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Abstract

This paper presents a new and fairly practical public-key
encryption scheme proven secure against adaptive chosen ciphertext attack.
The scheme is based on Decision Composite Residuosity (DCR) assumption.
The analysis of the scheme isin the standard cryptographic model, and does
not rely on the Random Oracle model. We show how to construct an efficient
public-key encryption schemes secure against adaptive chosen ciphertext
attack in the standard model. Our construction only uses the universal hash
proof system as a primitive: no other primitives are required, although even
more efficient encryption schemes can be obtained by using hash functions
with appropriate collision-resistance properties.

Keywords: Public-key Encryption, Decision Composite Resgityo
Adaptive-chosen Attack, Universal Hash Proof, Randaracle.

1.0 Introduction

While there are weaker notions of security, suchtheg defined by Naor and Yung [1, 2],
experience in the design and analysis of cryptdgcaprotocols has shown that security against adapt
chosen ciphertext attack [3, 4] is both necessadysalfficient in many applications.

Until now, the only practical scheme that has bpesposed that can be proven secure against
adaptive chosen ciphertext attack under a reasematpactability assumption is that of Cramer amod
[5, 6]. This scheme is based on the Decision Diffediman (DDH) assumption, and is not much less

efficient than traditional EIGamal encryption

Other practical schemes have been proposed andstieally proved secure against adaptive
chosen ciphertext. More precisely, these schemespaoven secure under reasonable intractability
assumptions in the Random Oracle model [7]. WhikeRandom Oracle model is a useful heuristic, @sdo
not rule out all possible attacks: a scheme preesure in this model might still be subject to #ack "in
the real world," even though the stated intractiybhssumption is true, [8] and even if there ae n
particular weaknesses in the cryptographic hasttifom [9].

2.0 A general scheme for provably secure public-key encryption

In this section, we present a general techniquéidlding secure public-key encryption schemes
using appropriate hash proof systems for a hargetuimembership problem. But first, we recall the
definition of a public-key encryption scheme and ttotion of security against adaptive chosen cipler
attack.

2.1 Public-key encryption schemes
A public key encryption scheme provides three atgors:
. a probabilistic, polynomial-time key generationaithm that on input 1 wheret > 0 is a is
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security parameter, outputs a public-key/privatgair (PK, SK)..
A public key PK specifies an finite message spadgc. The message space should be easy to

recognize; that is, there should be a determinigiidynomial-time algorithm that takes as inpll)‘t and
PK, along with a bit string , and determines i€ is a proper encoding of an elemenivbd.

. a probabilistic, polynomial-time encryption algbrit that on inpuﬂ.A, PK, andm, whereA> 0,
PK is a public key associated with security paramateand M L] Mg, outputs a bit string7 .

. a sdeterminigtic, polynomial-time decryption algorithm that on inpu’tA, SK, and O, where
A= 0, X is a private key associated with security paramateand O is a bit string, outputs either a

messageMm L] Mgy, wherePK is the public-key corresponding 8K, or a special symbol reject.
Any public-key encryption scheme should satisfycarfectness" or "soundness" property, which
loosely speaking means that the decryption operdtinodoes” the encryption operation. For our puegos

we can formulate this as follows. Let us call a peyr PK, SK) bad if for somemU M, , and for some
encryptionJ of m underPK, the decryption of0 underSK is notm. Let us call a public-key encryption

scheme sound if the probability that the key getiemaalgorithm on inpuﬂA outputs a bad key pair is a
negligible function inA.

For all encryption schemes presented in this papes,trivial to verify this soundness property,
and so we will not explicitly deal with this issagain. We only work with finite message spaceshis t
discourse.
2.2 Adaptive chosen ciphertext security
Consider a public-key encryption scheme, and cendide following game, played against an arbitrary
probabilistic, polynomial-time adversary.

1. Key-Generation Phase. Let A = O be the security parameter. We run the key-gemeratigorithm

of the public-key encryption scheme on in;i)it, and get a key pailPK, SK). We equip an encryption
oracle with the public keyK, and a decryption oracle with the secret I8, The public-keyPK is
presented to the adversary.
2. Probing Phase I. In this phase, the attacker gets to interact wligh decryption oracle in an
arbitrary, adaptive fashion. This phase goes o foolynomial amount of time, specified by the adaey.
More precisely, in each round of this interactithg adversary sendsgaery O to the decryption
oracle. A query is a bit string chosen by the aslvar. The decryption oracle in turn runs the detioyp
algorithm on input of the secret k& and the queryT , and responds to the query by returning the output
to the adversary.
Note that a query is not required to representramyption (undelPK) of a message; a query can
indeed be any string designed to probe the behawfdie decryption oracle. The interaction is ategpin
the sense that the next query may depend on thenhso far, in some way deemed advantageous by the
adversary.

3. Target-Selection Phase. The adversary selects two messaggsand M, from the message space,
and presentsng, my) to the encryption oracle. The encryption oragkests a randomg [ {0, 1}, and
encryptsm, underPK. The resulting encryptionT* , thetarget ciphertext, is presented to the adversary.

4. Probing Phase Il. This phase is as Probing Phase |, the only @iffee being that the decryption
oracle only responds to queriék that are different from the target cipherte{ﬁ .

5. Guessing-Phase. The adversary outputs a bﬁ. The adversary is said to win the game if

,Z? = [3. We define the advantage (over random guessingheofidversary as the absolute value of the
difference of the probability that he wins and *A. public key encryption scheme is said to deeure
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against adaptive chosen ciphertext attack if for all polynomial time, probabilistic adverses, the
advantage in this guessing game is negligiblefascion of the security parameter.

3.0 The generic encryption/decryption scheme
We now describe our generic method for construaiiisgcure public-key encryption scheme.

Let M be a subset membership problem specifying a sequdn ), ., of instance distributions. We also
need a strongly smooth hash proof systefior M, as well as a stronglyniversal, extended hash proof
system#J for M. We discus® and I5 below in greater detail.

To simplify the notation, we will describe the sofeewith respect to a fixed value= O of the
security parameter, and a fixed instance descripig X, L,W,R]O[l,]. Thus, it is to be understood

that the key generation algorithm for the schemeegses this instance description, using the iestan
sampling algorithm provided byl, and that this instance description is a parthef public key as well;
alternatively, in an appropriately defined "muler setting,” different users could work with treme
instance description.

Wwith A fixed as above, leH = (H,K, X,L,[],S,a) be the projective hash family [10, 11]
thatP associates witi\ , and Ietl£| = (I}-I I}(,X x[1,L %], ﬁ é, c}) be the projective hash family that

I5 associates with\ . We require thaf] is an abelian group, for which we use additiveation, and that
elements of ] can be efficiently added and subtracted.
We now describe the key generation, encryption,daatyption algorithms for the scheme, as they beha

)
for a fixed instance descriptioA\ , with corresponding projective hash familidsand H , as above. The
message spacelig
3.1 Key generation

Choosek O K and lé U }é at random, and compute=a (k) 0 S and% = C}(I)() N é Note

that all of these operations can be efficientlyf@ened using the algorithms provided Byand lf’ The
public key is(s,$) and the private key i€k, lé) .
3.2 Encryption

To encrypt a message L[] under a public key as above, one does the follpwiGenerate a

random X[J L, together with a corresponding witnes¢[JW , using the subset sampling algorithm
provided byM. Compute77=H, (X) O[], using the public evaluation algorithm f@ron inputss, X,

)
and W. Compute e=m+72[[]. Compute )T= H,(x,e)J ﬁ , using the public evaluation
algorithm for#J on inputs$, X,€ and W . The ciphertext i{X, e, 7'2) .

3.3 Decryption

To decrypt a ciphertex(X,e, Z)T) X x |_|><|L| under a secret key as above, one does the
following:

)
Computel)f = Hk(X, e) [ [L| , using the private evaluation algorithm fé? on inputslj(, X,
and €. Check whether? = /" ; if not, then output reject and halt. Compue= H (O[], using

the private evaluation algorithm fd? on inputsk and x. Computem =e-71L[], and output the
messagem. It is to be implicitly understood that when thecryption algorithm is presented with a
ciphertext, this ciphertext is actually just a siting, and that the decryption algorithm must patss
string to ensure that it properly encodes sofiee, Z)T) U X xT] ><|L| ; if not, the decryption algorithm
outputs reject and halts.
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We remark that to implement this scheme, all wdlyregeed is a Y.-universal HPS, since we can
convert this into appropriate strongly smooth atdrgly universal, HPS's using appropriate standard
constructions. Indeed, the Leftover Hash constacth Lemma 4 (see appendix) gives us a strongly

smooth HPS whose hash outputs are bit stringsgofen lengthb and so we can take the grofjpin the
above construction to be the groupldfbit strings with "exclusive or" as the group opina

Theorem 3.1

The above scheme is secure against adaptive chosen ciphertext attack, assuming M is a hard
subset membership problem.
Proof:

We show that the existence of an efficient adaptivesen ciphertext attack with non-negligible
advantage implies the existence of an efficientirdisishing algorithm that contradicts the hardness

assumption forM .
We define the following game betweersimulator and an adversary that carries out an adaptive

chosen ciphertext attack. The simulator takes pstiff, for ¢ > 0, along with A [X, L, W, R] € [I,] and
X OX . The simulator provides a "simulated environmefdf' the adversary as follows. In this

descriptionH and H are fixed as in the description above of the guiooyp scheme.
In the Key-Generation Phase, the simulator runkélyegeneration as usual, using the given value

of A. In both Probing Phases | and Il, the simulatarsrthe decryption algorithm, as usual, using the
secret key generated in the Key-Generation Phase.

In the Target-Selection Phase, the attacker presesssagesT), and M, of his choice to the
simulator. The simulator flips a random c@ginand computes the target ciphertegt €*, 7’2'*), wherex* is
the value input to the simulator, in the followim@y. It first computest* = H(x*). using the private
evaluation algorithm foP on inputsk andx*. It then computese* =mg + T Finally, it computes

Y x . . . . .
= (X' ,€), using the private evaluation algorithm #Br on mputslé, X, ande.

In the Guessing Phase, the adversary outputs é’bﬂ'he simulator outputs 1 if = ,Z? and 0
otherwise, after which, the simulator halts. Faclevalue of the security paramee® O, we consider
the behaviour of this simulator/adversary pairwo tdifferent experiments. In the first experimetite
simulator is given(/, X*) , where A[ X, L,W, R] is sampled froml, , and X is sampled at random

from L ; let TA' be the event that the simulator outputs a 1 is éxperiment. In the second experiment,
the simulator is giver{/1,X ), where A[ X, L,W, R] is sampled froml,, and X" is sampled at random
from X \ L let T, be the event that the simulator outputs a 1 m¢Rperiment.

Let AdvDist(N) = |P|’[TA] - PI’[TA']|; that is, AdvDIst(A) is the distinguishing advantage of
our simulator. LetAdvCCA(A) be the adversary's advantage in an adaptive clojsieertext attack.

Our goal is to show thaAdvCCA(A) is negligible, providedAdvDist(A) is negligible. To make the

proof more concrete and the efficiency of the réidncmore transparent, we introduce the following
notation. We letQ(t)denote an upper bound on the number of decrypiacle queries made by the
adversary; we assume that this upper bound holglrdkess of the environment in which the adversary

operates. Next, we suppose tRas £(A) -smooth with approximation errad(A) , and thatP is V-

universal, with approximation erroé’()\) . Also, we assume that the instance sampling dhgarfor M
has approximation errdft), and that the subset sampling algorithmNbhas approximation errai(¢).
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Casex*€ L.
In this case, the simulation is perfect, except tfee approximation errors introduced by the
instance and subset sampling algorithmsaMorThus, we have

|Pr[T,]1-1/2 = AdvCCAN) = (t(\) +/'(N). (3.1)
Casex*€/L.
To analyze the behaviour of the simulator in thase; it is convenient to make a sequence of
modifications to the simulator. We refer to the esiment run with the unmodified simulator as expent

0, and to the experiments run with subsequent noadibns as experiments 2.1, 2.2tc. Each of these
experiments are best viewed as operating on the sawherlying probability space; we define

the eventTA(i) , fori >0, as the event that the simulator in experimiemiutputs a 1. Note that unlike the

original simulator, these modified simulators neetibe efficiently implementable.
Experiment 3.1
To define experiment 1, we modify the simulatorfabows. We replace the projective hash

family H that P associates with\ with its idealization, which is[ as(L)-smooth projective hash family
that is§(£)-close toH. We also replace the projective hash fantty that I5 associates with\ with its

. )
idealization, which is ané()\)-unlversalz projective hash family that iaé'()\) -close to H. By

definition, we have  [Pr[T,®] = Pr[T, ]| < () + 5(3) (3.2)

To keep the notation simple, we refer to theselimes projective hash families &t and Iil as
well, and continue to use the notation establishdtie description of the encryption scheme foséhevo
projective hash families.

Experiment 3.2
In experiment 3.2 we modify the simulator yet agaim that in addition to rejecting a ciphertext

(x,e, 7)7) O X %] Xﬁ if the decryption oracle also rejects the cipharié XLIL. Let F, be the
event in experiment 3.2 that some ciphertéx;e, )T) OXx[] Xﬁ with X[J L is rejected by the
decryption oracle but] (X e) = 7. We claim that

PIIF,1< QM) (3.3)
To prove (3.3), let us condition on a fixed valdeA X,L,W, R] (which determines the projective hash

- /) . .
familiesH and H), as well as fixed values df, é, and the adversary's coins. These values completely

determine the public key, and all the decryptiorrégs of the adversary and the responses of thdation
in Probing Phase I, and also determine if the adwgrenters the Target-Selection Phase, and ithso,

corresponding values oM, and m,. Consider any ciphertex{X, €, Z)T) U X x[] Xﬁ , with XU L,
that is submitted as a decryption oracle querynguRrobing Phase . In this conditional probabitipace,
X,€and /i are fixed, whereaé is still uniformly distributed oveK , Subject only to the constraint that
&(lé) = % where § is fixed as above. Therefore, from tré()\)-universalz property of Iil the
probability thatHl (X €)= 7 in this conditional probability space is at md’s(t)\) :

Now assume that in this conditional probability apathe adversary enters the Target-Selection
Phase. Let us now further condition on fixed valakg andx* (which determinet* and €*), as well as a

fixed value of 7)7 . These values completely determine all the gy queries of the adversary and the
responses of the simulator in Probing Phase Il.s@en any ciphertex(X, e, })T) X x[] ><|L| , with
XL, that is submitted as a decryption oracle querindProbing Phase .
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1. Suppose thaf(X,€) = (X ,€"). Since we must havéX, e,),T) % (X ,e*,z’r*), it follows that
i , and henced (X e) = 71 with certainty.

Suppose that(X,€) # (X',€). In this conditional probability space, e, and 7/ are fixed,
Whereaslé is still uniformly distributed ovek , Subject only to the constraint th&t(l)() = é and
2. I-)|k(x*,e*) = ,where$, X, €, and ' are fixed as above. Therefore, from tAéM) -

. )
umversalz property of H, the probability thatl-)| (X €)= )T in this conditional probability pace is at
most & (M) .

The above arguments show that for any individupheitext (X, €, I)T) X x[] ><|L|, with

),
XL, hat is submitted to the decryption oracle, thebpbility that H, (X,€) = K is at mosté(N),
from which the bound (3.3) immediately follows.
Note that experiments 1 and 2 proceed identicaijl event F, occurs. More preciserTA(z) U-F,

oceurs if and only ifT,”” (1= F, occurs, which implies that
PHT,®] = Pr[T,]| < Pr{F,] (3.4)

Experiment 3.3
In experiment 3, we modify the simulator yet agdihis time, in the encryption oracle, instead of
computingn* as Hy(x*) as, the simulator sets* = «n/, wheren’ € [] is chosen at random. Now, let us

)
condition on a fixed value ofl[ X, L,W, R] (which determines the projective ash famikesand H), as

well as fixed values ofé , f, and the adversary's coins. In this conditionabpbility space, since the
action ofH, onL is determined by§, and since the simulator rejects all cipherteXse, /2) with X L,

it follows that the output of the simulator in exjpeent 3.2 is completely determined as a functibr*os,
and H(x*), while the output in experiment 3.3 is deterndnas the same function of, s, and='
Moreover, by independence, the joint distributidriilko x*, n') does not change in passing from the original
probability space to the conditional probabilityasp. It now follows directly from the(¢)-smooth
property ofH that

PAT O] - PrT®] < 63 (35)

it is evident from the definition of the simulator experiment 3.3 that the adversary's outyéJtin this
experiment is independent of the hiddergbitherefore,

PrT®1=1/2. (3.6)
Putting it all together. Combining the relation2)3- (3.6), we see that
PIIT,1 - 1/2] < 60N + £ + 50) + QEM) 3.7)

Combining the inequalities (3.1) and (3.7), we thed
AQVCCA(\) < AdvDIst(A) + 3N + £(A) + SO + QAN +/(N) +/'(N).  (3.8)

from which the theorem immediately follows.

4.0 Prototype model implementation
We present our public-key encryption scheme seageainst adaptive chosen ciphertext attack.
This is derived from the general construction ia pinevious section.

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 495 - 504
Construction for a provably-secure public-key TolaJohn Odule J of NAMP



The scheme is based on Paillier's Decision Comp&ssiduosity (DCR) assumption [12]. This is
a practical public-key encryption scheme secureinagaadaptive chosen ciphertext attack under this
assumption.
4.1 Dcr-based public-key encryption
4.1.1  Derivation

The DCR assumption. Lt g, p’, g’ be distinct odd primes with= 2p’' + 1 andq =29’ + 1, and

wherep’ andq' are bothA bits in length. LeN = pg andN' = p'q’. Consider the grou;f;z and the

subgroupP of Z;z consisting of aINth powers of elements ila?;z .
Paillier's Decision Composite Residuosity (DCR)uaggstion is that given only, it is hard to
distinguish random elements e?;z from random elements &%

To be completely formal, a sequence of bit leng{li}, parameterized by a security paraméter
0 is hereby specified, and to generate an instahtiee problem for security parameterthe primes’ and
g’ should be distinct, random primes of lengtl A(€), such thap = 2o’ + 1 andq = 29’ + 1 are also
primes.

We refer to the primegp’ and q' as Sophie Germain primes arf@l and ( as strong primes.
Although it has never been proven that there dieitiely many Sophie Germain primes, nevertheléss,
widely conjectured, and amply supported by emplirisédence, that the probability that a randehabit

number is Sophie Germain prime & (L/ A?) . It is taken that this conjecture holds, so that san

assume that problem instances can be efficientigigeed.

Note that Paillier did not make the restriction gtvong primes in originally formulating thBCR
assumption. However, one needs the restrictiorirtmg primes for technical reasons. Nevertheldss, i
easy to see that thBCR assumption without this restriction implies tBECR assumption with this
restriction, assuming that strong primes are defiity dense, as we are here.

4.2 Subset membership problem

We can decomposi;:12 as an internal direct producf*Nz =G, G, [G, [T, where each
group G, is a cyclic group of order , and T is the subgroup on;;Z generated by(—1 mod N?) .
This decomposition is unique, except for the chaiteG, (there are two possible choices). For any
XDZ;Z, we can expressX uniquely as X = X(G, )X(G\ )X(G,)X(T), where for eachG,
X(G,)OG, and X(T) OT . Note that the elemerf = (L+ N modN?*) [J Z;z has orderN , i.e., it
generates3, , and thaté” = (L+aN modN?) for 0< a< N . Define the map@: Z;z —»{i]};
(amodN?) a (a| N); where ([I][ﬂ is the Jacobi symbol. It is clear thdtis a group homomorphism.

Let X be the kernel off. It is easy to see thaK = GG, T, since‘Z;2 / X‘ =2 and

T O X.. In particular, X is a cyclic group of orde2NN’". Let L be the subgroup oNth powers of
X . Then evidently,L =G, T, and so is a cyclic group of ord@N'. These groupsX and L will
define oursubset membership problem.

Our instance descriptioA will contain N, along with a random generator g fbr. It is easy to generate

such ag : choose a randonu/ [ Z*N2 , and setg =- /JZN. With overwhelming probability, such g

will generateL ; indeed, the output distribution of this samplaigorithm is O(2_") -close the uniform
distribution over all generators.
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Let us define the set of witnesses\A6={0,K ,\_N/Z}J. We sayWlIW is a witness for
xOX if Xx=g". To generatex L at random together with a corresponding witness,siunply
generateWw [ JW at random, and computé =g". The output distribution of this algorithm is ribie
uniform distribution overL , but one that i€D(2™") -close to it.

This completes the description of our subset mestigeproblem. The reason for usifeS, L)

instead of Z;z ,P) is that Z;z and P are not cyclic, which is inconvenient for a numbétechnical

reasons.
Next, we argue that the DCR assumption implies thist subset membership problem is hard.

Suppose we are giveX sampled at random from?,*\12 (respectively, P). If we chooseb D{O,]} at
random, then Xz(—l)ID is uniformly distributed over X (respectively, L). This implies that

distinguishing X from L is at least as hard as distinguishhzi;;:12 from P, and so under the DCR

assumption, it is hard to distinguisiX from L. It is easy to see that this implies that it ischéo
distinguish X \ L from L as well.

4.3 Hash proof systems
Now it remains to construct appropriate stronglysth and stronglwniverSf;'d2 HPS's for the

construction in section 2. To do this, we first soact a diverse group system from which we cam the
derive the required HPS's.

Fix an instance descriptioA , where A specifies an integeN , defining groupsX and L as
above, along with a generatgy for L. Let % =Hom(X, X) and consider the group system G

G=(#,X,L,X), where G is a diverse group system. Moreover, fot[]1 X, we have
7(X) = <X(GN )> ; thus, for XL X \ L, 7(X) has orderp, g, or N, according to whethek(G,)
has orderp, q, or N.ForkZ , let H, DHom(X, X) be thekth power map; that isH, sends
xOX to x*OX. Let K, ={O,K 2N N’ —1}, the correspondenck 0 H, vyields a bijection
betweenK, and Hom(X, X).

Consider the projective hash famil, = (H,K,, X,L, X,L,a), where H and K, are as
in the previous paragraph, agd mapsk JZ to H, (g) O L. Clearly, H. is a projective hash family
derived fromG, and so it is2 ™ -universal. From this, we can obtain a correspantiRS P ; however,
as we cannot readily sample elements frm, the projective hash familjd that P associates with the
instance description\ is slightly different thanH, ; namely, we use the sdf = {O,K ,LNZ /2} in
place of the seK., but otherwiseH and H, are the same. It is readily seen that the unifdistribution

on K, is O(2™") -close to the uniform distribution oK , and soH and H, are alsoO(2™*) -close. It
is also easy to verify that all of the algorithrhattP should provide are available.

So we now have 2 "™ -universal HPSP . We could easily converP into a strongly smooth HPS by
applying the Leftover Hash Lemma construction inmbea 4 (Odule, 2008) to the underlying universal

projective hash familyH , . However, there is a much more direct and praotiey to proceed, as we now
describe.
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For anys, XU X, if K is chosen at random frofK. , subject toa (k) = s, then H, (X) is
uniformly distributed over a coset af (X) in X . As discussed above, (X) = <X(GN )> and so is a

subgroup of G,. Moreover, for randomx[J X \ L, we haveT (X) # G, with probability at most

2—/\+1
Now define the map

X:Z - Zy, (@+tbNmodN? a (bmodN) (O<ab<N).

This map does not preserve any algebraic struchansever, the restriction ol to any coset of
Gy in X is a one-to-one map from that coset afjoTo see this, let = (a + bN modN? € X, , where (<
a, b <N, and note that we must have ggd{) = 1 for 0<c, N, we havet® = (@ + (ac + b)Nmod\), and
soy(xE%) = (ac + bmodN). Fora, b fixed as above, asranges over {0, ..N - 1}, we see thatac + bmodN)
ranges overy.

Let us defineH: = (H",K.,X,L,Z,,L,a), where fork € Z, H; =A0H, . Thatis,H is the
same adH., except that inH . , we pass the output of the hash function Herthrough’)(. From the
observations in the previous two paragraphs, dtdar thatH  is a 27" _smooth projective hash family.
From H) we get a corresponding approximatibii (using K in place ofK.), and from this we get

correspondingZ_"(A)Jrl -smooth HPF*.

We can then apply standard constructionHq , obtaining a2~ -univer Sal2 projective hash
family Iil . for (XxZxLxZ).From Il| . We get a corresponding approximatib)'h (using K
in place ofK, ), and from this we get a correspondiﬁ@{‘(” - universa12 extended HPSI5.

We could build our encryption scheme directly usil%b; however, we get more compact
ciphertexts if we modifylih by passing its hash outputs through, just as we did in buildingH>,

) x L
obtaining the analogous projective hash fanfily for (X xZ xLx Z). From this, it is then clear
Jix . - . Jy % . )« . .
that H is also 27 -unlversalz. From H. we get a corresponding approxmaﬂgh (using K in

place ofK.), and from this we get a correspondiaffm -universal2 extended HPS&6x .
4.4 Encryption scheme

We now present in detail the encryption schemeiodtiafrom the HPS'$™ and |5x above.
We describe the scheme for a fixed valuelbfthat is the product of twgA + 1) -bit strong primes. The
message space for this schemedig .

Let X, L, 8 andX be as defined above. Also, &= {0,...,[N/2]} andK = {0,..., [N%2]}, as above.
Let R= {OK 27 —1}, andletl': Z , xZ - R" be an efficiently computable injective map for an
appropriaten = 1. For sufficiently larged , N =7 suffices.
4.4.1 Key Generation

Choose /[ Z;z at random and seJ = - ,uZN OL. Choosek, Ié, lél,K ,Ién UK at random,

and compute s=g* 0L, %ZQ%DL, AZQA/' OL (=1K,n). The public key is

(g9; s:é:él,K ,én). The private key i€K; Ié; lél,K ,Ién)
4.4.2  Encryption
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To encrypt a message € Zy under a public key as above, one does the follpwiChoose
wW at random, and compute=g" € L,y =s"€ L, n =AMy) € Zy, e=m + n € Zy. Compute

2/= %W - %lnw L, )T= /](?/) 02, ; where {4, ...,7) =I'(x, € € Re. The ciphertext i{x, &, /1) .
u N

4.4.3 Decryption
To decrypt a ciphertext(x,e,}T)DXXZN XZ, under a secret key as above, one does the
following:

Compute 2/=XK+ZLV1&1 DX,)?‘ :/\(gl)DZN; where ()4,K,),) =I(x,e[IR". Check whether
A=A ; if not, then output reject and halt.

Computey =X 0OX, r=A(y) 0Z,, m=e-71Z,, and outputn.

Note that in the decryption algorithm, we are asagnthat X L1 X, which implicitly means that
the decryption algorithm should check that] Z;z and thatd(X) =1, and reject the ciphertext if this

does not hold.
This is precisely the scheme that our general cactidn in section 2 yields. Thus, the scheme is
secure against adaptive chosen ciphertext attackided the DCR assumption holds.

5.0 Conclusion
The DCR-based scheme is very practical. It usest#hRSA modulusN (with, say,n = 1024). The

public and private keys, as well as the ciphertexsguire storage fdd(n) bits. Encryption and decryption
requireO(n) multiplications moduld\?. Note that in this scheme, the factorizatiorNds not a part of the
private key. This would allow, for example, manytps to work with the same modullds which may be

convenient in some situations. Alternatively, if welude the factorization dfl in the private key, some
optimizations in the decryption algorithm are pbksisuch as Chinese Remaindering techniques.

APPENDI X
Let H =(H",K xK, X, L, h,SX K,a"), whereH* and @ are defined as follows. Fér

€ K kOK, IkDIk and x € X, we define H;’|g=|-\|lg(Hk(X)), and we define
a’(k,K) = (@(k).K)

Lemma 4

LetH, F H*, and & be as in the above construction. SupposeHhatan € -universal projective
hash family. For any integdd = 0 such thai + 2b < logy(1/e), , H* is a 2° " Y-smooth projective hash
family.
Proof:

It is clear thatH* satisfies the basic requirements of a projecti@shhfamily. Consider the

\
random variables)(H*) andV(H*). That is, consider the probability space whe€eeK, K [ k , X € X\L,
\ x \
and 7(7’ Dh are chosen at random, and gH*) = (X, S,k,7(7’) andV(H ) =(x, S,k,l(T), where
s=a(k) and r=(H((H,(x).

Consider any conditional probability space whemigalar values ok € X\L ands € Sare fixed,
and letU(H*|x,s) andV(H*|x,s) be the random variables in this conditional ptulitt space corresponding
to U(H*) andV(H*). In such a conditional probability space, by tedinition of O-universal projective

hashing, the distribution ¢4,(x) has min-entropy at least lg@/s), and K is uniformly and independently

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 495 - 504
Construction for a provably-secure public-key TolaJohn Odule J of NAMP



distributed over k The Leftover Hash Lemma then directly implies tHé#t*|x,s) andV(H*|x,s) are 2°*
Y-close. Since this bound holds uniformly forxls, it follows thatU(H* ) andV(H*) are also 2 * Y-close.
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(3]
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(5]
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