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Abstract 
  

 This paper considers the stochastic production planning problem 
with the constraint that the inventory level exceeds the demand over a 
planning period.  Using the existence of a homogeneous Markov non-
randomized optimal policy, the existence of a unique solution to the 
associated Hamilton-Jacobi-Bellman equation is established and the optimal 
policy is characterized.  Also advocated is a stochastic iterative procedure for 
locating the optimal inventory level. 
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1.0 Introduction 
 In production planning, one of the most unstable variables is the inventory level.  This is influenced 
by certain unavoidable environmental uncertainties: like sudden random demand fluctuations, inventory 
spoilage, sales return etc.  They make ideal production policy for a wide class of cost functional impossible 
(Besoussan et al, 1984 [3]). 
 To take care of these various sources of environmental randomness, we represent uncertainty by a 
filtered probability by n-dimensional Brownian motion W, defined on ),,( PℑΩ  and satisfying the usual 

condition, see for example (Barles, 1997 [2]).  Thus, we move from deterministic problem to a stochastic 
one by considering the “noisy” environment in order to model their behavior fairly accurately by adding an 
additive noise term in the state dynamics.  This takes care of the various sources of environmental 
randomness, see for example (Fleming, et al, 1993 [4]) 
 The general form of production planning is then formulated by representing the inventory level by a 

stochastic process }0,{ ≥tX t  , defined on the probability space and generated by tℑ  with an overall 

noise rate that is distributed like white noise, ,tdWδ  and whose dynamics is governed by the Ito stochastic 

differential equation 

      tttt dWdtZUdX δ+−= )(    (1.1) 

where δ is the intensity of the noise 
 For basic stochastic concepts see (Karatzas et al 1991 [6]) Zt denotes the constant demand rate and 
Ut, the production function, is a non stochastic parameter controlled by the investor.  The objective is to 
find an optimal control policy which minimizes the associated expected cost functional 
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where C(⋅) is a cost function, see (Ghosh, et al, 1992 [5]) for background and some other references ρ > 0 is 
a discount factor and Xt  is the solution of the stochastic differential equation (1.1).  For some earlier work 
in this area see for example (Besoussan et al, 1984 [3], Ghosh et al 1992 [5]) 
 
 
 
 In these models, the objective is to schedule production over the planning period so that demand is 
satisfied at minimum cost where demand is known in advance and no back ordering is allowed.  Instead, in 
this paper in order to make an optimal production decision today, we assume that future cost of production 
may exceed the cost of current production plus inventory carrying cost so that it would be more profitable 
to produce more than the current periods demand and carry inventory forward to satisfy future demand. 
 
2.0 Problem formulation 
 We first consider a general n-dimensional model and latter specialize to a dimensional case for 
which explicit solution is obtained.  The general form of the stochastic production planning model we 
would to consider takes the form see(Bessoussan et all, 1984 [3]) 

    tttt dWdtZUdX δ+−= )(      (2.1) 

where (2.1) is the dynamics of the Xt and subject to  
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and ),,( tt xutC  is a quadratic cost function, ρ is the diffusion coefficient which influences the average 

size of the fluctuation of Xt, 

    ),(,)](),(),([ 121 σσσ ΚΚ diagtututuu T
nt ==  

and  

      T
nrt twtww )(),([ Κ=  

is an n-dimensional standard Brownian motion and [⋅]T denotes the transpose of [⋅].  (2.1) has the following 
differential generator 

    2
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1 )( xx

T
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where Tr is the trace, 
x

xD
δ
δ=

 and the 
)( tt ZUf −=   is the drift function, characterizing the local 

trend see for example (Kushner, 1967 [7]). 
 Without loss of generality, we assume that the initial inventory level is zero and the unit cost of 
production and the cost of holding inventory is one.  We then wish to specify a production plan policy that 
minimizes the performance index. 
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The objective is to find an optimal control Markov policy U(⋅) which minimizes the expected quadratic 

objective functional (2.4) and takes a feed back form ),( tt xtUU =  for a suitably defined U.  The optimal 

costs are then defined by 

     )],,(inf[inf),(* uxtVxtV
u

==     (2.5) 

2.1 Existence of optimal Policy 
 It is well known (Fleming, et al, 1993 [4]) that the function V* can be characterized by dynamic 
programming principle as solution of the Hamilton-Jacobi-Bellman (HJB) equation 
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where Lu is the second order differential operator to the diffusion and defined by (2.3). 
 The existence of a homogeneous Markov optimal policy has been proved by (Ghosh, et, al, 1992 
[5]) by a convex analytical method.  Thus, by the verification theorem (Barles, 1987 [2]), there exists a 
minimizer  
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where ),( ss XsdX  is a well defined control process called the optimal Markov control process. 

 We consider a homogeneous version by assuming that the performance index ),,( uxtV  is 

independent of without any loss of generality, so that upon application of the above principle of optimality, 
the dynamical programming equation associated with our optimal expected cost V* is then  

    }uuxxxVLxV TTu

u
++= )(inf)(ρ     (2.9) 

and has a unique solution given by ( ) ( )[ ]uxVxV
u

,inf∗ , where ( ) ( ) 
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From (2.9); elementary calculation shows that the admissible control policy ∗u  which minimizer (2.7) 

takes the feedback form   ( )
2

x
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where ( )
x

V
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∂=  and the solution ( ),xV  to (2.9) which gives the general value ( ) ( )uxVnfixV
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which satisfies the non-linear partial differential equation  
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 To investigate this model quantitatively, we often resort to numerical techniques.  See for example 
(Kushner, 1990 [7]).  Despite the complexity of this highly non-linear partial differential equation (2.11). 
closed-form solution have been found in many interesting settings, see for example (Akella, et al 1986 [1])  
Instead in this paper, we specialize in a two dimensional case for which explicit solution can be obtained 
and specify the following condition. 

     
2

B
Zx +=       (2.12) 

that is, the inventory level exceeds the demand vector Z by 
2

B
, where B is a given vector.  Furthermore, 

we assume that V is quadratic since the cost of functional is quadratic see for example, (Bensossan, et al, 
1984 [3]).  We now state our main result. 
Theorem 2.1 
 Let V(x) denote the value function given by  
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and ( ) ,dwdtzudx σ+−=  then there is an optimal admissible control ( ) ( )
2

xV
xU x−=  and 
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Proof 
 Applying the dynamic programming approach, a little calculation gives the U that minimizes (2.9) 
to be (2.10) substituting (2.10) into (2.9) yields 
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Then assuming the quadratic solution of the associated HJB equation to be ,)( rxBmxxxV TT ++=  we 

have  
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Thus for given vector B and fixed discount rate 0 < ρ < 1, the value function V(x) that solves the HJB can 
be obtained in a closed form. 
 
3.0 Analysis of the value function V(x) 
 We can see that for a fixed 0φρ , the value function V(x) is strictly convex and therefore there 

exists a unique x* such that  

    

0*)( =xVx

 
In this case, form (2.10) we have that the optimal production is 
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Since the point x* is the minimum point of V(X), therefore 
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 We can deduce that, for large inventory level, it is more profitable to stop production which for 

large stock it is optimal to produce at the highest rate possible.  Thus, if the optimal feed back policy Uc is 

given by  
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we can choose any  

     
],0[ cUc ∈

  
but it becomes unprofitable to produce at  

      
*xxc >

 
A stochastic iterative method due to (Okoroafor, 2006 [8]) provides a useful technique for computing the 

vector  x* when it exists. 

4.0 Conclusion 

 We have analyzed the optimal control of a 2-dimensional constrained stochastic production 

planning model with discounted criterion on the infinite horizon.  Also the existence of a closed frform 

solution to the associated HJB equation with quadratic growth is established and the optimal policy is 

characterized.  This model is well suited in manufacturing industries where production is made to control 

immediate and meet future demand. 
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