynamically
added to an existing matrix thus changing its disiam and expanding the matrix. Thus we can define

matricesA , B and use the expressidd+ = A , only if for [a;] and[b,], i =K. All elements ofA

are stacked to the right after the last columB ofThe new matrixB =[b, ;)]

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

/I[Friend Functions
1. friend ostream &operator << (ostream &s, conati<TYPE> &m);
2. friend istream &operator >> (ostream &s, constthk<TYPE> &m);

Lines 1 and 2 above defines C++ friend functionsdeerloading the input operator >> and output
operator <<. The functions are the same as deskiib8ection 2.1.
2.3 Matrix 3D Class

In the course of using the matrix and vector classae inadvertently faces a situation where a

process requires building an array of matrices dirae, a one-dimensional array of two—dimensional
matrices thus results in a three-dimensional maenipulating data in 3D is the basis for manyestific
applications including computer graphics, visioepgetric modelling, fluid and rigid body navigatiand
many other areas, it is therefore necessary tadiech 3D matrix class. Here we simply considesiaa
array of two dimensional matrices of the same dsimm this can be denoted as;

ram Ay 00 Ay
rallz Ay 0 Ay | Do
ain apsy A | oo
a a v a . a
211 221 2nl mnl
A= [a[//(] - B
ang
a a a

mll m21

Although mathematical operations are basically rafi for two dimensional matrices, some of
them can be applied directly to three dimensionatrites (e.g. matrix addition); while others can be
applied to the 2D matrix corresponding to the fived digits of the subscript array. The file isidefl as a
template header file by the nammatrix_3D.h.

/IClass Definition

1. ifndef MATRIX_3D_H
2. #define MATRIX_3D_H
3. endif

Lines 1 to 3 definematrix_3D.h in C++.
/IMember Functions
Matrix3D();
Matrix3D(int n, int m, int k);
inline T** operator[](const int i);
inline const T* const * operator[](const intcynst;
inline int dimX() const;
inline int dimY() const;
inline int dimZ() const;
In the code listings above, lines 1 and 2 defineveerloaded Matrix3D function for defining a
three dimensional matrix.
Lines 3 and 4 define the operator [] (with a doubténter) as an overloaded operator for three
dimensional matrix subscripts.
Lines 5 to 7 define three inline functions that ased to return the dimensions of the matrix as
constant integer values.
/[Friend Functions
1. friend ostream &operator << (ostream &s, conati3D<TYPE> &m);
2. friend istream &operator >> (istream &s, constNk3D<TYPE> &m);

Nogokrwpdr

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

The two lines in the code listings above are useperform same functions as described for the
matrix class. The three classes that have beenaiegpl in this section make up the complete
implementation of the template matrix and vectasses.

3.0 Experimental results
To evaluate the efficiency of the template classesgst program was written as a single C++
source code file to enable us automatically testrabthe implemented functionalities.
3.1 Using the classes
To use the classes, the three header files anadied|to a C++ project. Remember to include them
into any source file where they will be used "vecid.h" is already included into "matrix_2D.h" attlis
may be omitted if "matrix_2D.h" is already inclugethe test fileTemplateFilesTest.cpp produces the
output described in 3.2.
3.2 Results
This section contains the experimental resultsdaning the test prograifemplateFilesTest.cpp.
Running Automated Tests...
Matrix & Vector Definitions...
Vector<int> V(3, 0);

Matrix<double> A(3,3,0);
Matrix<double> B(3,3,0);
Matrix<double> C(3,3,0);
Matrix<int> Y(3,2,8);
Matrix<float> Z(3,4,0.5);
Matrix3D<double> H(2, 3, 4);
...Done

Initialisations...
V
[2, 4, 1]

[1.012126 5.012126 2.034544
0.013226 9.013226 4.015556
0.341612 3.341612 6.781612

0.512126 2.452166 1.542126
6.013226 3.516526 2.993226
0.341612 7.441612 8.781612
]

... Done...

—

Testing Matrix Addition...

Addition: C=A+B

[1524252 7.464292 3.576670
6.026452 12.529752 7.008782
0.683224 10.783224 15.563224

]

Testing Matrix Subtraction...

Subtraction: C=A-B

[0.500000 2.559960 0.492418
-6.000000 5.496700 1.022330

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

0.000000 -4.100000 -2.000000
]

Testing Matrix Multiplication...

Multiplication: C=A*B

[31.352407 35.247459 34.429828
55.577100 61.609886 62.262073
22.585497 63.054680 70.082494

]

Testing Matrix Transpose...
Transpose: C"=A

A

[1.012126 5.012126 2.034544
0.013226 9.013226 4.015556
0.341612 3.341612 6.781612

C

[1.012126 0.013226 0.341612
5.012126 9.013226 3.341612
2.034544 4.015556 6.781612

]

Testing Matrix Determinant...
Determinant: double determinant =C.Det (C)=48.53664

Testing Matrix Trace...
Trace: double trace =C.Trace (C)=16.806964

Testing Matrix Norm...
Norm: double norm=C.L2Norm (C)=13.598589

Testing Matrix Diagonal...
Diagonal Matrix G=G.Diag (C);

[1.012126 0.000000 0.000000
0.000000 9.013226 0.000000
0.000000 0.000000 6.781612

]

Testing Matrix Scalar Multiplication...

Scalar multiplication: H=H.Scalarmult(C, 2.5)
cC

[1.012126 0.013226 0.341612
5.012126 9.013226 3.341612
2.034544 4.015556 6.781612

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

]

H

[2.530315
12.530315
5.086360

]

0.033065

22.533065
10.038890

0.854030
8.354030
16.954030

Testing Matrix Triangularisation...

Trianguarisation: of C; E=E.Lt(C); F=F.Ut(C);

C
[1.012126
5.012126
2.034544

]

E=Lt(C)

[0.000000
5.012126
2.034544

F=Ut(C)
[0.000000
0.000000
0.000000

]

0.013226
9.013226
4.015556

0.000000
0.000000
4.015556

0.013226
0.000000
0.000000

0.341612
3.341612
6.781612

0.000000
0.000000
0.000000

0.341612
3.341612
0.000000

Testing Matrix LU Decomposition...
LU Decomposition: of C;

C

[1.012126
5.012126
2.034544

]

0.013226
9.013226
4.015556

C=C.LuDecomp (C, E, d)

[1.012126
4.952077
2.010169

]

0.013226
8.947730
0.445808

Testing Matrix Inverse...
Inverse: K=K.Inv(C)

C
[1.012126
4.952077
2.010169

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 505 - 516
Structures-foundation for scientific computing in C++

0.013226
8.947730
0.445808

0.341612
3.341612
6.781612

0.341612
1.649923
5.359365

0.341612
1.649923
5.359365

Innocent Okoloko

]

K

[1.121747 0.001934 -0.072097
-0.551705 0.112550 0.000517
-0.374848 -0.010088 0.213588

]

Testing Dynamic Matrix Creation...
Dynamic Matrix Creation

D

41 18467 6334 26500

19169 15724 11478 29358

26962 24464 5705 28145

23281 16827 9961 491

Testing Elastic Matrices...

C

[1.012126 0.013226 0.341612
4952077 8.947730 1.649923
2.010169 0.445808 5.359365

]

E

[2995.000000 11942.000000
4827.000000 5436.000000
32391.000000 14604.000000

]

F
[3902.000000 153.000000 292.000000
12382.000000 17421.000000 18716.000000

]

Row insertion of F into C: C==F
[1.012126 0.013226 0.341612
4.952077 8.947730 1.649923
2.010169 0.445808 5.359365
3902.000000 153.000000 292.000000
12382.000000 17421.000000 18716.000000

]

Column insertion of E into C: C+=E

[1.012126 0.013226 0.341612 2993000 11942.000000
4.952077 8.947730 1.649923 48X00 5436.000000
2.010169 0.445808 5.359365 32331000 14604.000000

]

Testing Gauss Elimination...

A

[3.000000 2.000000 1.000000
3.000000 5.000000 7.000000

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

4.000000 9.000000 2.000000
]

b
[2.000000, 4.000000, 1.000000]

Solution A= b;x = b.Inv(A)
[0.712963, -0.314815, 0.490741]
Done.

4.0 Conclusion and future work

In this paper, we presented a set of template Catrixnand vector data structures developed as
building blocks for programmers and researchersldping scientific and other mathematical systems,
where matrices and vector algebras are appliece ra@tionale for developing the classes is to hetp C
programmers to surmount some difficulties arisirgnf the use of C++ arrays at run time, to presesdta
of simple building blocks for the C++ developerdaon help new C++ developers learn the methods of
building reusable template classes in C++. Expantaidests show for efficiency, accuracy and robess.
The classes had previously been used by the atthdémplement the Extended Kalman filter [12]
navigation algorithm on a mobility robot platformnning Linux. Since these classes are buildingKksloc
for matrix involved software, any matrix operatiomsich are required can be added or developed ingus
them. The classes are available at http://www.naarpgpls.org. Users can freely experiment with them,
make extensions to them, make observations and feeddback. The classes can be compiled with any
ANSI compliant version of C++; the recent test mas done using Microsoft Visual C++ 2005 Express
Edition. A lot of future research work can contirfum this foundation, for example the concepttote-
dimensional matrix algebras is unpopular; having thol can help people perform simulated expertaden
work on that. Some of the capabilities and theilfliéiy of the classes described here are not atégl in
the Java programming language. For example, theatipeoverloading capability used in the classesgi
me the ability to write out the Kalman filter egioaits (and other matrix equations) in the C++ prowa
almost exactly the way they are written on papéisTs one area | found C++ more beautiful tharaJav
and for this reason | hope to make the classes imat&va programming.

References

[1] Rogers, J., (1997), Object-Oriented Neural Nets in C++, Academic Press Inc. London.

[2] Seed, G., (2002), Object Oriented Programmmg@#+, With Applications to Computer Graphics, 8ggr
Verlag, London.

[3] Press, W. H., Teukolsky, S. A., Vetterling, W., Flannery, B. P., (2002), Numerical Recipes H+C
Cambridge University Press, Cambridge, M.A.

[4] Stroustrup B, (1997), The C++ Programming Laage, &' ed., Addison-Wesley, Reading, M.A.

[5] Lumsdaine, A., and Seik, J. (1998), “The MatrixTemplate Library”, Available
http://www.lsc.nd.edu/researh/mtl.

[6] Anderson, E. et al., (2000) LAPACK User's Gui@ ed. SIAM, Philadelphia.

[7] Dongarra, J., Bunch, J., Moler, C. and Stew@rt(1979), Linpack Users Guide, SIAM, Philadelphia

[8] Kreyszig, E., (1999), Advanced Engineering Mattatics, John Wiley and Sons, N.Y.

[9] Kwak, J. H., and Hong, S. (2004), Linear AlgebBikhauser Boston.

[10] Roman, S., (2005), Advanced Linear Algebra;ji8er Science+Business Media Inc. N.Y. 10013.
[11] Bar-Shalom, Y., Rong Li, X., Kirubarajan, T(2001), Estimation with Applications to Tracking dan
Navigation, John Wiley and Sons, N.Y.

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 505 - 516
Structures-foundation for scientific computing in C++ Innocent Okoloko J of NAMP

