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Abstract 
 

This paper presents a new and fairly practical public-key 
encryption scheme proven secure against adaptive chosen ciphertext attack. 
The scheme is based on Decision Composite Residuosity (DCR) assumption. 
The analysis of the scheme is in the standard cryptographic model, and does 
not rely on the Random Oracle model.  We show how to construct an efficient 
public-key encryption schemes secure against adaptive chosen ciphertext 
attack in the standard model. Our construction only uses the universal hash 
proof system as a primitive: no other primitives are required, although even 
more efficient encryption schemes can be obtained by using hash functions 
with appropriate collision-resistance properties. 
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1.0 Introduction 

While there are weaker notions of security, such as that defined by Naor and Yung [1, 2], 
experience in the design and analysis of cryptographic protocols has shown that security against adaptive 
chosen ciphertext attack [3, 4] is both necessary and sufficient in many applications. 

Until now, the only practical scheme that has been proposed that can be proven secure against 
adaptive chosen ciphertext attack under a reasonable intractability assumption is that of Cramer and Shoup 
[5, 6]. This scheme is based on the Decision Diffie-Hellman (DDH) assumption, and is not much less 
efficient than traditional ElGamal encryption. 

Other practical schemes have been proposed and heuristically proved secure against adaptive 
chosen ciphertext. More precisely, these schemes are proven secure under reasonable intractability 
assumptions in the Random Oracle model [7]. While the Random Oracle model is a useful heuristic, it does 
not rule out all possible attacks: a scheme proven secure in this model might still be subject to an attack "in 
the real world," even though the stated intractability assumption is true, [8] and even if there are no 
particular weaknesses in the cryptographic hash function [9]. 

 
2.0 A general scheme for provably secure public-key encryption 

In this section, we present a general technique for building secure public-key encryption schemes 
using appropriate hash proof systems for a hard subset membership problem. But first, we recall the 
definition of a public-key encryption scheme and the notion of security against adaptive chosen ciphertext 
attack. 
2.1 Public-key encryption schemes 

A public key encryption scheme provides three algorithms: 
• a probabilistic, polynomial-time key generation algorithm that on input 1ℓ, where ℓ ≥ 0 is a is 
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security parameter, outputs a public-key/private-key pair (PK, SK)..   

A public key PK specifies an finite message space MPK. The message space should be easy to 

recognize; that is, there should be a deterministic, polynomial-time algorithm that takes as input λ1  and 
PK, along with a bit string ς , and determines if ς  is a proper encoding of an element of MPK. 

• a probabilistic, polynomial-time encryption algorithm that on input λ1 , PK, and m, where 0≥λ , 

PK is a public key associated with security parameter λ, and ∈m  MPK, outputs a bit string σ . 

• a sdeterministic, polynomial-time decryption algorithm that on input λ1 , SK, and σ , where 
0≥λ , SK is a private key associated with security parameter λ , and σ  is a bit string, outputs either a 

message ∈m  MPK, where PK is the public-key corresponding to SK, or a special symbol reject. 
Any public-key encryption scheme should satisfy a "correctness" or "soundness" property, which 

loosely speaking means that the decryption operation "undoes" the encryption operation. For our purposes, 

we can formulate this as follows. Let us call a key pair (PK, SK) bad if for some PKMm ∈ , and for some 

encryption σ  of m under PK, the decryption of σ  under SK is not m. Let us call a public-key encryption 

scheme sound if the probability that the key generation algorithm on input λ1  outputs a bad key pair is a 
negligible function in λ . 

For all encryption schemes presented in this paper, it is trivial to verify this soundness property, 
and so we will not explicitly deal with this issue again. We only work with finite message spaces in this 
discourse. 
2.2 Adaptive chosen ciphertext security 
Consider a public-key encryption scheme, and consider the following game, played against an arbitrary 
probabilistic, polynomial-time adversary. 
1. Key-Generation Phase. Let 0≥λ  be the security parameter. We run the key-generation algorithm 

of the public-key encryption scheme on input λ1 , and get a key pair (PK, SK). We equip an encryption 
oracle with the public key PK, and a decryption oracle with the secret key SK. The public-key PK is 
presented to the adversary. 
2. Probing Phase I. In this phase, the attacker gets to interact with the decryption oracle in an 
arbitrary, adaptive fashion. This phase goes on for a polynomial amount of time, specified by the adversary. 

More precisely, in each round of this interaction, the adversary sends a query σ  to the decryption 
oracle. A query is a bit string chosen by the adversary. The decryption oracle in turn runs the decryption 
algorithm on input of the secret key SK and the query σ , and responds to the query by returning the output 
to the adversary. 

Note that a query is not required to represent an encryption (under PK) of a message; a query can 
indeed be any string designed to probe the behaviour of the decryption oracle. The interaction is adaptive in 
the sense that the next query may depend on the history so far, in some way deemed advantageous by the 
adversary. 

3. Target-Selection Phase. The adversary selects two messages 0m  and 1m  from the message space, 

and presents (m0, m1) to the encryption oracle. The encryption oracle selects a random ∈β  {0, 1}, and 

encrypts βm  under PK. The resulting encryption *σ , the target ciphertext, is presented to the adversary. 

4. Probing Phase II. This phase is as Probing Phase I, the only difference being that the decryption 

oracle only responds to queries σ  that are different from the target ciphertext *σ . 

5. Guessing-Phase. The adversary outputs a bit β
)

.  The adversary is said to win the game if 

ββ =
)

. We define the advantage (over random guessing) of the adversary as the absolute value of the 

difference of the probability that he wins and ½.  A public key encryption scheme is said to be secure 
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against adaptive chosen ciphertext attack if for all polynomial time, probabilistic adversaries, the 
advantage in this guessing game is negligible as a function of the security parameter. 
 
 
 
 
3.0 The generic encryption/decryption scheme 

We now describe our generic method for constructing a secure public-key encryption scheme. 

Let M be a subset membership problem specifying a sequence 0)( ≥λλI  of instance distributions. We also 

need a strongly smooth hash proof system P for M, as well as a strongly universal2 extended hash proof 

system P
)

 for M. We discuss P and P
)

 below in greater detail. 
To simplify the notation, we will describe the scheme with respect to a fixed value 0≥λ  of the 

security parameter, and a fixed instance description ][],,,[ λIRWLX ∈Λ . Thus, it is to be understood 

that the key generation algorithm for the scheme generates this instance description, using the instance 
sampling algorithm provided by M, and that this instance description is a part of the public key as well; 
alternatively, in an appropriately defined "multi-user setting," different users could work with the same 
instance description. 

With Λ  fixed as above, let ),,,,,,( αSLXKH ∏=H  be the projective hash family [10, 11] 

that P associates with Λ , and let ),S,,L,X,K,H( α)
)))))

∏∏×∏×=H  be the projective hash family that 

P
)

 associates with Λ . We require that ∏ is an abelian group, for which we use additive notation, and that 
elements of ∏ can be efficiently added and subtracted. 
We now describe the key generation, encryption, and decryption algorithms for the scheme, as they behave 

for a fixed instance description Λ , with corresponding projective hash families H and H
)

, as above. The 
message space is ∏. 
3.1 Key generation 

Choose Kk ∈  and Kk
))

∈  at random, and compute Sks ∈= )(α  and Sks
)))) ∈= )(α . Note 

that all of these operations can be efficiently performed using the algorithms provided by P and P
)

. The 

public key is ),( ss
)

 and the private key is ),( kk
)

. 

3.2 Encryption 
To encrypt a message ∏∈m  under a public key as above, one does the following:  Generate a 

random Lx ∈ , together with a corresponding witness Ww ∈ , using the subset sampling algorithm 

provided by M .  Compute ∏∈= )(xH kπ , using the public evaluation algorithm for P on inputs ,s x , 

and w .  Compute ∏∈+= πme .  Compute ∏∈=
)))

),( exH kπ , using the public evaluation 

algorithm for P
)

 on inputs ,s
)

x ,e  and w . The ciphertext is ),,( π)ex . 

3.3 Decryption 

To decrypt a ciphertext ∏×∏×∈
))

Xex ),,( π  under a secret key as above, one does the 

following:  

Compute ∏∈=′
)))

),( exH kπ , using the private evaluation algorithm for P
)

 on inputs ,k
)

x , 

and e .  Check whether ππ ′= ))
; if not, then output reject and halt.  Compute ∏∈= )(xH kπ , using 

the private evaluation algorithm for P on inputs k and x. Compute m ∏∈−= πe , and output the 

message m.  It is to be implicitly understood that when the decryption algorithm is presented with a 
ciphertext, this ciphertext is actually just a bit string, and that the decryption algorithm must parse this 

string to ensure that it properly encodes some ∏×∏×∈
))

Xex ),,( π ; if not, the decryption algorithm 

outputs reject and halts. 
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We remark that to implement this scheme, all we really need is a ½-universal HPS, since we can 
convert this into appropriate strongly smooth and strongly universal2 HPS's using appropriate standard 
constructions. Indeed, the Leftover Hash construction in Lemma 4 (see appendix) gives us a strongly 
smooth HPS whose hash outputs are bit strings of a given length b  and so we can take the group ∏ in the 
above construction to be the group of b -bit strings with "exclusive or" as the group operation. 

 
 
 
 

Theorem 3.1 
 The above scheme is secure against adaptive chosen ciphertext attack, assuming M  is a hard 
subset membership problem. 
Proof: 

We show that the existence of an efficient adaptive chosen ciphertext attack with non-negligible 
advantage implies the existence of an efficient distinguishing algorithm that contradicts the hardness 
assumption for M . 

We define the following game between a simulator and an adversary that carries out an adaptive 
chosen ciphertext attack. The simulator takes as input 1ℓ, for ℓ ≥ 0, along with Λ [X, L, W, R] Є [Iℓ] and 

Xx ∈* . The simulator provides a "simulated environment" for the adversary as follows. In this 

description, H and H
)

 are fixed as in the description above of the encryption scheme. 
In the Key-Generation Phase, the simulator runs the key-generation as usual, using the given value 

of Λ . In both Probing Phases I and II, the simulator runs the decryption algorithm, as usual, using the 
secret key generated in the Key-Generation Phase. 

In the Target-Selection Phase, the attacker presents messages 0m  and 1m  of his choice to the 

simulator. The simulator flips a random coin β, and computes the target ciphertext (x*,e*, *π) ), where x* is 
the value input to the simulator, in the following way. It first computes π* = Hk(x*). using the private 

evaluation algorithm for P on inputs k and x*.  It then computes ** πβ += me . Finally, it computes 

),(* ** exH k

)) =π , using the private evaluation algorithm for P
)

 on inputs ,k
)

x , and e . 

In the Guessing Phase, the adversary outputs a bit β
)

. The simulator outputs 1 if ββ
)

= , and 0 

otherwise, after which, the simulator halts.  For each value of the security parameter 0≥λ , we consider 

the behaviour of this simulator/adversary pair in two different experiments. In the first experiment, the 

simulator is given ),( *xΛ  , where ],,,[ RWLXΛ  is sampled from λI , and *x  is sampled at random 

from L ; let λT ′  be the event that the simulator outputs a 1 in this experiment. In the second experiment, 

the simulator is given ),( *xΛ , where ],,,[ RWLXΛ  is sampled from λI , and *x  is sampled at random 

from LX \ ; let λT  be the event that the simulator outputs a 1 in this experiment. 

Let ]Pr[]Pr[)( λλλ TTAdvDist ′−= ; that is, )(λAdvDist  is the distinguishing advantage of 

our simulator. Let )(λAdvCCA  be the adversary's advantage in an adaptive chosen ciphertext attack. 

Our goal is to show that )(λAdvCCA  is negligible, provided )(λAdvDist  is negligible. To make the 

proof more concrete and the efficiency of the reduction more transparent, we introduce the following 
notation. We let Q(ℓ)denote an upper bound on the number of decryption oracle queries made by the 
adversary; we assume that this upper bound holds regardless of the environment in which the adversary 

operates. Next, we suppose that P is )(λε -smooth with approximation error )(λδ , and that P
)

 is )(λ)ε -

2universal  with approximation error )(λ
)

δ . Also, we assume that the instance sampling algorithm for M  

has approximation error t(ℓ), and that the subset sampling algorithm for M  has approximation error t′(ℓ). 
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Case x*Є L.  
In this case, the simulation is perfect, except for the approximation errors introduced by the 

instance and subset sampling algorithms for M . Thus, we have 

))()(()(2/1]Pr[ λλλλ ιι ′+−≥−′ AdvCCAT .   (3.1) 

Case x*Є/L . 
To analyze the behaviour of the simulator in this case, it is convenient to make a sequence of 

modifications to the simulator. We refer to the experiment run with the unmodified simulator as experiment 
0, and to the experiments run with subsequent modifications as experiments 2.1, 2.2tc. Each of these 
experiments are best viewed as operating on the same underlying probability space; we define 
 
 
 

the event 
)(iTλ  , for i ≥ 0, as the event that the simulator in experiment i  outputs a 1. Note that unlike the 

original simulator, these modified simulators need not be efficiently implementable. 
Experiment 3.1 

To define experiment 1, we modify the simulator as follows. We replace the projective hash 
family H that P associates with Λ  with its idealization, which is an ε(ℓ)-smooth projective hash family 

that is δ(ℓ)-close to H. We also replace the projective hash family H
)

 that P
)

 associates with Λ  with its 

idealization, which is an )(λ)ε - 2universal  projective hash family that is )(λ
)

δ -close to H
)

. By 

definition, we have )()(]Pr[]Pr[ )0()1( λ
)

λλλ δδ +≤− TT    (3.2) 

To keep the notation simple, we refer to these idealized projective hash families as H and H
)

 as 
well, and continue to use the notation established in the description of the encryption scheme for these two 
projective hash families. 
Experiment 3.2 

In experiment 3.2 we modify the simulator yet again, so that in addition to rejecting a ciphertext 

∏×∏×∈
))

Xex ),,( *π  if the decryption oracle also rejects the ciphertext if Lx ∉ . Let 2F  be the 

event in experiment 3.2 that some ciphertext ∏×∏×∈
))

Xex ),,( *π  with Lx ∉  is rejected by the 

decryption oracle but π)
)

=),( exH k .  We claim that 

)()(]Pr[ 2 λ)λ εQF ≤      (3.3) 

To prove (3.3), let us condition on a fixed value of ],,,[ RWLXΛ  (which determines the projective hash 

families H and H
)

), as well as fixed values of k , ,s
)

 and the adversary's coins. These values completely 

determine the public key, and all the decryption queries of the adversary and the responses of the simulator 
in Probing Phase I, and also determine if the adversary enters the Target-Selection Phase, and if so, the 

corresponding values of 0m  and 1m . Consider any ciphertext ∏×∏×∈
))

Xex ),,( *π , with Lx ∉ , 

that is submitted as a decryption oracle query during Probing Phase I. In this conditional probability space, 

x , e and π)  are fixed, whereas k
)

 is still uniformly distributed over K
)

, subject only to the constraint that 

sk
))) =)(α , where s

)
 is fixed as above. Therefore, from the )(λ)ε - 2universal  property of H

)
, the 

probability that π)
)

=),( exH k  in this conditional probability space is at most )(λ)ε . 

Now assume that in this conditional probability space, the adversary enters the Target-Selection 
Phase. Let us now further condition on fixed values of β and x* (which determine π* and e*), as well as a 

fixed value of *π) .   These values completely determine all the decryption queries of the adversary and the 

responses of the simulator in Probing Phase II. Consider any ciphertext ∏×∏×∈
))

Xex ),,( *π , with 

Lx ∉ , that is submitted as a decryption oracle query during Probing Phase II. 
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1. Suppose that ),(),( ** exex = . Since we must have ),,(),,( *** ππ ))
exex ≠ , it follows that 

*ππ )) ≠ , and hence π)
)

=),( exH k  with certainty. 

Suppose that ),(),( ** exex ≠ . In this conditional probability space, x, e, and π)  are fixed, 

whereas k
)

 is still uniformly distributed over K
)

, subject only to the constraint that sk
))) =)(α , and 

2. *** ),( π)
)

=exH k , where s
)

, *x , *e , and *π)  are fixed as above. Therefore, from the )(λ)ε -

2universal  property of H
)

, the probability that π)
)

=),( exH k  in this conditional probability pace is at 

most )(λ)ε . 
 

 
 
 

The above arguments show that for any individual ciphertext ∏×∏×∈
))

Xex ),,( *π , with 

Lx ∉ , hat is submitted to the decryption oracle, the probability that π)
)

=),( exH k  is at most )(λ)ε , 

from which the bound (3.3) immediately follows. 

Note that experiments 1 and 2 proceed identically until event 2F  occurs. More precisely, 2
)2( FT ¬∧λ  

occurs if and only if 2
)1( FT ¬∧λ  occurs, which implies that 

]Pr[]Pr[]Pr[ 2
)1()2( FTT ≤− λλ      (3.4) 

Experiment 3.3 
In experiment 3, we modify the simulator yet again. This time, in the encryption oracle, instead of 

computing π* as Hk(x*) as, the simulator sets π* = π′, where π′ Є ∏ is chosen at random. Now, let us 

condition on a fixed value of ],,,[ RWLXΛ  (which determines the projective ash families H and H
)

), as 

well as fixed values of k
)

, β, and the adversary's coins. In this conditional probability space, since the 

action of Hk on L is determined by s , and since the simulator rejects all ciphertexts ),,( π)ex  with Lx ∉ , 

it follows that the output of the simulator in experiment 3.2 is completely determined as a function of x*, s, 
and Hk(x*), while the output in experiment 3.3 is determined as the same function of x*, s, and π′. 
Moreover, by independence, the joint distribution of (k, x*, π′) does not change in passing from the original 
probability space to the conditional probability space. It now follows directly from the ε(ℓ)-smooth 
property of H that 

)(]Pr[]Pr[ )2()3( λλλ ε≤− TT      (3.5) 

it is evident from the definition of the simulator in experiment 3.3 that the adversary's output β
)

 in this 

experiment is independent of the hidden bit β; therefore, 

2/1]Pr[ )3( =λT .      (3.6) 

Putting it all together. Combining the relations (3.2) - (3.6), we see that 

)()()()()(2/1]Pr[ λ)λλ
)

λλλ εδεδ QT +++≤−   (3.7) 

Combining the inequalities (3.1) and (3.7), we see that 

).()()()()()()()()( λλλ)λλ
)

λλλλ ιιεδεδ ′++++++≤ QAdvDistAdvCCA  (3.8) 

from which the theorem immediately follows. 
 
4.0 Prototype model implementation 

We present our public-key encryption scheme secure against adaptive chosen ciphertext attack. 
This is derived from the general construction in the previous section. 
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The scheme is based on Paillier's Decision Composite Residuosity (DCR) assumption [12]. This is 
a practical public-key encryption scheme secure against adaptive chosen ciphertext attack under this 
assumption. 
4.1 Dcr-based public-key encryption 
4.1.1 Derivation 

The DCR assumption. Let p, q, p′, q′ be distinct odd primes with p = 2p′ + 1 and q = 2q′ + 1, and 

where p′ and q′ are both λ  bits in length.  Let N = pq and N′ = p′q′.  Consider the group *
2N

Ζ  and the 

subgroup P of 
*

2N
Ζ  consisting of all Nth powers of elements in 

*
2N

Ζ . 

Paillier's Decision Composite Residuosity (DCR) assumption is that given only N, it is hard to 

distinguish random elements of 
*

2N
Ζ  from random elements of P. 

To be completely formal, a sequence of bit lengths λ(ℓ), parameterized by a security parameter ℓ ≥ 
0 is hereby specified, and to generate an instance of the problem for security parameter ℓ, the primes p′ and 
q′ should be distinct, random primes of length λ = λ(ℓ), such that p = 2p′ + 1 and q = 2q′ + 1 are also 
primes. 

 
 
 
We refer to the primes p′  and q′  as Sophie Germain primes and p  and q  as strong primes. 

Although it has never been proven that there are infinitely many Sophie Germain primes, nevertheless, it is 
widely conjectured, and amply supported by empirical evidence, that the probability that a random λ -bit 

number is Sophie Germain prime is )/1( 2λΩ . It is taken that this conjecture holds, so that we can 

assume that problem instances can be efficiently generated. 
Note that Paillier did not make the restriction to strong primes in originally formulating the DCR 
assumption. However, one needs the restriction to strong primes for technical reasons. Nevertheless, it is 
easy to see that the DCR assumption without this restriction implies the DCR assumption with this 
restriction, assuming that strong primes are sufficiently dense, as we are here. 
4.2 Subset membership problem 

We can decompose 
*

2N
Ζ  as an internal direct product TGGG NNN

⋅⋅⋅= ′ 2
*

2Ζ , where each 

group rG  is a cyclic group of order r , and T  is the subgroup of 
*

2N
Ζ  generated by )mod1( 2N− . 

This decomposition is unique, except for the choice of 2G  (there are two possible choices). For any 
*

2N
x Ζ∈ , we can express x  uniquely as )()()()( 2 TxGxGxGxx NN ′= , where for each rG  

rr GGx ∈)(  and TTx ∈)( . Note that the element *2
2)mod1(

N
NN Ζξ ∈+=  has order N , i.e., it 

generates NG , and that )mod1( 2* NaN+=ξ  for Na <≤0 .  Define the map, { }1: *
2 ±→

N
Ζθ ; 

)()mod( 2 NaNa α ; where )( ⋅⋅  is the Jacobi symbol. It is clear that θ  is a group homomorphism. 

Let X  be the kernel of θ . It is easy to see that TGGX NN= , since 2/*
2 =X

N
Ζ  and 

XT ⊂ . In particular, X  is a cyclic group of order NN ′2 . Let L  be the subgroup of Nth  powers of 

X . Then evidently, TGL N ′= , and so is a cyclic group of order N ′2 . These groups X  and L  will 

define our subset membership problem. 
Our instance description Λ  will contain N , along with a random generator g for L . It is easy to generate 

such a g : choose a random *
2N

Ζµ ∈  , and set 2N-µ=g . With overwhelming probability, such a g  

will generate L ; indeed, the output distribution of this sampling algorithm is )2( λ−O -close the uniform 

distribution over all generators. 
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Let us define the set of witnesses as  }2/,,0{ NW Κ= . We say Ww ∈  is a witness for 

Xx ∈  if wx g= . To generate Lx ∈  at random together with a corresponding witness, we simply 

generate Ww∈  at random, and compute wx g= . The output distribution of this algorithm is not the 

uniform distribution over L , but one that is )2( λ−O -close to it. 

This completes the description of our subset membership problem. The reason for using ),( LX  

instead of (
*

2N
Ζ , P ) is that 

*
2N

Ζ  and P  are not cyclic, which is inconvenient for a number of technical 

reasons. 
Next, we argue that the DCR assumption implies that this subset membership problem is hard. 

Suppose we are given x  sampled at random from 
*

2N
Ζ  (respectively, P ). If we choose { }1,0∈b  at 

random, then bx )1(2 −  is uniformly distributed over X  (respectively, L ). This implies that 

distinguishing X  from L  is at least as hard as distinguishing 
*

2N
Ζ  from P , and so under the DCR 

assumption, it is hard to distinguish X  from L . It is easy to see that this implies that it is hard to 
distinguish LX \  from L  as well. 
 

 
 
 
4.3 Hash proof systems 

Now it remains to construct appropriate strongly smooth and strongly 2universal  HPS's for the 

construction in section 2. To do this, we first construct a diverse group system from which we can then 
derive the required HPS's. 

Fix an instance description Λ , where Λ  specifies an integer N , defining groups X  and L  as 

above, along with a generator g  for L . Let ),Hom( XX=Η  and consider the group system G 

),,,( XLXH=G , where G  is a diverse group system. Moreover, for Xx ∈ , we have 

)()( NGxx =T ; thus, for LXx \∈ , )(xT  has order p , q , or N , according to whether )( NGx  

has order p , q , or N . For Ζ∈k , let ),Hom( XXH k ∈  be the kth  power map; that is, kH  sends 

Xx ∈  to Xx k ∈ . Let { }12,,0* −′= NNK Κ , the correspondence kHk α  yields a bijection 

between *K  and ),Hom( XX . 

Consider the projective hash family ),,,,,,( * αLXLXKH=*H , where H  and *K  are as 

in the previous paragraph, and α  maps Ζ∈k  to LH k ∈)(g . Clearly, *H  is a projective hash family 

derived from G , and so it is λ−2 -universal. From this, we can obtain a corresponding HPS P ; however, 

as we cannot readily sample elements from *K , the projective hash family H  that P  associates with the 

instance description Λ  is slightly different than *H ; namely, we use the set  { }2/,,0 2NK Κ=  in 

place of the set *K , but otherwise, H  and *H  are the same. It is readily seen that the uniform distribution 

on *K  is )2( λ−O -close to the uniform distribution on K , and so H  and *H  are also )2( λ−O -close. It 

is also easy to verify that all of the algorithms that P  should provide are available. 

So we now have a )(2 λλ− -universal HPS P . We could easily convert P  into a strongly smooth HPS by 
applying the Leftover Hash Lemma construction in Lemma 4 (Odule, 2008) to the underlying universal 

projective hash family *H . However, there is a much more direct and practical way to proceed, as we now 

describe. 
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For any s , Xx ∈ , if k  is chosen at random from *K , subject to sk =)(α , then )(xH k  is 

uniformly distributed over a coset of )(xT  in X . As discussed above, )()( NGxx =T , and so is a 

subgroup of NG . Moreover, for random LXx \∈ , we have NGx ≠)(T  with probability at most 
12 +−λ . 

Now define the map 

,: 2 NN
ΖΖχ →  ),0()mod(mod( )2 NbaNbNbNa <≤+ α . 

This map does not preserve any algebraic structure; however, the restriction of λ  to any coset of 
GN in X is a one-to-one map from that coset onto ZN. To see this, let x = (a + bN mod N2) Є X, , where 0 ≤ 
a, b < N, and note that we must have gcd(a, N) = 1 for 0 ≤ c , N, we have xξc = (a + (ac + b)NmodN), and 
so χ(xξc) = (ac + bmodN). For a, b fixed as above, as c ranges over {0, … N - 1}, we see that (ac + bmodN) 
ranges over ZN. 

Let us define ),,,,,,( * αLLXKH NΖ= ××
*H , where for k Є Z, kk HH ολ=× . That is, ×

*H  is the 

same as H*, except that in ×
*H  , we pass the output of the hash function for H* through χ. From the 

observations in the previous two paragraphs, it is clear that ×
*H  is a 12 +−λ -smooth projective hash family. 

From ×
*H  we get a corresponding approximation H× (using K in place of K*), and from this we get 

corresponding 1)(2 +− λλ -smooth HPS P×. 

 
 

 

We can then apply standard construction to *H , obtaining a λ−2 - 2universal  projective hash 

family *H
)

 for )( NN LZX Ζ××× . From *H
)

 we get a corresponding approximation H
)

 (using K  

in place of *K ), and from this we get a corresponding )(2 λλ− - 2universal  extended HPS P
)

. 

We could build our encryption scheme directly using P
)

; however, we get more compact 

ciphertexts if we modify *H
)

 by passing its hash outputs through χ , just as we did in building ×
*H , 

obtaining the analogous projective hash family ×*H
)

 for )( NN LZX Ζ××× . From this, it is then clear 

that ×
*H

)
 is also λ−2 - 2universal . From ×

*H
)

 we get a corresponding approximation ×H
)

 (using K  in 

place of *K ), and from this we get a corresponding )(2 λλ− - 2universal  extended HPS ×P
)

. 

4.4 Encryption scheme 

We now present in detail the encryption scheme obtained from the HPS's ×P  and ×P
)

 above. 
We describe the scheme for a fixed value of N  that is the product of two )1( +λ -bit strong primes. The 

message space for this scheme is NΖ . 

Let X, L, θ and λ be as defined above. Also, let W = {0,…,[N/2]} and K = {0,…, [N2/2]}, as above. 

Let { }12,0 −= λΚR , and let n
N R→× ΖΖ 2N

:Γ  be an efficiently computable injective map for an 

appropriate 1≥n . For sufficiently large λ , 7=n  suffices. 
4.4.1 Key Generation 

Choose *
2N

Ζµ ∈  at random and set L∈= 2N-g µ .  Choose Kkkkk n ∈
)

Κ
))

,,,, 1 at random, 

and compute ),,1(,, niLsLsLs i Κ)) ))
=∈=∈=∈= ikkk ggg .  The public key is 

),,::;( 1 nssss
)Κ))

g .  The private key is ),,;;( 1 nkkkk
)

Κ
))

 

4.4.2 Encryption 
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To encrypt a message m Є ZN under a public key as above, one does the following.  Choose 
Ww ∈ at random, and compute x = gw Є L, y = sw Є L, π = λ(y) Є ZN, e = m + π Є ZN.  Compute 

∏
=

∈=∈=
n

s
N

nww yLssy
1

1 )(, Ζλπ )))))
; where (γ1, …, γn) = Г(x, e) Є Rⁿ.  The ciphertext is ),,( π)ex . 

4.4.3 Decryption 
To decrypt a ciphertext NNXex ΖΖπ ××∈),,(

)
 under a secret key as above, one does the 

following:   

Compute N

kk
yXxy

n

k Ζ∈=′∈∑= =
+

)(,1 11 ))) )

λπγ
; where n

n R(x,e)∈=Γ),,( 1 γγ Κ . Check whether 

ππ ′= ))
; if not, then output reject and halt.  

Compute NN
k emyXxy Ζ∈−=Ζ∈=∈= πλπ ,)(,  and output m. 

Note that in the decryption algorithm, we are assuming that Xx ∈ , which implicitly means that 

the decryption algorithm should check that *
2N

x Ζ∈  and that 1)( =xθ , and reject the ciphertext if this 

does not hold. 
This is precisely the scheme that our general construction in section 2 yields. Thus, the scheme is 

secure against adaptive chosen ciphertext attack, provided the DCR assumption holds. 
 
5.0 Conclusion 
The DCR-based scheme is very practical. It uses an n-bit RSA modulus N (with, say, n = 1024). The  

 
 
 
public and private keys, as well as the ciphertexts, require storage for O(n)  bits. Encryption and decryption 
require O(n) multiplications modulo N2. Note that in this scheme, the factorization of N is not a part of the 
private key. This would allow, for example, many parties to work with the same modulus N, which may be 
convenient in some situations. Alternatively, if we include the factorization of N in the private key, some 
optimizations in the decryption algorithm are possible, such as Chinese Remaindering techniques. 
 

APPENDIX 

Let ),,,,,,( ** αKSLXKKH ×∏×=
(

*H , where H* and *α  are defined as follows. For k 

Є K Kk ∈ , Kk
((

∈ , and x Є X, we define ))((*
,

xHHH kkkk
(ρ

(
= , and we define 

)),((),(* kkkk
((

αα = . 

Lemma 4 
Let H, F H* , and a  be as in the above construction. Suppose that H is an ε -universal projective 

hash family. For any integer 0≥b  such that a + 2b ≤ log2(1/ε), , H*  is a 2-(b + 1)-smooth projective hash 

family. 
Proof: 

It is clear that H*  satisfies the basic requirements of a projective hash family.  Consider the 

random variables U(H* ) and V(H* ). That is, consider the probability space where x Є K, Kk
((

∈ , x Є X\L, 

and ∏∈′
((π  are chosen at random, and set U(H* ) ),,,( π(

(
′= ksx  and ),,,()( π(

(
ksxV =*H , where 

)(ks α=  and ))((( xHH kk
(

(( =π . 

Consider any conditional probability space where particular values of x Є X\L and s Є S are fixed, 
and let U(H*|x,s) and V(H*|x,s) be the random variables in this conditional probability space corresponding 
to U(H* ) and V(H* ). In such a conditional probability space, by the definition of ∈ -universal projective 

hashing, the distribution of Hk(x) has min-entropy at least log2(1/ε), and k
(

 is uniformly and independently 
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distributed over .K
(

 The Leftover Hash Lemma then directly implies that U(H*|x,s) and V(H*|x,s) are 2-(b + 

1)-close. Since this bound holds uniformly for all x, s, it follows that U(H* ) and V(H* ) are also 2-(b + 1)-close.

      □ 
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