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Abstract

The notion of a universal hash proof system is hereby introduced.
Essentially, this is a special kind of non-interactive zero-knowledge proof
system for a language. We showed how to construct very efficient universal
hash proof systems for a general class of group-theoretic language
membership problems. We showed how to construct efficient universal hash
proof systems for languages related to the Decision Composite Residuosity
(DCR) and Quadratic Residuosity (QR) assumptions. From these one can get
corresponding public-key encryption schemes that are secure under these
assumptions.
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1.0 Introduction

The philosophy behind a universal one-way hashtfondUOWHF) is that if, first the input is
selected and subsequently the hash function, i do¢ help an opponent to find collisions for thestn
function [1]. Collisions are only useful if firshé function is fixed and subsequently one can &efarctwo
colliding inputs.

This definition was generalized in [2], where a UBWis defined as a three party game with an
initial string supplielS, a hash function instance generaér and a collision string finddf . Here S is

an oracle with unlimited computing power, afsl and F are probabilistic polynomial time algorithms.
The game consists of three moves:

1. S outputs an initial stringk 1Y N and sends it to botl andF .
2. G chooses arh [ RH n independently ofX and sends it td~ .
3. F outputs either “?” or axx' (1Y N such thath(x') = h(X).

F wins the game if its output is not equal to “?heTinput X is selected byS according to a certain
distribution. In the most general case this isdbkection of all ensembles with length. If a different
ensemble is introduced, a different definition i#ained. In the original definition of [3] the it string
supplier and the collision string finder were tlaeng algorithm, which imposes the unnecessary césfri
that X should be selected according to all polynomiaiynplable ensembles (the collision string finder
has to be a polynomial time algorithm). The corettam by M. Naor and M. Yung [4] also satisfiessthi
more general definition. On the other hand thefiniteon is less complicated: in fact it does neally
make sense foiS to sendX toG, as G chooses subsequently independent frorx. In [2, 5] the
hierarchy between different types of UOWHF has bstadied.
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2.0 Preliminaries
We recall some basic terminology and notation.

A function f(A) mapping non-negative integers to non-negativesrisatalled negligiblg(in A) if for all
C 21, there exists\, >0 such thatf () <1/A° forall A2 A,. Let X andY be random variables

taking values in a finite setS. The statistical distance betweeX and Y is defined to be
. 1 . .
Dis(X.Y) =~ .§|Pr{x =g|-PlY=¢]. Equivalenty, DistX,Y)=majetx 0s|-P{vOs]|

We shall say thaiX andY arell-close if Dist(X,Y) <[1.

Let X =(X,),s0 andY =(Y,),,o be sequences of random variables, where for @azH),
X,andY, take values in a finite séb, . Then we say thaX andY arestatistically indistinguishabléf
Dist(X,,Y,) is a negligible function inA. For computational purposes, we will generally kvor a
setting where the set§, can be encoded as bit strings whose length isnpafyal in A. For any

probabilistic algorithmA that outputsO or 1, we define thdistinguishing advantage fok (with respect
to X andY ) as the functiorist X, Y (%) = |PA®", X,)=1] - P{A®",Y;) =1
A

Here, the notatiod” denotes the unary encoding Afas a sequence df copies of 1, and the
probability is with respect to the random coin &sssf the algorithmA and the distributions oX, and

Y, . We say thaK andY arecomputationally indistinguishabiéfor all probabilistic, polynomial-timeA,
the function Dist X, Y (A) is negligible inA.
A

For a positive integetZ , Z,, denotes the ring of integers modul , and Z*N denotes the
corresponding multiplicative group of units. FarlJ Z,(a mod N) ] Z,, denotes the residue class of
a modulo N . For an elemeng of a groupG, (g) denotes the subgroup &6 generated byg .

Likewise, for a subsdt) of G, (U) denotes the subgroup & generated byJ .

2.1 Universal hashing
Before defining universal projective hash functiom& recall some definitions relating to the
classical notion of “universal hashing” [6,7].

Let X and [] be finite, non-empty sets. Letd =(H,),« be a collection of functions
indexed by K , so that for everyk 0K, H, is a function fromX into [] . Note that we may have

H,=H, fork#zk'.wecalF = (H,K, X,[]) ahash family, and eachl , a hash function.
Definition 2.1

Let F = (H,K, X,[]) be ahash family, and consider the probabiliticepefined by choosing
kOK at random. We calF pair-wise independent if for alk, X' (0 X with X# X , it holds that

H,(X) andH, (X) are uniformly and independently distributed ofar.

Note that there are many well-known, and very semgginstructions of pair-wise independent
hash families.
2.2 Universal projective hashing
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We now introduce the concept of universal projectiashing. Le = (H, K, X,[]) be a hash

family. Let L be a non-empty, proper subset o . Let S be a finite, non-empty set, and let
a:K - S beafunction. SeH = (H,K, X,L,[],S,a) .

Definition 2.2
H=(H,K,X,L,[],S a), defined as above, is callepeojective hash familyfor (X, L))

if for all KK, the action ofH, on L is determined byr (K) .
In other words, for alk J K, the valuea (k) “encodes” the action oH, on L (and possibly more

than that), so that givear (k) and X[J L, the valueH, (X) is uniquely determined.

Definition 2.3
Let H=(H,K,X,L,[],S,a) be a projective hash family, and 1820 be a real number.

Consider the probability space defined by choodiigl K at random. We say thdtl is € -universalif
forall sSOS, xOOX\L,and7n[J[], it holds that:

PlH, (x) = 70a(k) = s| < ePa(k) = §]

We say thatH is €—universa) if for all SOS, X, X OX and 1,7 O [1 with
xOL Y{x'}, it holds that:

PIH,(X) = 70H, (X)) =7 O a(k) =s|<ePfH, (xX) =7 Dak) =4
We will sometimes refer to the value bf in the above definition as tlegror rate of H .

Note that ifH is € —universal, then itis alsce — universal (note thaf X| = 2).

2.2.0 Interpretation

We can reformulate the above definition as followst H = (H,K, X,L,[],S,a) be a
projective hash family, and consider the probab#ipace defined by choosirg[]K at random.H is
£ —universal means that conditioned on a fixed value @{k) , even though the value dfl, is

completely determined oh., for any X[ X \ L, the value ofH, (X) can be guessed with probability at
most €. H is € —uUniversa) means that in addition, for any [J X \ L, conditioned on fixed values

of a(k) and H, (X'), for any X X \L with X# X', the value ofH, (X) can be guessed with

probability at most .
2.2.1  Justification
We now discuss the justification fBrefinition 2.3.

Let H be a projective hash family, and consider theofelhg game played by an adversary. At
the beginning of the gamé [1 K is chosen at random, and the adversary is gsena (K) . Initially,
the adversary has no other information abkiutout during the course of the game, he is allotverake a

sequence of oracle queries to learn more aBout
There are two types of oracle queries [8,9]. Ope tyf oracle query is test querythe adversary

submits XJ X and 72[J[] to the oracle, and the oracle tells the adveraéugther or notH, (X) = 77

The other type of oracle query is evaluation querythe adversary submits’ [0 X to the oracle, and the
oracle tells the adversary the vali® = H, (X ).
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During the course of the game, the adversary mwvaltl to make an arbitrary number tekt
queries but only oneevaluation queryMoreover, after the evaluation query, he is rfloivwaed to submit

(X* ) IT*) to the oracle in any subsequent test queries. 3y¢he adversary wins the game if he submits a

test query(X, 77) with XOO X \L andH, (X) = 77.

That completes the description of the game. No#¢ ith this game, the adversary's strategy is
quite arbitrary, and need not be efficiently congile. Moreover, the strategy may be adaptive, & th
sense that an oracle query made by the adversayydeywend in an arbitrary way on all information
available to the adversary at that time.

It is easy to see from the definition that i is s—universa;, then regardless of the
adversary's strategy, he wins the game with prdibaht most Q. , whereQ is a bound on the number of
test queries made by the adversary. Note that white property is a consequence of the definitibn o
€ —universal, it is not necessarily equivalent to the definitiof € —universa) . In fact, this property
suffices to prove the main results of this papad edeed, all we need is this property in the calsere

X is chosen at random fronf \ L, and where the adversary is computationally bodnde
2.2.2 Initial constructions
Families satisfyingDefinition 2.2 are simple to construct, at least from a coatoirial point of

view. For instance, lef = (H,K, X,[]) be a pair-wise independent hash family, letbe a non-
empty, finite subset ofX, and let 77, LI1[]. Then let H = (H,K, X,L,[],S,a), where for all

kOK and xO X, we defineH, (X) =7z, if XxOL, and H,(x) =H,(X), otherwise. We also

define S={7,} anda (k) = 77, for all KK . It is clear thatH is a1/|H| —universal, projective

hash family. However, in our applications later ame want these hash functions to be efficiently

computable on all ofX , even if L is hard to distinguish fromX \ L . Therefore, this trivial “solution™
is not useful in our context.
2.3 Smooth projective hashing
We will need a variation of universal projectiveshiang, which we call smooth projective hashing.

Let H =(H,K,X,L,[],S,a) be a projective hash family. We define two rand@miables,U (H)
andV (H), as follows. Consider the probability space defibg choosingk (1K at random,

xO X \L atrandom, and?' O[] at random. We sdd) (H) = (X,s,72") andV (H) = (X, s, 77),
wheres = a(k) and 7= H,(X).

Definition 2.4

Let € 20 be a real number. A projective hash famitly is € — smoothif U (H) andV (H)

are € -close.
2.4 Approximations to projective hash families

Our definitions ofuniversaland universa; projective hash families are quite strong: sorgjro

in fact, that in many instances it is impossible efficiently implement them. However, in all our
applications, it is sufficient to efficiently impigent a projective hash family that effectively appmates

auniversalor universaj_, projective hash family. To this end, we defineappropriate notion of distance
between projective hash families.
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Let H=(H,K,X,L,[],S,a) be a projective hash family. Consider the distidrudefined
by sampling K JK at random, and define the random variablew(H) = (H,,a(k)) . Note that

View(H) comprises the value dfl, at all pointsX ] X .

Definition 2.5
Let 0 =0 be areal number.

Let H=(H,K,X,L,[],S,@) and H =(H",K",X,L,[1,S,a") be projective hash families.
We say thatH andH " are J -close ifView(H) andView(H) are J -close.

Note that ifH and H" are J -close for some “small” value off , and if H ™ is € — universal
or € —universa) for some “small” value of¢, this does not imply thaH is €' —universal or
g’ —universa) for any particularly small value & . However, ifH andH" are J -close andH " is
€ -smooth, then it is clear thdd is (¢ + J) -smooth.

25 Initial reductions

We show the initial reductions among the variousoms introduced. Most of the reductions given
here are primarily theoretically motivated. Later i a specialized context, we present reductibasare
considerably more efficient.
2.5.1 Reducing the error rate

Let H =(H,K, X,L,[1,S,a) be an¢-universal (respectively, -univergpiprojective hash
family. The construction below reduces the errée feom € to ¢! , by simplet -fold “parallelization.”
Let t be a positive integer, and Iéd = (H,K"', X,L,[1',S',a), whereH and a are defined as
follows.

For k = (kA k) OK" and xO X, we define HR(X) =(H, (¥),A ,H, (X)), and we
define a(k) = (a(k).A ,a(k)).

The proof of the following lemma is straightforwaethd is left to the reader.
Lemma 2.1

Let H and H be as in the above construction. H is an € -universal (respectively, -

universal) projective hash family, thehl is an €' -universal (respectively,universal) projective

hash family.
2.5.2  From universal projective to universal2 projetive

Let H=(H,K,X,L,[1,S,a) be an ¢-universal projective hash family. The next
construction turndH into an€ —universaj projective hash familyH" for (X, L).

Let us assume that we have injective functibiisX — {01}" and"": ] - {01}" for some
appropriately large positive izntegehs andn'’. )
— u n n n u
Let H* = (H KX L{01}", S a ) whereH" anda " are defined as follows.

For K = (Ko, Ky A LK, o, Ko 1) DK™ and X0 X with T(X) = (y,A ,y,) O {01}", we define

HE() =0 (i ()
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and a* (k) = (a(kLo )' a(kl,l)’/\ 'a(kn,o )’ a(kn,l))’
Here, “[J ” denotes the bit-wise “exclusive or” operation An-bit strings.
Lemma 2.2

Let H and H" be as defined in the above constructionHIfis an € -universal projective hash

family, thenH" is an€ —universa} projective hash family.

Proof:

It is immediate that DefinitioR.2 is satisfied.
The proof thaDefinition 2.3 is satisfied follows from a simple “conditiogiargument,” the details of
which we now provide.

IJ
Consider the probability space defined by choosdingl K" at random. To show that* is
€ —universaj, we have to show that for ang, X' [ X with X (0L O {X '}, conditioned on any fixed
values ofH E’(X) anda* (l‘<‘) the value ofH lEﬁ(x) can be guessed with probability at meést

Let T(X) = (VA ,y,) O {01}" andT(X') = (¥, ,A,y.) O {01}".Sincex# X,

we must havey; # yi* for somel<i < n, and without loss of generality, let us assume i@ n.

In addition to conditioning on fixed values drﬂlﬁb(x) and a’”(lz), let us further condition on

fixed values ofK,o,Ky;, A LK _14,K, 1, as well askn’y; (consistent with the fixed values ¢f E’(X)
and a* (l‘<‘) In this conditional probability space, the vabfeH |ﬁfJ(X) determines the value dfl Ko (x)

and thus, if the value oH |ﬁfJ(X) could be guessed with probability greater tigarthen so could the value

of H, (X).ButsinceH is € -universal, it follows that the value dfl, (X) cannot be guessed with
n,n n,m

probability greater thas . We conclude that value dfl E’(X) cannot be guessed with probability greater
than € in this conditional probability space. Since thisolds for all fixed values of
Kio KigA Ky10.Kqqy and K . under consideration, it holds as well in the ctiodal probability

n

space where jusH |ﬁfJ(X) anda* (l‘<‘) are fixed, which proves the theorem.

The following construction is a variation dlemma2.2. It extends the setX and L by taking
the Cartesian product of these sets with a fixedtef set E . Such extensions will prove useful in the
sequel.

Let H =(H,K, X,L,[],S,a) be an¢-universal projective hash family. LdE be a non-
empty, finite set.
Let us assume that we have injective functidnsX x E - {01}" and I'":[] - {01}" for some
appropriately large positive integefsand n’ .
Let HP = (HP K* XxE,LxE{01}",S™,a?), where H? and a® are defined as
follows. For
k= (ko kis A VKo, Kq ) O K",

and (x,€) 0 X x E with ['(x,€) = (y,,\ ,y,,) 0{01}", we define
HB(x8) =0T (H, (%)
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and o
a® (k) = (a(kyo), a(ky) A L a(k,e),a(k,y))

The proof of the following lemma is essentially #a@me as the proof bbmma2.2.
Lemma 2.3

Let H and H? be as defined in the above constructionHifis an € -universal projective hash

family, then HP is ang —universa) projective hash family.
2.5.3  From universal projective to smooth projectie
Let H=(H,K,X,L,[1,S,a) be an ¢-universal projective hash family. The next

construction turnsH into a d -smooth projective hash famil!rl* for (X,L), where the hash outputs

are a -bit strings, provided and a are not too big, and is not too small.
The construction is a simple application of thetbeér Hash Lemma (Entropy Smoothing Lemma; (see,
e.g., [10, p. 86]).

Let F = (A, k, 1, h) be a pair-wise independent hash family, whéle = {0,1}" for
some integera = 1. Such a hash family can easily be constructedgusigll-known and quite practical
techniques based on arithmetic in finite fields. 8fdenot discuss this any further here. Let

H” :(H*’KXK,X,L,h,SxK’a*)'

where H™ anda” are defined as follows. For

KOK . KOK ,andXOX |
we define

Hy e = HE(H, ().
and we define
a’ (k,K) = (@(K),K).
Lemma 2.4
Let H, ,F H", and @ be as in the above construction. Suppose Hlais an € -universal

projective hash family. For any integhr> 0 such thata+ 2b < log, @1/ 0), H™ is a 27®* -smooth

projective hash family.
Proof:

It is clear thatH ™ satisfies the basic requirements of a projectishhfamily. Consider the
random variabledJ (H') and V(H"), as defined in the paragraph precediefinition 3 That is,

\
consider the probability space whekd 1K , K O k , XxOX\L, and }7' 0 h are chosen at random,
and set

U(H') = (x5, ) andV(H") = (x,5,K, 7).,
wheres = a(K) and 1= (H((H, (%)
Consider any conditional probability space whengigalar values ofX[(1 X \ L and SIS are
fixed, and letU (H” ‘ X, s) andV(H’ ‘ X, S) be the random variables in this conditional prolitsb
space corresponding td (H™) andV/(H") . In such a conditional probability space, by tledinition of

\
O-universal projective hashing, the distribution kdif, (X) has min-entropy at leas0g, (1/ 0) , and K

is uniformly and independently distributed ov& .The Leftover Hash Lemma then directly implies that
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UH" ‘ X, s) and V(H" ‘ X, S) are 2®*" close. Since this bound holds uniformly for ad| s, it

follows thatU (H") andV (H") are also2 ®*? close.

3.0 Subset membership problems

In this section we define a class of languages sotine natural cryptographic indistinguishability
properties. The definitions below capture the ratproperties of well-known cryptographic problesogsh
as the Quadratic Residuosity and Decision Diffidhidan problems, as well as others.

A subset membership probleid specifies a collection(l,),., of distributions. For every

value of a security parametdr> 0, |, is a probability distribution of instance desdops. An instance

description/\ specifies the following:
»  Finite, non-empty setX , L, andW, such thatL is a proper subset oX .
« Abinary relationR 1 X xW .

ForallA=0, [lx] denotes the instance descriptions that are askigme-zero probability in the
distribution |, . We write A[ X, L,W, R] to indicate that the instancA specifies X , L, W and R

as above.
For X[ X andwOW with (x,w) [0 R, we say thaw is a witness forx . Note that it would

be quite natural to require that for alL] X , we have(X,w) R for somew W if and only

if XL, and that the relatiolR is efficiently computable; however, we will not keathese requirements
here, as they are not necessary for our purpo$esadtual role of a witness will become apparetién
next section.

A subset membership problem also provides sevigatithms. For this purpose, we require that

instance descriptions, as well as elements oféteX andW , can be uniquely encoded as bit strings of
length polynomially bounded iA. The following algorithms are provided:

. a probabilistic polynomial time sampling algorithm that on inp]ft for A= 0 samples an
instance/\ according to the distributioth, .

We do not require that the output distribution keé sampling algorithm andl, are equal; rather,
we only require that they ailgA) -close, wherd (A) is a negligible function. In particular, with negble
probability, the sampling algorithm may output sdiniveg that is not even an element[d;]. We call this
algorithm the instance sampling algorithmMdf , and we call the statistical distant@\) discussed above
its approximation error.

. a probabilistic polynomial time sampling algorithm that takesimgut 1* for A= 0 and an
instance/A[ X, L,W, R] U[l,], and outputs a rando LJ L, together with a witnessv LIW for X.

We do not require that the distribution of the aitgalue X and the uniform distribution o are equal;
rather, we only require that they atgA) -close, wherel '(A) is a negligible function. However, we do

require that the outpuX is always inL .
We call this algorithm theubset sampling algorithifior M , and we call the statistical distante\)
discussed above its approximation error.
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. a deterministic polynomial time algorithm that takes as inpl(t for A=0, an instance
ALX,LW,R0[I,],and ¢ 0{0,1}", and checks whethef is a valid binary encoding of an element

of X.
This completes the definition of a subset membprphoblem.
We next define the notion ofteard subset membership problem. Essentially, this méaatst is

computationally hard to distinguish random elemeftd. from random elements o)X \ L. We now
formulate this notion more precisely.
Let M be a subset membership problem as above. We definsequences of random variables,

U,(M)),»0 and (V,(M)),.,. as follows. FixA= 0, and consider the probability space defined by
sampling A[ X,L,W,R] from |,, and choosingXx[J L at random andx' 0 X — L at random. Set
U,(M) =(A,x) andV, (M) = (A, X).
Definition 3.1

Let M be a subset membership problem. We say fdhtis hard if (U,(M)),., and

(V4 (M)), ., are computationally indistinguishable.

4.0 Universal hash proof systems
4.1 Hash proof systems
Let M be a subset membership problem, as defined idastesection, specifying a sequence

(1,),50 of instance distributions.
A hash proof system (HPSY for M associates with each instanfd X,L,W,R] of M a
projective hash familyH = (H,K, X,L,[],S,a) for (X,L).

Additionally, P provides several algorithms to carry out basicrajiens we have defined for an
associated projective hash family; namely, sampllogl K at random, computingr(k) 0 S given
kOK , computingH, (X) O] given KOK and X X . We call this latter algorithm thgrivate
evaluation algorithnfor P . Moreover, a crucial property is that the systeovjges an efficient algorithm
to computeH , (X) O[], givena(kK) O S, XUL, andwWOW , whereW is a witness forx. We call
this algorithm thepublic evaluation algorithnfor P . The system should also provide an algorithm that

recognizes elements ¢f .
We now discuss the above-mentioned algorithmshit eore detail. In this discussion, whenever

ALX,LLW,R] O[l,] is fixed in some context, it is to be understoochatt
H=(H,K,X,L,[1,S,a) is the projective hash family th& associates with\ . These algorithms
work with bit strings of length bounded by a polymial in A to represent elements & , [ and S. We
also assume that these algorithms use the samelirgsof the setsX , L and W as the algorithms
from the subset membership probldvh. The systenP provides the following algorithms:

. a probabilistic, polynomial timalgorithm that takes as inplf and an instancé\ d[t,], and

outputsk [1 K , distributed uniformly oveiK .
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. a deterministic, polynomial timagorithm that takes as inpilt , an instance/\ or,l, kOK,
and outputssS[J S such thata (k) = s.

. a deterministic, polynomial timalgorithm that takes as inpilt , an instance/\ Oofr,], kOK
and X[ X, and outputsz LI [] such thatH , (X) U 77.

This is the private evaluation algorithm.
. a deterministic, polynomial timalgorithm that takes as inplt , an instance/\ Of[t,], sbOS

such thata (k) = s for somek [0S, and X L together with a witnessv[JW for X, and outputs
n0[] suchthatH, (X) O 77. This is the public evaluation algorithm.

. a deterministic, polynomial timalgorithm that takes as inpl]f, an instance/\ D[IA], and

¢0{0,1}", and determines i¢ is a valid encoding of an element pf .

4.2 Universal hash proof systems
Definition 4.1

Let O (A) be a function mapping non-negative integers tomegative reals. LeM be a subset
membership problem specifying a sequefkg), ., of instance distributions. Le? be arHPSfor M .

We say thatP is 0 (A) -universal (respectively, -universatsmooth) if there exists a negligible
function O(A) such that for allA= 0 and for all A[X,L,W,R] O [I,], the projective hash family
H=(H,K,X,L,[1,S,a) that P associates with/A is O(A)-close to an O (A)-universal
(respectively, -universgl-smooth) projective hash famild” = (H ", K", X, L, |'|,S,a'*) .

Moreover, if this is the case, amtl(A) is a negligible function, then we say thit is strongly
universal (respectively, universabmooth). We shall call the functiod(A) in the above definition the

approximation errorof P, and we shall refer to the projective hash fanir'rl)7 as thedealizationof H .

It is perhaps worth remarking that if a hash preyaftem is strongly universal, and the underlying
subset membership problem is hard, then the proliEmvaluating Hk(X) for randomk O K and
arbitrary X [1 X, given only X and @ (K) , must be hard. We also need an extension ohttisn. The
definition of anextended HPS for M is the same as that of ordina#?Sfor M , except that for each
k =0 and for each\ = A[ X, L,W,R]O[l,], the proof systenP associates with\ a finite setE
along with a projective hash famill = (H,K, X xE,LXE,[],S,a) for X xE, L xE).

Note that in this setting, to compute, (X,€) for XL and e[J E, the public evaluation
algorithm takes as inputr(k) 0S, xUL, elJE, and a witnesswOW for X, and the private

evaluation algorithm takes as inpktC] K, X0 X, and €[] E . We shall also require that elements of
E are uniquely encoded as bit strings of length bednby a polynomial i\, and thatP provides an
algorithm that efficiently determines whether adtitng is a valid encoding of an elementkof

Definition 4.1 can be modified in the obvious way to defineeeded (A) -universaj HPS's although we
do not need any of the other notions, nor are gaaticularly interesting for the purpose of thipesition.

5.0 Conclusion
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We introduced the notion of a universal hash psyatem. Essentially, this is a special kind of
non-interactive zero-knowledge proof system fomaguage. We do not show that universal hash proof
systems exist for all NP languages, but we do show to construct very efficient universal hash ffroo
systems for a general class of group-theoreticdagg membership problems.

Given an efficient universal hash proof systemaftenguage with certain natural cryptographic
indistinguishability properties, an efficient pubkey encryption schemes secure against adaptosech
ciphertext attack [11, 12, 13] can be constructetthé standard model. Our construction only uses th
universal hash proof system as a primitive: no rophinitives are required, although even more effit
encryption schemes can be obtained by using hastidns with appropriate collision-resistance
properties.

It was also shown that the original Cramer-Shoupeste [12, 14] follows from our general
construction, when applied to a universal hash fosgstem related to the Decision Diffie-Hellman (Bp
assumption.
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