Journal of the Nigerian Association of Mathematical Physics
Volume 12 (May, 2008), 455 - 460
© J. of NAMP

The Bayesian perspective of some sample survey design in survey-nesponse

*O. R. Oniyide and O. O. Alabi
Department of Mathematical Sciences
Olabisi Onabanjo University, Ago-lwoye, Nigeria

Abstract

In this work we outline the Bayesian approach toasstical
inference for finite population survey. We argueahmany standard design —
based inferences can be derived from Bayesian pectipes using classical
model with non informative prior distributions, thel the already existing
methods do not need to be neglected. We show that mhodel for the

selection mechanisms does not affect inferencesuabd andQ(yu ) The

result of our finding however shows that Bayesianférences under a

carefully chosen model do enjoy good frequentisbperties and a method
derived under the design — based paradigm doeshamome any less robust
under a Bayesian etiology.

Keywords:Baye’s Theorem, Super Population Model, IgnoratdgeBian,
Robustness Design Consistent

1.0 Introduction

Little (2003 [6]) observed that careful model sfieation, sensitive to the survey design, can
address the concerns about model misspecificaéind, that Bayesian statistics provides a coheremt an
unified treatment of descriptive and analytic syrigerence. Three main approaches to finite pdpra
inference can be distinguished (Little and RubB83).

(1) Design — based inference: In this case probabdliftements are based on the distribution of
sample selection, with the population quantitieatied as fixed.
(2 Frequentist super population modeling: In this cHse population values are assumed to be

generated from super population parameters, areteinfes are based on repeated sampling from this
model. For analytic inference about super poputagiarameters, this is standard frequentist modstda
parametric inference with features of the compkxgle design reflected in the model as approprizie.
descriptive inference, the emphasis is on prediationon —sampled values and hence of finite pdjmuia
guantities.
3) Bayesian inference: Here the population valuesaasggned a prior distribution and the posterior
distribution of finite population quantities is cpaoted using Baye’s theorem.

In practice, the prior is usually specified by fadating a parametric super population model for
the population values, and then assuming a prairildution for the parameters as we shall see.|séen
the prior is relatively weak and dispersed compavil the likelihood, as when the sample size igda
this form of Bayesian inferences is closely relatedrequentist super population modeling, excépt 1
prior for the parameters is added to the model ipation and inferences are based on the posterior
distribution rather than on repeated sampling ftbensuper population model.
1.1 Basis for Bayesian Approach

Some of the distinguishing features of Bayesianm@ggh include the following:
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*all correspondence to the author.

(1) Bayesian methods provide a unified frame work fddrassing all the problems of survey
inferences, including inferences for descriptive amalytical estimands, small or large sample sizes,
inference under planned, ignorable sample seleatietmods such as probability sampling and problems
where modeling assumptions play a more centralswdd as missing data or measurement error.

(2) Bayesian inference allows for prior information eba problem to be incorporated in the analysis
in a simple and straight forward way, via the pritistribution. In surveys, non-informative prioreea
generally chosen for fixed parameters, reflectibgemce of strong prior information; but multilevebdels
with random parameters also play an importantfari@roblems such as small area estimation.

3) Bayesian inference deals with nuisance parameateasatural and appealing way.

4) Bayesian inference satisfies the likelihood priteipnlike frequentist super population modeling
or design-based inference.

(5) Modern computation tools make Bayesian analysishnmore practically feasible than in the past

(for example, Tanner 1996).
For more detailed notes on features of Bayesianoagh see Little (2003 [6]).

2.0 Models for the selection pattern

We view now the system of modeling the selectiottgpa within Bayesian framework. This
formulation enhances the impact of random samplhiitgin the Bayesian inferential framework. For the
purpose of notations, we follow the pattern as useelmanret al. (1995 [3]) with further modifications.
We define as follows:

Y, =(ytj ) wherey, is the value of survey variabld for unitt, j =LA ,J; t0Ou = {1/\ A N}
Q= Q(yu) is the finite population quantity, = (il"'jN) is the sample inclusion indicator, where

1, if unit tisincluded

0, otherwise
Yy = (Ve » Yoro ) Vincimplies included part of y,
Y..dmplies excluded part of y,
Z, is the fully observed covariates design variable.
The expanded Bayesian approach specifies a modébth the survey daty, and the sample
inclusion indicator,, . Thus the model can be formulated as
P(y,.is 12,.6.0)=P(y, 12,.6)x P, 2,.Y,.9) (2.2)
Where 8, ¢ are unknown parameters indexing the joint distidu of Y, andiu. The likelihood of
6, ¢ based on the observed d@%nc’iu) is then

L(e’wlz u’ yinc’ Iu) a P(yinc’ iu |Z u e’w)
=[Py, i1.,2,.6.9) dy,, 22)

In the Bayesian approach the parameté@s andw) are assigned a prior distributiﬁ(e, o| Zu).
Analytical inference about the parameters is basethe posterior distribution.

P(9,¢|Zu, yinc’iu) a P(B’ ¢|Zu)|-(9’ ¢|Z u’yinc’iu) (2'3)

Journal of the Nigerian Association of Mathematic&thysics Volumel2(May, 2008) 455 - 460
Bayesian perspective of some sample survey O. R.i@de and O. O. Alabi J of NAMP



Descriptive inference abod= H(yu) is based on its posterior distribution given tlgad which
is conveniently derived by first conditioning omdathen integrating over, the parameters:

P(Q(y u) | Zu ) yinc’iu) = .[ P(Q(yu) | Zu ’ yinc’iu’e’ w) P(‘91¢| Zu ) yinc’iu)dg (2.4)

The more usual likelihood does include the inclosiadicators i, as part of the model

specifically, the likelihood ignoring the selectiprocess is based on the model fgralone:
L(812,. Yo ) P(Yine 1Z,.6) = [ Py, 1Z,.6)dYes (2.5)
Thus the corresponding posterior distributionébfand Q (yu)are
P(012,. Y, )aP(612,) L(O1Z,,Y0c) P(E(Y.)1Z,: Vi)
=[P (6(Y)1Z,Yine 6) P (81Z,,Yic)dO (2.6)

It is to be noted that when the full posterior regkito this simple posterior equation (2.6) above,
the selection mechanisms is called ignorable foreBian inference.

Applying Rubin’s (1976) theory, the two general aiichple conditions for ignoring the selection
mechanism are:

1) Selection at Random (SARP (i, | Z,.V,.6) = Pli, | Z,, ,..6) forall y,
(2) Bayesian distinctnesd? (9, plZ, ) =P 9(9 |Z, ) P(¢)| Z, )
It can easily be verified that these conditionstbgr imply that
P12, Yine) = PO1Z, Vi i) (2.7)
and P(Q(YL)IZy: Yine) = P(QYL)I Zy Yine 1) (2.8)

Thus the model for the selection mechanism doesaffett inferences abouf and G(yu) as
mentioned earlier. However, probability sampleigies are generally both ignorable and known, in the

sense that
Pi./Zy. Yo @) = P/ Z4 Yic) (2.9)
where Z,, represents known sample design information, seatiustering or stratification information
Remark2.1
Many sample designs depend only @y and not onY,,.; an exception is double sampling,

where a sample of units is obtained, and inclugidm a second phase of question is restricted saka
sample with a design that depends on characteristéasured in the first phase.

3.0 Applications
3.1 Bayesian derivation for some sample designs
We now attempt to model the mechanism for seledtorsome sample designs, namely; Simple
random sampling and Stratified random sampling
3.2 Simple random sampling
The distribution of the simple random sampling stb® mechanism is

NYD
. ,if Y i =n
P(i,/Z,. v, 0) = (nj D3 (3.1)
0, otherwise

This mechanism does not depend ¥ or unknown parameters and hence is ignorable.sicba
model for a single continuous survey outcome wiitlpde random sampling is
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ly./6.0%| - ind N(6,0?) (3.2)
where N(Q, 0’2) denotes the normal distribution with me#h varianceg®. For simplicity, assume

initially that o is known and assign an improper uniform priortfer mean.

P(H|Zu) a const (3.3)

Standard Bayesian calculations (Gelneral 1999) then yield the posterior distribution 6f to
be N (Vs,az/n) wherey, is the sample mean.

To derive the posterior distribution of the popidatmeany, , note that the posterior distribution

of ¥, given the data and is normal with mean given 35

(g, +(N - n)g)/N (3.9)

and variance: (N -n)g?/N? (3.5)
Integrating oved, the posterior distribution oy, , given the data, is normal with mean

(ny.+(N-n)E@/y.))/N =(ny, +(N -n)y.)/N =y, (3.6)

and variance

Evar(y,/y.. 8] +varlE(y,/¥..6] = (N-n)o?/N? +i-/NJ’o*/n= (1-/N)o*/n  3.7)
Hence a 95% posterior probability interval fdy, is Y.+ 1.96\/02(1— n/N) which is

identical to the 95% confidence interval from dedigsed theory for a simple random sample.
Remark3.1

This correspondence between Baye’'s and design-beesedts also applies asymptotically to
nonparametric multinomial models with Dirichletqn$ (Scott, 1977b : Binder 1982 [1])
Remark3.2

With g known, the standard design-based approach esﬁmafeby the sample variancé, s
and assumes large samples. The Bayesian approalds wmall sample t corrections, under normality

assumptions. In particular, if the variance is gesd Jeffrey’s priorP(Jz) a 1/02 , the posterior

distribution of ¥, is student's with meanY, scale,/S* (1— n/N) and degrees of freedom—1. The
resulting 95% posterior probability interval g+t ,,0.975 |/S? (1— n/N)/n , wheret,_,,0.975

is the 97.5 percentile of the t distribution with —1 degrees of freedom.
Remark3.3
The Bayesian approach automatically incorporateditiite population correctimﬁl— n/ N) in

the inference
3.3 Stratified random sampling:

In general, under stratified random sampling theutation is divided intdd strata anahy, units
are selected from the population of Nhits in stratuni.

Define Z,, as a set of stratum indicators, with components
_ {], if unit tisin stratumh;

' |0, otherwise

Journal of the Nigerian Association of Mathematic&thysics Volumel2(May, 2008) 455 - 460
Bayesian perspective of some sample survey O. R.i@de and O. O. Alabi J of NAMP



This selection mechanism is ignorable providingriaelel fory, conditions on the stratum variablgsA
simple model that does this is

v 1z, =hig,. o2}=;  N(g,.07) (3.8)

ind

whereN (a, b)denotes the normal distribution with mesrvarianceb. For simplicity, assumeaﬁ is

known and the flat prior p(@h |z, ) (1 const (3.9)

on the stratum means. Bayesian calculations sinal#re first illustration lead to

lyu |ZU’ data, {Jﬁ}] = N(yst'JZS‘) (3.10)

H
where Y, :z P, Yo B =N, /N, Yy, = samplemeanin stratumh,
h=1

"
o'« =Y PZ(-f,)o7/n,
h=1

f.=n,/N,.
These Bayesian results lead to Baye’s probabiliigrials that are equivalent to standard
confidence interval from design — based inferencafstratified random sample.
In particular, the posterior mean weights casethbynverse of their inclusion probabilities, aghe
Horvitz—Thompson estimator (Horvitz and Thomps@52).

H H
Vo= N Y N YVL=N"Y > yi/m (3.11)
h-1 h=1 t:x,=h

m, =n,/N, = selectionprobability in stratumk
The posterior variance equals the design-basencariaf the stratified mean

H 2 n 0'2
y |Z , data)= P 1—/)/ 3.12
var(y, | Z,, data) > h( N, ) (3.12)

Binder (1982 [1]) demonstrates a similar corresoeg asymptotically for stratified one world
model with Dirichlet priors. With unknown variancé®e posterior distribution o¥/, for this model with a

uniform prior on Iog(J,f) is a mixture of t distributions, thus propagatihg uncertainty from estimating

the stratum variances.
Corollary 3.4
Assume the model equation (3.2) and (3.3) withtratim effects. With a flat prior on the mean,

the posterior mean oy, is then the unweighted mean
E(y,

which potentially is very biased foy, if the selection rates7, = n, /N, vary across the strata. The

problem is that inferences from this model are napust to violations of the assumption of no stratu
effects and stratum effects are to be expectedost settings. Robustness consideration leads tmtfuke|
equation (3.8) that allows for stratum effect.

H
z,,data az)zysEZPh Yono B =10/N,
h=1

4.0 Conclusion
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Bayesian approach under simple random sample atitaiha incorporates the finite population
correction(l— %') in the inference. However, the corresponding et observed between Baye’s and

Design based results as shown in section 3 poBeggsian as been very useful since it incorponaties
posterior information and yet does not becomereissst.
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