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Abstract 
 

In this work we outline the Bayesian approach to statistical 
inference for finite population survey. We argue that many standard design – 
based inferences can be derived from Bayesian perspectives using classical 
model with non informative prior distributions, thus the already existing 
methods do not need to be neglected. We show that the model for the 

selection mechanisms does not affect inferences about θ and ( )uyQ .  The 

result of our finding however shows that Bayesian inferences under a 
carefully chosen model do enjoy good frequentist properties and a method 
derived under the design – based paradigm does not become any less robust 
under a Bayesian etiology. 
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1.0 Introduction 
Little (2003 [6]) observed that careful model specification, sensitive to the survey design, can 

address the concerns about model misspecification, and that Bayesian statistics provides a coherent and 
unified treatment of descriptive and analytic survey inference. Three main approaches to finite population 
inference can be distinguished (Little and Rubin, 1983). 
(1) Design – based inference: In this case probability statements are based on the distribution of 
sample selection, with the population quantities treated as fixed. 
(2) Frequentist super population modeling: In this case the population values are assumed to be 
generated from super population parameters, and inferences are based on repeated sampling from this 
model. For analytic inference about super population parameters, this is standard frequentist model based 
parametric inference with features of the complex sample design reflected in the model as appropriate. For 
descriptive inference, the emphasis is on prediction of non –sampled values and hence of finite population 
quantities. 
(3) Bayesian inference: Here the population values are assigned a prior distribution and the posterior 
distribution of finite population quantities is computed using Baye’s theorem. 

In practice, the prior is usually specified by formulating a parametric super population model for 
the population values, and then assuming a prior distribution for the parameters as we shall see later. When 
the prior is relatively weak and dispersed compared with the likelihood, as when the sample size is large, 
this form of Bayesian inferences is closely related to frequentist super population modeling, except that a 
prior for the parameters is added to the model specification and inferences are based on the posterior 
distribution rather than on repeated sampling from the super population model. 
1.1 Basis for Bayesian Approach 

Some of the distinguishing features of Bayesian approach include the following: 
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(1) Bayesian methods provide a unified frame work for addressing all the problems of survey 
inferences, including inferences for descriptive or analytical estimands, small or large sample sizes, 
inference under planned, ignorable sample selection methods such as probability sampling and problems  
where modeling assumptions play a more central role such as missing data or measurement error. 
(2) Bayesian inference allows for prior information about a problem to be incorporated in the analysis 
in a simple and straight forward way, via the prior distribution. In surveys, non-informative priors are 
generally chosen for fixed parameters, reflecting absence of strong prior information; but multilevel models 
with random parameters also play an important role for problems such as small area estimation. 
(3) Bayesian inference deals with nuisance parameters in a natural and appealing way. 
(4) Bayesian inference satisfies the likelihood principle, unlike frequentist super population modeling 
or design-based inference. 
(5) Modern computation tools make Bayesian analysis much more practically feasible than in the past 
(for example, Tanner 1996). 
For more detailed notes on features of Bayesian approach see Little (2003 [6]).  
 
2.0 Models for the selection pattern 

We view now the system of modeling the selection pattern within Bayesian framework. This 
formulation enhances the impact of random sampling within the Bayesian inferential framework. For the 
purpose of notations, we follow the pattern as used by Gelman et al. (1995 [3]) with further modifications. 
We define as follows: 

( )tju yy = , where tjy  is the value of survey variable J  for unit t , ;,,1 Jj Λ= { }Nut ΛΛ1=∈  

( )uyQQ =  is the finite population quantity ( )Nu iii ....1=   is the sample inclusion indicator, where 
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uZ  is the fully observed covariates design variable. 

The expanded Bayesian approach specifies a model for both the survey data uy  and the sample 

inclusion indicator ui . Thus the model can be formulated as 

( ) ( ) ( ),,,|,|,,|, φθφθ uuuuuuuu yZiPZyPZiyP ×=    (2.1) 

Where φθ ,  are unknown parameters indexing the joint distribution of  uy  and ui . The likelihood of  

φθ ,   based on the observed data ( )uincu iyZ ,,  is then 

( ) ( )φθαφθ ,|,,,|, uuincuincu ZiyPiyZL  

( )∫= excuuu dyZiyP φθ ,,|,      (2.2) 

In the Bayesian approach the parameters ( )φθ and,  are assigned a prior distribution( )uZP |, φθ . 

Analytical inference about the parameters is based on the posterior distribution. 

( ) ( ) ( )uincuuuincu iyZLZPiyZP ,,|,|,,,|, φθφθαφθ    (2.3) 
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Descriptive inference about ( )uyθθ =  is based on its posterior distribution given the data, which 

is conveniently derived by first conditioning on, and then integrating over, the parameters: 

( )( ) ( )( ) ( )∫= θφθφθ diyZPiyZyQPiyZyQP uincuuincuuuincuu ,,|,,,,,|,,|   (2.4) 

 
 

The more usual likelihood does include the inclusion indicators ui  as part of the model 

specifically, the likelihood ignoring the selection process is based on the model for uy alone: 

( ) ( ) ( )∫= excuuuincincu dyZyPZyPyZL θθαθ ,|,|,|    (2.5) 

Thus the corresponding posterior distribution of θ  and ( )uyQ are 

( ) ( ) ( )incuuincu yZLZPyZP ,||,| θθαθ ( )( )incuu yZyp ,|θ  

    ( )( ) ( ) θθθθ dyZPyZyP incuincu ,|,,|∫=   (2.6)  

It is to be noted that when the full posterior reduces to this simple posterior equation (2.6) above, 
the selection mechanisms is called ignorable for Bayesian inference. 

Applying Rubin’s (1976) theory, the two general and simple conditions for ignoring the selection 
mechanism are: 

(1) Selection at Random (SAR), ( ) ( )θθ ,,|,,| incuuuuu yZiPyZiP =  for all  excy  

(2) Bayesian distinctness: ( ) ( ) ( )uuu ZPZPZP |||, φθθφθ =  

It can easily be verified that these conditions together imply that 

( ) ( )uincuincu iyZPyZP ,,|,| θθ =     (2.7) 

and   ( )( ) ( )( )uincuuincuu iyZyQPyZyQP ,,|,| =    (2.8) 

Thus the model for the selection mechanism does not affect inferences about θ  and ( )uyθ  as 

mentioned earlier.  However, probability sample designs are generally both ignorable and known, in the 
sense that  

( ) ( )incuuuuu yZiPyZiP ,,, =φ     (2.9) 

where uZ  represents known sample design information, such as clustering or stratification information 

Remark 2.1 
Many sample designs depend only on uZ and not on ;incy  an exception is double sampling, 

where a sample of units is obtained, and inclusion into a second phase of question is restricted to a sub-
sample with a design that depends on characteristics measured in the first phase. 
 
3.0 Applications  
3.1 Bayesian derivation for some sample designs 

We now attempt to model the mechanism for selection for some sample designs, namely; Simple 
random sampling and Stratified random sampling 
3.2 Simple random sampling 

The distribution of the simple random sampling selection mechanism is 
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This mechanism does not depend on uy  or unknown parameters and hence is ignorable. A basic 

model for a single continuous survey outcome with simple random sampling is  
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[ ]2
1 σθty ~ ( )2,σθNind     (3.2) 

where ( )2,σθN  denotes the normal distribution with mean θ , variance 2σ .  For simplicity, assume 

initially that 2σ  is known and assign an improper uniform prior for the mean. 

( ) constZP u αθ       (3.3) 

 

 
 
 

Standard Bayesian calculations (Gelman et al 1999) then yield the posterior distribution of θ  to 

be ( )nyN s
2,σ  where ,sy  is the sample mean. 

To derive the posterior distribution of the population mean, uy , note that the posterior distribution 

of uy  given the data and θ  is normal with mean given asy  

( )( ) NnNyn s θ−+      (3.4) 

and variance:   ( ) 22 NnN θ−       (3.5) 

Integrating overθ , the posterior distribution of uy , given the data, is normal with mean 

( ) ( )( ) NyEnNyn ss θ−+ ( )( ) sss yNynNyn =−+=   (3.6) 

and variance 

( )[ ] ( )[ ]θθ ,.var,.var susu yyEyyE + ( ) ( ) nNnnNnNnN 22222 11)( σσσ −=−+−=  (3.7)  

Hence a 95% posterior probability interval for uy  is ( )Nnys −± 196.1 2σ  which is 

identical to the 95% confidence interval from design based theory for a simple random sample. 
Remark 3.1 

This correspondence between Baye’s and design-based results also applies asymptotically to 
nonparametric multinomial models with Dirichlet priors (Scott, 1977b : Binder 1982 [1]) 
Remark 3.2  

With 2σ  known, the standard design-based approach estimates 2σ  by the sample variance s2, 
and assumes large samples. The Bayesian approach yields small sample t corrections, under normality 

assumptions. In particular, if the variance is assigned Jeffrey’s prior ( ) 22 1 σασP , the posterior 

distribution of uy  is student’s t with mean sy , scale ( )NnS −12  and degrees of freedom 1−n . The 

resulting 95% posterior probability interval is ( ) nNnSty n −± − 1975.0, 2
1 , where 975.0,1−nt  

is the 97.5th percentile of the t distribution with 1−n  degrees of freedom. 
Remark 3.3 

The Bayesian approach automatically incorporates the finite population correction ( )Nn−1  in 

the inference 
3.3 Stratified random sampling: 

In general, under stratified random sampling the population is divided intoΗ  strata and nh units 
are selected from the population of NH units in stratum h. 

Define uZ  as a set of stratum indicators, with components 
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This selection mechanism is ignorable providing the model for yt conditions on the stratum variables zt. A 
simple model that does this is 

{ } ( )[ ]22 ,,,| hhhhtt N
ind

hZy σθσθ ≈=      (3.8) 

where N (a, b) denotes the normal distribution with mean a, variance b. For simplicity, assume  2
hσ   is 

known and the flat prior    ( ) .| constzp
uh ∝θ    (3.9) 

on the stratum means. Bayesian calculations similar to the first illustration lead to  
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These Bayesian results lead to Baye’s probability intervals that are equivalent to standard 
confidence interval from design – based inference for a stratified random sample.  

In particular, the posterior mean weights cases by the inverse of their inclusion probabilities, as in the 
Horvitz–Thompson estimator (Horvitz and Thompson, 1952). 
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The posterior variance equals the design-base variance of the stratified mean 
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Binder (1982 [1]) demonstrates a similar correspondence asymptotically for stratified one world 

model with Dirichlet priors. With unknown variances the posterior distribution of uy  for this model with a 

uniform prior on log ( )2
hσ   is a mixture of t distributions, thus propagating the uncertainty from estimating 

the stratum variances. 
Corollary 3.4 

Assume the model equation (3.2) and (3.3) with no stratum effects. With a flat prior on the mean, 

the posterior mean of uy  is then the unweighted mean 

( ) ∑
=

≡=
H

h
shhsuu yPydatazyE

1

2  , , σ , ,nnP hh =  

which potentially is very biased for uy  if the selection rates hhh Nn=π   vary across the strata. The 

problem is that inferences from this model are non robust to violations of the assumption of no stratum 
effects and stratum effects are to be expected in most settings. Robustness consideration leads to the model 
equation (3.8) that allows for stratum effect. 
 
4.0 Conclusion 
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Bayesian approach under simple random sample automatically incorporates the finite population 

correction ( )N
n−1  in the inference. However, the corresponding estimates observed between Baye’s and 

Design based results as shown in section 3 portray Bayesian as been very useful since it incorporates prior 
posterior information and yet does not become less robust. 
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