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Abstract 
 

The notion of a universal hash proof system is hereby introduced. 
Essentially, this is a special kind of non-interactive zero-knowledge proof 
system for a language. We showed how to construct very efficient universal 
hash proof systems for a general class of group-theoretic language 
membership problems.  We showed how to construct efficient universal hash 
proof systems for languages related to the Decision Composite Residuosity 
(DCR) and Quadratic Residuosity (QR) assumptions. From these one can get 
corresponding public-key encryption schemes that are secure under these 
assumptions. 
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1.0 Introduction 

The philosophy behind a universal one-way hash function (UOWHF) is that if, first the input is 
selected and subsequently the hash function, it does not help an opponent to find collisions for the hash 
function [1]. Collisions are only useful if first the function is fixed and subsequently one can search for two 
colliding inputs. 

This definition was generalized in [2], where a UOWHF is defined as a three party game with an 
initial string supplierS , a hash function instance generator G  and a collision string finderF . Here S  is 

an oracle with unlimited computing power, and G  and F  are probabilistic polynomial time algorithms. 
The game consists of three moves: 

1. S  outputs an initial string ∑∈ nx  and sends it to both G  andF . 

2. G  chooses an 
n

H
R

h∈  independently of x  and sends it to F . 

3. F  outputs either “?” or an ∑∈′ nx  such that )()( xhxh =′ . 

F  wins the game if its output is not equal to “?”. The input x  is selected by S  according to a certain 
distribution. In the most general case this is the collection of all ensembles with length n . If a different 
ensemble is introduced, a different definition is obtained. In the original definition of [3] the initial string 
supplier and the collision string finder were the same algorithm, which imposes the unnecessary restriction 
that x  should be selected according to all polynomially samplable ensembles (the collision string finder 
has to be a polynomial time algorithm). The construction by M. Naor and M. Yung [4] also satisfies this 
more general definition. On the other hand their definition is less complicated: in fact it does not really 
make sense for S  to send x  toG , as G  chooses subsequently h  independent fromx . In [2, 5] the 
hierarchy between different types of UOWHF has been studied. 
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2.0 Preliminaries 

We recall some basic terminology and notation. 
A function )(λf  mapping non-negative integers to non-negative reals is called negligible )( λin  if for all 

1≥c , there exists 00 >λ  such that cf λλ /1)( ≤  for all 0λλ ≥ .  Let X  and Y  be random variables 

taking values in a finite set S . The statistical distance between X  and Y  is defined to be 

[ ] [ ]∑
∈

=−==
Ss

sYsXYXDist PrPr.
2

1
),( .  Equivalently, [ ] [ ]SYSXYXDist

SS
′∈−′∈=

⊂′
PrPrmax),( .  

We shall say that X  and Y  are ∈-close if ≤∈),( YXDist . 

Let X 0)( ≥= λλX  and Y 0)( ≥= λλY  be sequences of random variables, where for each 0≥λ , 

λX and λY  take values in a finite set λS . Then we say that X and Y are statistically indistinguishable if 

),( λλ YXDist  is a negligible function in λ. For computational purposes, we will generally work in a 

setting where the sets λS  can be encoded as bit strings whose length is polynomial in λ. For any 

probabilistic algorithm A  that outputs 0  or 1, we define the distinguishing advantage for A (with respect 

to X  and Y ) as the function [ ] [ ]1),1(Pr1),1(Pr)(, =−== λ
λ

λ
λλ YAXAYXDist

A
 

Here, the notation λ1  denotes the unary encoding of λ as a sequence of λ copies of 1, and the 

probability is with respect to the random coin tosses of the algorithm A  and the distributions of λX  and 

λY . We say that X and Y are computationally indistinguishable if for all probabilistic, polynomial-time A , 

the function )(, λ
A
YXDist  is negligible in λ. 

For a positive integer Z , NZ  denotes the ring of integers modulo N , and *
NZ  denotes the 

corresponding multiplicative group of units. For NZNaZa ∈∈ )mod(,  denotes the residue class of 

a  modulo N .  For an element g  of a group G , 〉〈g  denotes the subgroup of G  generated by g . 

Likewise, for a subset U  of G , 〉〈U  denotes the subgroup of G  generated by U . 

2.1 Universal hashing 
Before defining universal projective hash functions, we recall some definitions relating to the 

classical notion of “universal hashing” [6,7]. 

Let X  and ∏  be finite, non-empty sets. Let KkkHH ∈= )(  be a collection of functions 

indexed by K , so that for every Kk ∈ , kH  is a function from X  into ∏ . Note that we may have 

kk HH ′=  for kk ′≠ . We call ),,,( ∏= XKHF  a hash family, and each kH  a hash function. 

Definition 2.1 
Let ),,,( ∏= XKHF  be a hash family, and consider the probability space defined by choosing 

Kk ∈  at random. We call F  pair-wise independent if for all Xxx ∈*,  with *xx ≠ , it holds that 

)(xH k  and )( *xH k  are uniformly and independently distributed over ∏ . 

Note that there are many well-known, and very simple constructions of pair-wise independent 
hash families. 
2.2 Universal projective hashing 
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We now introduce the concept of universal projective hashing. Let ),,,( ∏= XKHF  be a hash 

family. Let L  be a non-empty, proper subset of X . Let S  be a finite, non-empty set, and let 

SK →:α  be a function. Set ),,,,,,( αSLXKH ∏=H . 

 
 
 
 
 

Definition 2.2 
 ),,,,,,( αSLXKH ∏=H , defined as above, is called a projective hash family (for )),( LX  

if for all Kk ∈ , the action of kH  on L  is determined by )(kα . 

In other words, for all Kk ∈ , the value )(kα  “encodes” the action of kH  on L  (and possibly more 

than that), so that given )(kα  and Lx∈ , the value )(xH k  is uniquely determined. 

Definition 2.3 
Let ),,,,,,( αSLXKH ∏=H  be a projective hash family, and let 0≥ε  be a real number. 

Consider the probability space defined by choosing Kk ∈  at random. We say that H  is ε -universal if 

for all Ss∈ , LXx \∈ , and ∏∈π , it holds that: 

[ ] [ ]s(k)Pr)()(Pr =≤=∧= ααπ εskxH k  

We say that H  is 2universal−ε  if for all Ss∈ , Xxx ∈*,  and ∏∈*,ππ  with 

}{ *xLx Υ∉ , it holds that: 

[ ] [ ]s(k))(Pr)()()(Pr **** =∧=≤=∧=∧= απαππ xHskxHxH kkk ε  

We will sometimes refer to the value of H  in the above definition as the error rate of H . 

Note that if H  is 2universal−ε , then it is also universal−ε  (note that 2≥X ). 

2.2.0 Interpretation 
We can reformulate the above definition as follows. Let ),,,,,,( αSLXKH ∏=H  be a 

projective hash family, and consider the probability space defined by choosing Kk ∈  at random. H  is 

universal−ε  means that conditioned on a fixed value of )(kα , even though the value of kH  is 

completely determined on L , for any LXx \∈ , the value of )(xH k  can be guessed with probability at 

most ε . H  is 2universal−ε  means that in addition, for any LXx \* ∈ , conditioned on fixed values 

of )(kα  and )( *xH k , for any LXx \∈  with *xx ≠ , the value of )(xH k  can be guessed with 

probability at most ε . 
2.2.1 Justification 

We now discuss the justification for Definition 2.3.  
Let H  be a projective hash family, and consider the following game played by an adversary.  At 

the beginning of the game, Kk ∈  is chosen at random, and the adversary is given )(ks α= . Initially, 

the adversary has no other information about k , but during the course of the game, he is allowed to make a 

sequence of oracle queries to learn more about k . 
There are two types of oracle queries [8,9]. One type of oracle query is a test query: the adversary 

submits Xx∈  and ∏∈π  to the oracle, and the oracle tells the adversary whether or not π=)(xH k  

The other type of oracle query is an evaluation query: the adversary submits Xx ∈*  to the oracle, and the 

oracle tells the adversary the value )( ** xH k=π . 
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During the course of the game, the adversary is allowed to make an arbitrary number of test 
queries, but only one evaluation query. Moreover, after the evaluation query, he is not allowed to submit 

),( ** πx  to the oracle in any subsequent test queries. We say the adversary wins the game if he submits a 

test query ),( πx  with LXx \∈  and π=)(xH k . 

That completes the description of the game. Note that in this game, the adversary's strategy is 
quite arbitrary, and need not be efficiently computable. Moreover, the strategy may be adaptive, in the 
sense that an oracle query made by the adversary may depend in an arbitrary way on all information 
available to the adversary at that time. 

 
 
 
 

It is easy to see from the definition that if H  is 2universal−ε , then regardless of the 

adversary's strategy, he wins the game with probability at most ε.Q , where Q is a bound on the number of 

test queries made by the adversary. Note that while this property is a consequence of the definition of 

2universal−ε , it is not necessarily equivalent to the definition of 2universal−ε . In fact, this property 

suffices to prove the main results of this paper, and indeed, all we need is this property in the case where 
*x  is chosen at random from LX \ , and where the adversary is computationally bounded. 

2.2.2 Initial constructions 
Families satisfying Definition 2.2 are simple to construct, at least from a combinatorial point of 

view. For instance, let ),,,( ∏= XKHF  be a pair-wise independent hash family, let L  be a non-

empty, finite subset of X , and let ∏∈0π . Then let ),,,,,,( αSLXKH ∏=H , where for all 

Kk ∈  and Xx∈ , we define 0
' )( π=xH k  if Lx∈ , and )()(' xHxH kk = , otherwise. We also 

define }{ 0π=S  and 0)( πα =k  for all Kk ∈ . It is clear that H  is a 2/1 universal−H  projective 

hash family. However, in our applications later on, we want these hash functions to be efficiently 
computable on all of X , even if L  is hard to distinguish from LX \ . Therefore, this trivial “solution”" 
is not useful in our context. 
2.3 Smooth projective hashing 

We will need a variation of universal projective hashing, which we call smooth projective hashing.  
Let ),,,,,,( αSLXKH ∏=H  be a projective hash family. We define two random variables, )(HU  

and )(HV , as follows. Consider the probability space defined by choosing Kk ∈  at random, 

LXx \∈  at random, and ∏∈′π  at random. We set ),,()( π ′= sxU H  and ),,()( πsxV =H , 

where )(ks α=  and )(xH k=π . 

Definition 2.4 
 Let 0ε ≥  be a real number. A projective hash family H  is smooth−ε  if )(HU  and )(HV  

are ε -close. 
2.4 Approximations to projective hash families 

Our definitions of universal and 2universal  projective hash families are quite strong: so strong, 

in fact, that in many instances it is impossible to efficiently implement them. However, in all our 
applications, it is sufficient to efficiently implement a projective hash family that effectively approximates 

a universal or 2universal  projective hash family. To this end, we define an appropriate notion of distance 

between projective hash families. 
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Let ),,,,,,( αSLXKH ∏=H  be a projective hash family. Consider the distribution defined 

by sampling Kk ∈  at random, and define the random variable ))(,()( kHView k α=H . Note that 

)(HView  comprises the value of kH  at all points Xx∈ . 

Definition 2.5 
 Let 0≥δ  be a real number.  

Let ),,,,,,( αSLXKH ∏=H  and ),,,,,,( *** αSLXKH ∏=*H  be projective hash families. 

We say that H  and *H  are δ -close if )(HView  and )(HView  are δ -close. 

Note that if H  and *H  are δ -close for some “small” value of δ , and if *H  is universal−ε  

or 2universal−ε  for some “small” value of ε , this does not imply that H  is universal−′ε  or 

2universal−′ε  for any particularly small value of ε′ . However, if H  and *H  are δ -close and *H  is 

ε -smooth, then it is clear that H  is )δε +( -smooth. 

 

 
 
 
2.5 Initial reductions 

We show the initial reductions among the various notions introduced. Most of the reductions given 
here are primarily theoretically motivated. Later on, in a specialized context, we present reductions that are 
considerably more efficient. 
2.5.1 Reducing the error rate 

Let ),,,,,,( αSLXKH ∏=H  be an ε -universal (respectively, -universal2) projective hash 

family. The construction below reduces the error rate from ε  to t
ε , by simple t -fold “parallelization.” 

Let t  be a positive integer, and let ),,,,,,( αttt SLXKH ∏=H , where H  and α  are defined as 

follows. 

For t
t Kkkk ∈= ),,( 1 Λ  and Xx∈ , we define ))(,),(()(

1
xHxHxH

tkkk
Λ= , and we 

define ))(,),(()( 1 tkkk ααα Λ= . 

The proof of the following lemma is straightforward, and is left to the reader. 
Lemma 2.1 

 Let H  and H  be as in the above construction. If H  is an ε -universal (respectively, -

2universal ) projective hash family, then H  is an t
ε -universal (respectively, - 2universal ) projective 

hash family. 
2.5.2 From universal projective to universal2 projective 

Let ),,,,,,( αSLXKH ∏=H  be an ε -universal projective hash family. The next 

construction turns H  into an 2universal−ε  projective hash family µH  for ),( LX . 

Let us assume that we have injective functions nX }1,0{: →Γ  and n′→∏Γ′ }1,0{:  for some 

appropriately large positive integers n  and n′ . 

Let µH ),,}1,0{,,,K, ( 22n µµ αnn SLX ′= H , where µH  and α †
 are defined as follows. 

For n
nn Kkkkkk 2

1,0,1,10,1 ),,,( ∈= Λ  and Xx∈  with n
nx }1,0{),,()( 1 ∈=Γ γγ Λ , we define  

    ( ) ( )( )xHx
iik

n

i
τ,

1

Γ′= ⊕
=

µρ
k

H  
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and    ( ) ( ) ( ) ( ) ( )( )1,0,1,10,1 ,,,, nn kkkkk ααααα Λµ = , 

Here, “⊕ ” denotes the bit-wise “exclusive or” operation on n′ -bit strings. 
Lemma 2.2 

 Let H  and µH  be as defined in the above construction. If H  is an ε -universal projective hash 

family, then µH  is an 2universal−ε  projective hash family. 

Proof: 
 It is immediate that Definition 2.2 is satisfied. 
The proof that Definition 2.3 is satisfied follows from a simple “conditioning argument,” the details of 
which we now provide. 

Consider the probability space defined by choosing nKk 2∈
ρ

 at random. To show that µH  is 

2universal−ε , we have to show that for any Xxx ∈*,  with }{ *xLx ∪∉ , conditioned on any fixed 

values of ( )xH
k
µϖ  and ( )k

ϖ
µα  the value of ( )xH

k
µϖ  can be guessed with probability at most ε . 

Let n
nx }1,0{),,()( 1 ∈=Γ γγ Λ  and n

nx }1,0{),,()( **
1

* ∈=Γ γγ Λ . Since *xx ≠ , 

we must have *
ii γγ ≠  for some ni ≤≤1 , and without loss of generality, let us assume that ni = . 

 
 
 

In addition to conditioning on fixed values of ( )xH
k
µϖ  and ( )k

ϖ
µα , let us further condition on 

fixed values of 1,10,11,10,1 ,,,, −− nn kkkk Λ , as well as *, nn
k γ  (consistent with the fixed values of ( )xH

k
µϖ  

and ( )k
ϖ

µα . In this conditional probability space, the value of ( )xH
k
µϖ  determines the value of )(

,
xH

nnk γ
 

and thus, if the value of ( )xH
k
µϖ  could be guessed with probability greater than ε , then so could the value 

of )(
,

xH
nnk γ

. But since H  is ε -universal, it follows that the value of )(
,

xH
nnk γ

 cannot be guessed with 

probability greater than ε . We conclude that value of ( )xH
k
µϖ  cannot be guessed with probability greater 

than ε  in this conditional probability space. Since this holds for all fixed values of 

1,10,11,10,1 ,,,, −− nn kkkk Λ  and *, nn
k γ  under consideration, it holds as well in the conditional probability 

space where just ( )xH
k
µϖ  and ( )k

ϖ
µα  are fixed, which proves the theorem. 

The following construction is a variation on Lemma 2.2. It extends the sets X  and L  by taking 
the Cartesian product of these sets with a fixed, finite set E . Such extensions will prove useful in the 
sequel. 

Let ),,,,,,( αSLXKH ∏=H  be an ε -universal projective hash family. Let E  be a non-

empty, finite set. 

Let us assume that we have injective functions nEX }1,0{: →×Γ  and n′→∏Γ′ }1,0{:  for some 

appropriately large positive integers n  and n′ .  

Let ),,}1,0{,,,,( 22 βββ αnnn SELEXKH ′××=H , where βH  and βα  are defined as 

follows.  For  
n

nn Kkkkkk 2
1,0,1,10,1 ),,,( ∈= Λ ,  

and EXex ×∈),(  with n
nex }1,0{),,(),( 1 ∈=Γ γγ Λ , we define 

))((),( ,
1

xHexH iki

n

ik γΓ′⊕=
=

βρ  
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and 

))(),(,),(),(()( 1,0,1,10,1 nn kkkkk ααααα Λ
ρ

β =  

The proof of the following lemma is essentially the same as the proof of Lemma 2.2. 
Lemma 2.3 

 Let H  and βH  be as defined in the above construction. If H  is an ε -universal projective hash 

family, then βH  is an 2universal−ε  projective hash family. 

2.5.3 From universal projective to smooth projective 
Let ),,,,,,( αSLXKH ∏=H  be an ε -universal projective hash family. The next 

construction turns H  into a δ -smooth projective hash family *H  for ),( LX , where the hash outputs 

are a -bit strings, provided ε  and a  are not too big, and δ  is not too small. 
The construction is a simple application of the Leftover Hash Lemma (Entropy Smoothing Lemma; (see, 
e.g., [10, p. 86]). 

Let ),,,( ∏∏=
(((

KHF  be a pair-wise independent hash family, where n}1,0{=∏
(

 for 

some integer 1≥a . Such a hash family can easily be constructed using well-known and quite practical 

techniques based on arithmetic in finite fields. We do not discuss this any further here. Let  

),,,,,,( ** αKSLXKKH ×∏×=
(

*H ,  

where *H  and *α  are defined as follows. For  
 
 
 

Kk ∈ , Kk
((

∈ , and Xx∈ ,  

we define  

))((*
,

xHHH kkkk
(ρ

(
= ,  

and we define  

)),((),(* kkkk
((

αα = . 

Lemma 2.4 

 Let H , ,F  *H , and a  be as in the above construction. Suppose that H  is an ε -universal 

projective hash family. For any integer 0≥b  such that )/1(log2 2 ∈≤+ ba , *H  is a )1(2 +− b -smooth 

projective hash family. 
Proof: 

 It is clear that *H  satisfies the basic requirements of a projective hash family.  Consider the 

random variables )( *HU  and )( *HV , as defined in the paragraph preceding Definition 3. That is, 

consider the probability space where Kk ∈ , Kk
((

∈ , LXx \∈ , and ∏∈′
((π  are chosen at random, 

and set  

),,,()( π(
(

′= ksxU *H  and ),,,()( π(
(
ksxV =*H ,  

where )(ks α=  and ))((( xHH kk
(

(( =π . 

Consider any conditional probability space where particular values of LXx \∈  and Ss∈  are 

fixed, and let ),( sxU *H  and ),( sxV *H  be the random variables in this conditional probability 

space corresponding to )( *HU  and )( *HV . In such a conditional probability space, by the definition of 

∈ -universal projective hashing, the distribution of )(xH k  has min-entropy at least )/1(log2 ∈ , and k
(

 

is uniformly and independently distributed over .K
(

 The Leftover Hash Lemma then directly implies that 
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),( sxU *H  and ),( sxV *H  are )1(2 +− b -close. Since this bound holds uniformly for all sx, , it 

follows that )( *HU  and )( *HV  are also )1(2 +− b -close. 

 
3.0 Subset membership problems 

In this section we define a class of languages with some natural cryptographic indistinguishability 
properties. The definitions below capture the natural properties of well-known cryptographic problems such 
as the Quadratic Residuosity and Decision Diffie-Hellman problems, as well as others. 

A subset membership problem M  specifies a collection 0)( ≥λλI  of distributions. For every 

value of a security parameter 0≥λ , λI  is a probability distribution of instance descriptions. An instance 

description Λ  specifies the following: 
• Finite, non-empty sets X , L , and W , such that L  is a proper subset of X . 

• A binary relation WXR ×⊂ . 

For all 0≥λ , ][ λI  denotes the instance descriptions that are assigned non-zero probability in the 

distribution λI . We write ],,,[ RWLXΛ  to indicate that the instance Λ  specifies X , L , W  and R  

as above. 
For Xx∈  and Ww∈  with Rwx ∈),( , we say that w  is a witness for x . Note that it would 

be quite natural to require that for all Xx∈ , we have Rwx ∈),(  for some Ww∈  if and only  

 

 
 
 
if Lx∈ , and that the relation R  is efficiently computable; however, we will not make these requirements 
here, as they are not necessary for our purposes. The actual role of a witness will become apparent in the 
next section. 

A subset membership problem also provides several algorithms. For this purpose, we require that 
instance descriptions, as well as elements of the sets X  and W , can be uniquely encoded as bit strings of 
length polynomially bounded in λ. The following algorithms are provided: 

• a probabilistic, polynomial time sampling algorithm that on input λ1  for 0≥λ  samples an 

instance Λ  according to the distribution λI . 

We do not require that the output distribution of the sampling algorithm and λI  are equal; rather, 

we only require that they are )(λl -close, where )(λl  is a negligible function. In particular, with negligible 

probability, the sampling algorithm may output something that is not even an element of ][ λI . We call this 

algorithm the instance sampling algorithm of M , and we call the statistical distance )(λl  discussed above 

its approximation error. 

• a probabilistic, polynomial time sampling algorithm that takes as input λ1  for 0≥λ  and an 

instance ][],,,[ λIRWLX ∈Λ , and outputs a random Lx∈ , together with a witness Ww∈  for x . 

We do not require that the distribution of the output value x  and the uniform distribution on L  are equal; 
rather, we only require that they are )(λl ′ -close, where )(λl ′  is a negligible function. However, we do 

require that the output x  is always in L . 
We call this algorithm the subset sampling algorithm for M , and we call the statistical distance )(λl ′  

discussed above its approximation error. 
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• a deterministic, polynomial time algorithm that takes as input λ1  for 0≥λ , an instance 

][],,,[ λIRWLX ∈Λ , and *}1,0{∈ς , and checks whether ς  is a valid binary encoding of an element 

of X . 
This completes the definition of a subset membership problem. 

We next define the notion of a hard subset membership problem. Essentially, this means that it is 
computationally hard to distinguish random elements of L  from random elements of LX \ . We now 
formulate this notion more precisely. 

Let M  be a subset membership problem as above. We define two sequences of random variables, 

0))(( ≥λλ MU  and 0))(( ≥λλ MV , as follows. Fix 0≥λ , and consider the probability space defined by 

sampling ],,,[ RWLXΛ  from λI , and choosing Lx∈  at random and LXx −∈′  at random. Set 

),()( xU Λ=Mλ  and ),()( xV ′Λ=Mλ . 

Definition 3.1 
 Let M  be a subset membership problem. We say that M  is hard if 0))(( ≥λλ MU  and 

0))(( ≥λλ MV  are computationally indistinguishable. 

 
4.0 Universal hash proof systems 
4.1 Hash proof systems 

Let M  be a subset membership problem, as defined in the last section, specifying a sequence 

0)( ≥λλI  of instance distributions. 

A hash proof system (HPS) P  for M  associates with each instance ],,,[ RWLXΛ  of M  a 

projective hash family ),,,,,,( αSLXKH ∏=H  for ),( LX . 

 
 
 
 
 
Additionally, P  provides several algorithms to carry out basic operations we have defined for an 

associated projective hash family; namely, sampling Kk ∈  at random, computing Sk ∈)(α  given 

Kk ∈ , computing ∏∈)(xH k  given Kk ∈  and Xx∈ . We call this latter algorithm the private 

evaluation algorithm for P . Moreover, a crucial property is that the system provides an efficient algorithm 

to compute ∏∈)(xH k , given Sk ∈)(α , Lx∈ , and Ww∈ , where w  is a witness for x . We call 

this algorithm the public evaluation algorithm for P . The system should also provide an algorithm that 
recognizes elements of ∏ . 

We now discuss the above-mentioned algorithms in a bit more detail. In this discussion, whenever 

][],,,[ λIRWLX ∈Λ  is fixed in some context, it is to be understood that 

),,,,,,( αSLXKH ∏=H  is the projective hash family that P  associates with Λ . These algorithms 

work with bit strings of length bounded by a polynomial in λ to represent elements of K , ∏  and S . We 

also assume that these algorithms use the same encodings of the sets X , L  and W  as the algorithms 
from the subset membership problem M .  The system P  provides the following algorithms: 

• a probabilistic, polynomial time algorithm that takes as input λ1  and an instance ][ λI∈Λ , and 

outputs Kk ∈ , distributed uniformly over K . 
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• a deterministic, polynomial time algorithm that takes as input λ1 , an instance ][ λI∈Λ , Kk ∈ , 

and outputs Ss∈  such that sk =)(α . 

• a deterministic, polynomial time algorithm that takes as input λ1 , an instance ][ λI∈Λ , Kk ∈  

and Xx∈ , and outputs ∏∈π  such that π∈)(xH k . 

This is the private evaluation algorithm. 

• a deterministic, polynomial time algorithm that takes as input λ1 , an instance ][ λI∈Λ , Ss∈  

such that sk =)(α  for some Sk ∈ , and Lx∈  together with a witness Ww∈  for x , and outputs 

∏∈π  such that π∈)(xH k .  This is the public evaluation algorithm. 

• a deterministic, polynomial time algorithm that takes as input λ1 , an instance ][ λI∈Λ , and 
*}1,0{∈ς , and determines if ς  is a valid encoding of an element of ∏ . 

4.2 Universal hash proof systems 
Definition 4.1 
 Let )(λ∈  be a function mapping non-negative integers to non-negative reals. Let M  be a subset 

membership problem specifying a sequence 0)( ≥λλI  of instance distributions. Let P  be an HPS for M . 

We say that P  is )(λ∈ -universal (respectively, -universal2, -smooth) if there exists a negligible 

function )(λδ  such that for all 0≥λ  and for all ][],,,[ λIRWLX ∈Λ , the projective hash family 

),,,,,,( αSLXKH ∏=H  that P  associates with Λ  is )(λδ -close to an )(λ∈ -universal 

(respectively, -universal2, -smooth) projective hash family ),,,,,,( *** αSLXKH ∏=*H . 

Moreover, if this is the case, and )(λ∈  is a negligible function, then we say that P  is strongly 

universal (respectively, universal2, smooth). We shall call the function )(λδ  in the above definition the 

approximation error of P , and we shall refer to the projective hash family *H  as the idealization of H .   
 

 
 
 

 
It is perhaps worth remarking that if a hash proof system is strongly universal, and the underlying 

subset membership problem is hard, then the problem of evaluating )(xH k  for random Kk ∈  and 

arbitrary Xx∈ , given only x  and )(kα , must be hard.  We also need an extension of this notion.  The 

definition of an extended HPS P  for M  is the same as that of ordinary HPS for M , except that for each 

0≥k  and for each ][],,,[ kIRWLX ∈Λ=Λ , the proof system P  associates with Λ  a finite set E  

along with a projective hash family ),,,,,,( αSELEXKH ∏××=H  for (X × E, L × E). 

Note that in this setting, to compute ),( exH k  for Lx∈  and Ee∈ , the public evaluation 

algorithm takes as input Sk ∈)(α , Lx∈ , Ee∈ , and a witness Ww∈  for x , and the private 

evaluation algorithm takes as input Kk ∈ , Xx∈ , and Ee∈ . We shall also require that elements of 

E  are uniquely encoded as bit strings of length bounded by a polynomial in λ, and that P  provides an 
algorithm that efficiently determines whether a bit string is a valid encoding of an element of E . 
Definition 4.1 can be modified in the obvious way to define extended )(λ∈ -universal2 HPS’s; although we 

do not need any of the other notions, nor are they particularly interesting for the purpose of this exposition. 
 
5.0 Conclusion 
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We introduced the notion of a universal hash proof system. Essentially, this is a special kind of 
non-interactive zero-knowledge proof system for a language. We do not show that universal hash proof 
systems exist for all NP languages, but we do show how to construct very efficient universal hash proof 
systems for a general class of group-theoretic language membership problems. 

Given an efficient universal hash proof system for a language with certain natural cryptographic 
indistinguishability properties, an efficient public-key encryption schemes secure against adaptive chosen 
ciphertext attack [11, 12, 13] can be constructed in the standard model. Our construction only uses the 
universal hash proof system as a primitive: no other primitives are required, although even more efficient 
encryption schemes can be obtained by using hash functions with appropriate collision-resistance 
properties. 

It was also shown that the original Cramer-Shoup scheme [12, 14] follows from our general 
construction, when applied to a universal hash proof system related to the Decision Diffie-Hellman (DDH) 
assumption. 
 

References 
 

[1] Odule, T.J. "Incremental Cryptography and Security of Public Hash Functions." Journal of Nigerian Association of Mathematical 
Physics, vol. 11 pp.467-474; 2007. 

[2] Y. Zheng, T. Matsumoto, and H. Imai, “Connections between several versions of one-way hash functions,” Proc. SCIS90, The 
1990 Symposium on Cryptography and Information Security, Nihondaira, Japan, Jan. 31–Feb.2, 1990. 

[3] M. Naor and M. Yung, “Universal one-way hash functions and their cryptographic applications,” Proc. 21st ACM Symposium on 
the Theory of Computing, 1990, pp. 387–394. 

[4] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In Proc. STOC '90, ACM 
Press, 1990. 

[5] Y. Zheng, T. Matsumoto, and H. Imai, “Structural properties of one-way hash functions,” Advances in Cryptology, Proc. 
Crypto’90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 285–302. 

[6] J. Carter and M. Wegman. Universal classes of hash functions. Journal of Computer and System Sciences, 18:143{154, 1979. 
[7] M. Wegman and J. Carter. New hash functions and their use in authentication and set equality. Journal of Computer and System 

Sciences, 22:265{279, 1981. 
[8] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols. In Proc. ACM Computer 

and Communication Security '93, ACM Press,1993. 
[9] R. Canetti, O. Goldreich, and S. Halevi. The random oracle model, revisited. In Proc.STOC '98, ACM Press, 1998. 
[10] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University Press, 1996. 
[11] C. Racko_ and D. Simon. Non-interactive zero knowledge proof of knowledge and chosen-ciphertext attacks. In Proc. CRYPTO 

'91, Springer Verlag LNCS, 1991. 
[12] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM Journal on Computing, 30:391{437, 2000. Extended 

abstract in Proc. STOC '91, ACM Press, 1991. 
[13] P. Paillier. Public-key cryptosystems based on composite degree residue classes. In Proc. EUROCRYPT '99, Springer Verlag 

LNCS, 1999. 
[14] R. Cramer and V. Shoup. A practical public key cryptosystem secure against adaptive chosen cipher text attacks. In Proc. CRYPTO 

'98, Springer Verlag LNCS, 1998. 

 


