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Abstract

This paper considers the stochastic production planning problem
with the constraint that the inventory level exceeds the demand over a
planning period. Using the existence of a homogeneous Markov non-
randomized optimal policy, the existence of a unique solution to the
associated Hamilton-Jacobi-Bellman equation is established and the optimal
policy is characterized. Also advocated is a stochastic iterative procedure for
locating the optimal inventory level.
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1.0 Introduction

In production planning, one of the most unstalalgables is the inventory level. This is influedce
by certain unavoidable environmental uncertaintlé® sudden random demand fluctuations, inventory
spoilage, sales return etc. They make ideal ptiamhupolicy for a wide class of cost functional iogsible
(Besoussan et al, 1984 [3]).

To take care of these various sources of envirommheandomness, we represent uncertainty by a
filtered probability by n-dimensional Brownian mantiW, defined on(Q, [], P) and satisfying the usual

condition, see for example (Barles, 1997 [2]). §hwe move from deterministic problem to a stodhast
one by considering the “noisy” environment in orttemodel their behavior fairly accurately by adgam
additive noise term in the state dynamics. Thieesacare of the various sources of environmental
randomness, see for example (Fleming, et al, 19P3 [

The general form of production planning is themfolated by representing the inventory level by a

stochastic procesgX,,t 20} , defined on the probability space and generated b with an overall

noise rate that is distributed like white noisﬁV\{, and whose dynamics is governed by the Ito stoithast
differential equation
dX, = U, -Z)dt + dW (1.2)

whered is the intensity of the noise

For basic stochastic concepts see (Karatzasl&x™l [6]) Z; denotes the constant demand rate and
U,, the production function, is a non stochastic peter controlled by the investor. The objectiveois
find an optimal control policy which minimizes thesociated expected cost functional

V(t,x,u) =E J'e‘p‘c(t,x,u)dtlxo =X/, (1.2)
0
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whereC([Jlis a cost function, see (Ghosh, et al, 1992ffi#]packground and some other refereres0 is
a discount factor an¥; is the solution of the stochastic differential etipra (1.1). For some earlier work
in this area see for example (Besoussan et al, [8&hosh et al 1992 [5])

In these models, the objective is to schedule ymrtioin over the planning period so that demand is
satisfied at minimum cost where demand is knowadwance and no back ordering is allowed. Instead,
this paper in order to make an optimal productienision today, we assume that future cost of pribaluc
may exceed the cost of current production plusntosg carrying cost so that it would be more padfle
to produce more than the current periods demandamy inventory forward to satisfy future demand.

2.0 Problem formulation

We first consider a general n-dimensional model katter specialize to a dimensional case for
which explicit solution is obtained. The generainfi of the stochastic production planning model we
would to consider takes the form see(Bessoussalh €084 [3])

dX, = U, - Z)dt + dW (2.2)

where (2.1) is the dynamics of theand subject to

V(t,x,u) = E{fe“"c(t,ut,x[)dt/XO =X (2.2)
0

and C(t,u[,x[) is a quadratic cost functiop, is the diffusion coefficient which influences thgerage
size of the fluctuation oX,
U = [y (1), u,() K u, @], o = diag(c,K o)
and
w, =[w, (1).K w, ()"
is ann-dimensional standard Brownian motion affl flenotes the transpose §f [(2.1) has the following
differential generator

L' = f D, +1T,(00o")D}
0

whereT, is the trace, * B EX and the

(2.3)

f =(U,-2,) is the drift function, characterizing the local

trend see for example (Kushner, 1967 [7]).

Without loss of generality, we assume that th&ahinventory level is zero and the unit cost of
production and the cost of holding inventory is .onge then wish to specify a production plan policgt
minimizes the performance index.

V(t,x,U) = EUO'” (x7x, +UtTUt)dt} (2.4)

The objective is to find an optimal control Markpelicy U([] which minimizes the expected quadratic
objective functional (2.4) and takes a feed backft), =U (t, X[) for a suitably defined). The optimal
costs are then defined by

V' (t,x) = inf =inf[V (t,x,u)] (2.5)

2.1 Existence of optimal Policy
It is well known (Fleming, et al, 1993 [4]) thatet functionV" can be characterized by dynamic
programming principle as solution of the Hamiltaedbi-Bellman (HJB) equation

*

ai+inf0[u*v* +C(t,%,u)] =0 2.6)

ot vz
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whereL" is the second order differential operator to tiffusion and defined by (2.3).

The existence of a homogeneous Markov optimakpdias been proved by (Ghosh, et, al, 1992
[5]) by a convex analytical method. Thus, by thegification theorem (Barles, 1987 [2]), there exiat
minimizer

u; of inf[LV (t,x) + X X, +U/U,] 2.7)
v’ u’ T T
Such that T 4V XX +UTU, =0 2.8)
ot

where dXs(S, XS) is a well defined control process called the optiMarkov control process.

We consider a homogeneous version by assuming thieaperformance inde¥ (t, X,U) is

independent ofvithout any loss of generality, so that upon appiliceof the above principle of optimality,
the dynamical programming equation associated exithoptimal expected co¥f is then

PV (X) = inf<L“V(x)+xTx+uTu} (2.9)
and has a unique solution given W'(x)inf [V(X, u)] , whereV(x,u) = Eﬁe_pt(XTX +UTU)dt} .
0

From (2.9); elementary calculation shows that tHmiasible control policyuD which minimizer (2.7)
X

Vv
takes the feedback form u’=U(x)= 2" (2.10)

whereV, (x) = %—\; and the solutiorV (x,) to (2.9) which gives the general vaive”(x)i nf V(x, u)

u

which satisfies the non-linear partial differenggjuation

.
VX—L:/X ~-Z'V, + %Tr (oo™ Vv, +x7x (2.12)

To investigate this model quantitatively, we oftesort to numerical techniques. See for example
(Kushner, 1990 [7]). Despite the complexity ofsthighly non-linear partial differential equatiahX1).
closed-form solution have been found in many irgténg settings, see for example (Akella, et al 1p8H
Instead in this paper, we specialize in a two disi@mal case for which explicit solution can be aied
and specify the following condition.

oV =

x=Z +g (2.12)

B
that is, the inventory level exceeds the demandovetby E whereB is a given vector. Furthermore,

we assume that V is quadratic since the cost dftfoimal is quadratic see for example, (Bensossaal, e
1984 [3]). We now state our main result.
Theorem 2.1

Let V(x) denote the value function given by

V(¥)=inf EM e (X x+ uTu)dt}
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v, (x)
2
V(%)= x"mx+B X+ solves the HIB equation AV (x)=inf(L"v(x)=x"x+u"u) for m

{a O},a: —20+p)£21+(1+p)* =band r :%ET,(JJT)m+%BBT +Z"B-pB

0 b

and dx = (u - Z)dt + odw, then there is an optimal admissible control U (X) =- and

1)

Proof
Applying the dynamic programming approach, aditthlculation gives the that minimizes (2.9)
to be (2.10) substituting (2.10) into (2.9) yields

T T
PV (X) = ——VXZVX -Z'V, + %Tr (00" WV, + X X+ —VXA?/X

= —%VXTVX -Z'V, +%TraaTVXX +X"1x

Then assuming the quadratic solution of the astatidJB equation to b¥ (X) = X'mx+ BT x + r, we
have

(X" X+ BT X+T) =%[(2mx+ BT)T (2mx+ BT)] - ZT (2mx + BT)+%Tr (007 )(2m) + XTI
O=X mMx+ B x+ o =-x"mx— Bme—%BTB—meZT -Z'B-T (go")m+x"Ix

o = XT, (UO’T)m+%BTB =[l -m'm]xx" =[B" +2Z7]mx
- X' mx + pB' x
=[1 -m'm- pm]xx" —=x"mx+ oB"[I —m"m- om-m]xx" +pBT(Z +gj
Hence if
r :iFTr(UUT)m+EBTB+ZTB—pBT(Z +EH
pl2 4 2

Then
[l =m'm-(1+p)m =0

a 0
Sincem = {O b} solving for a and b we have

a=b=-20+p) £ 21+ 1+ p)*

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 479 - 484
Optimal stochastic production model Alfred C. Okooafor, and Godswill U. Achi  J of NAMP



Thus for given vectoB and fixed discount rate 0 << 1, the value functioiW(x) that solves the HJB can
be obtained in a closed form.

3.0 Analysis of the value functiorV(x)
We can see that for a fixe@ ¢ O, the value functiorv(x) is strictly convex and therefore there
exists a unique* such that

V, (x*) =0
In this case, form (2.10) we have that the optipratiuction is
U = -V, (x) if x<sx*
0 if x=x*

Since the poink* is the minimum point o¥/(X), therefore
<0 if x<x*

V(X)) =420 if x=x*
=0 if x=x*
We can deduce that, for large inventory levelsimore profitable to stop production which for

large stock it is optimal to produce at the higlrast possible. Thus, if the optimal feed backqgydl, is

given by
0 if V, (x)<-2
U =Vi(x) if =Z <V (x) <0
c if V,(x)=0
we can choose any
U, 0[0,c]

but it becomes unprofitable to produce at
X > X*

A stochastic iterative method due to (OkoroaforQ@(@8]) provides a useful technique for computihg t
vector X when it exists.
4.0 Conclusion

We have analyzed the optimal control of a 2-dinmre constrained stochastic production
planning model with discounted criterion on theiriit€ horizon. Also the existence of a closed rirfo
solution to the associated HIB equation with quadigrowth is established and the optimal policy is
characterized. This model is well suited in maotifdng industries where production is made to int

immediate and meet future demand.
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