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Abstract 
 

 This paper provides a scheme for choosing the smoothing 
parameter in boosting kernel density estimates. Several boosting algorithms 
are implemented using different choices of smoothing parameters and the 
"best" choice is found to be at order – four after considering different sets of 
data. 
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1.0 Introduction 
 The choice of the smoothing parameter has always been the "Cross" of kernel density estimation 
(Silverman (1986 [16]), Wand and Jones (1995 [17]), Jones and Signorini (1997 [9])). The choice of the 
smoothing parameter is not easily found and as a result of this, the idea of boosting in KDE was introduced 
by Schapire in 1990. Other contributors include Freund (1995 [4]), Freund and Schapire (1996 [15]) and 
Schapire and Singer (1999 [14]). 
 Boosting is a means of improving the performance of a "Weak learner" in the sense that given 
sufficient data, it would be guaranteed to produce an error rate which is better than "random guessing".  
 Different boosting algorithms are now in existence. These include Mazio and Taylor's (2004[11]), 
Adaboost (1997) and Ishiekwene et.al (2007a [7] and 2007b [8]) just to mention a few. All these boosting 
algorithms use suitably re-weighting of Data. This re-weighting is done by placing a weight on the kernel 
estimator. Boosting has been shown by all these authors to be a bias reduction technique. 
 In section two, we show different boosting algorithms and how boosting is a bias reduction 
technique. Section three clearly shows how the choice of the smoothing parameter is chosen and the effects 
on the boosting algorithms stated in section two. Numerical examples are used to validate our claims in 
section four and the findings discussed with recommendation. 
 
2.0 Different boosting algorithms in kernel density estimates and bias reduction 
 Three different boosting algorithms which are bias reduction techniques are stated in this paper. 
The three algorithms are numbered 1 – 3. 
2.1 Algorithm 1 (Mazio and Taylor (2004 [11] )) 
Step 1 

Given { }nixi ,...,2,1, = , initialize ( ) niW 1
1 =  

Step 2 
Select h (the smoothing parameter). 

Step 3 
For m =1, 2, … M, obtain a weighted kernel estimate, 
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and then update the weights according to  
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Step 4 
Provide output as 
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ˆ  renormalized to integrate to unity 

2.2 Algorithm 2 (Ishiekwene et.al 2007a [7]) 
Step 1 

Given { }nixi ,...,2,1, = , initialize ( ) niW 1
1 =  

Step 2 
Select h (the smoothing parameter). 

Step 3: For m =1, 2, … M,  

(i) Get ( ) ( )

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(ii)  Update ( ) ( ) meshiWiW mm +=+1  

Step 4 

Provide output   ( )∏
=

M

m
m xf

1

ˆ  and normalized to integrate to unity 

Here, we observe that the weight function uses a meshsize instead of the leave-one-out log ratio function of 
Mazio & Taylor (2004). 
2.3 Algorithm 3 (Ishiekwene et.al 2007 b [8]) 
Step 1 

Given { }nixi ,...,2,1, = , initialize ( ) niW 1
1 =  

Step 2 
 Select h (the smoothing parameter). 

Step 3 
For m =1, 2, … M,  

(iii)  Get  ( ) ( )

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(iv) Update    ( ) ( ) ( )
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Step 4 

Provide output   ( )∏
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m
m xf

1

ˆ  and normalized to integrate to unity 

Here, we also observe that the weight function uses a bootstrap estimate instead of the leave-one-out log 
ratio function of Mazio and Taylor (2004 [11]). 
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2.4 Boosting as a bias reduction in kernel density estimation 

Suppose we want to estimate f(x) by a multiplicative estimate. We also suppose that we use only 
"weak" estimates which are such that h does not tend to zero as n→ ∞. Let us use a population version 
instead of sample in which our weak learner, for h > 0 is given by 
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h
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where ( )yW1  is taken to be 1. We shall take our kernel function to be Gaussian (since all distributions tend 

to normal distribution as n - the sample size, becomes large through central limit theory). The first 
approximation in the Taylor's series, valid for h < 1 provided that the derivatives of f(x) are properly 
behaved, is 
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+=  and so we observe the usual bias of order ( )20 h  of Wand and Jones (1995 

[17]). If we now let ( ) ( )xfxW 1
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This gives an overall estimator at the second step as 
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which is clearly of order four and so we can see a bias reduction from order two to order four ( for further 
details, see Mazio and Taylor 2004 [11]).  
 
3.0 Choice of smoothing parameter in boosting KDE's 
  We present an expression which is to generate different values of the smoothing parameter, h. 
This gives the advantage of seeing how any data set behave when different h-values are used in boosting 
KDE. These choices of h would be seen to give “good” density estimates when used in boosting unlike 
when h is chosen subjectively, it can result in either oversmoothing or undersmoothing the density function. 
 The expression for h is given as 
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where p = 2, 4, 6, … , < ∞. 
And provided k is a kernel function satisfying 
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where p = 2, 4, 6, … , < ∞. is the order of the kernel function which is symmetric and continuously 
differentiable. 
 For further details on (3.1) and (3.2), you can see Ishiekwene and Afere (2001 [5]), Osemwenkhae 
(2003 [12]), Ishiekwene et.al (2006a [[6]). 
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 From the three different boosting algorithms stated above we can see that the kernel density 

estimator represented by equation (2.1), is dependent on h since the quantity 
( ) ∞→

h

iWm  as 0→h   

 
 
 
this means that a heavier weight is placed on the kernel function. This produces “noises” on the boosted 

density estimates. Also, 
( )

0→
h

iWm  as ∞→h , thereby placing a lighter weight on the kernel function 

and resulting in smooth boosted density estimates. Thus, the value of h has a prominent role to play in all 
boosting algorithms in KDE. It is also a fact that h in turn determines the quantity – bias squared which 
translates to affecting the AMISE which measures the discrepancy in our estimates (Wand and Jones 1995 
[17], Duffy and Helmbold 2000 [1]. 
 
4.0 Numerical results 
 We used three sets of data ( Data 1 is the lifespan of a car battery in years, Data 2 is the number of 
written words without mistakes in every 100 words by a set of students and Data 3 is the scar length of 
patients randomly sampled in millimeters. See Ishiekwene and Osemwenkhae, 2006 [6]) which were 
suspected to be normal to illustrate algorithms 1, 2 and 3 and bring out clearly the effect of h on all three 
algorithms listed in this paper. BASIC programming language is used to generate the results and their 
corresponding graphs shown in figures 4.1 – 4.6. 
 Table 4.1 shows the values of the smoothing parameters obtained using equation 3.1 above for 
three different data sets. Table 4.2 shows the values of the bias squared, variance and AMISE for the three 
different data sets respectively. 
 

Table 4.1: Values of smoothing parameter obtained for different higher order 
 

Method Data 1 ( n = 40 ) Data 2 (n = 64 ) Data 3 ( n = 110 ) 

H2 0.3559702 3.899261 0.1542693 

H4 0.476858 5.4463023 0.2261031 

H6 0.536033 6.2213213 0.2631049 

H8 0.5707907 6.681324 0.2853423 

H10 0.5936022 7.059361 0.300129 

H12 0.6089225 7.1998385 0.3105749 

H14 0.62104455 7.3607483 0.31853044 

H16 0.63028343 7.48493897 0.32463876 

H18 0.6373304 7.58388756 0.32951451 
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H20 0.643619145 7.6645779 0.3334964 
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     Figure 4.1: Probability density estimate using the             Figure 4.2: Probability density estimate using  
     Leave-One-Out Scheme for Data 1 (Order 2)               the leave-one-out scheme for Data 1 (Order 4) 
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Leave-One-Out Scheme for Data 1 (h=0.6373304)
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Figure 4.3: Probability density estimate using the 
leave-one-out scheme for Data 1 (Order 18) 
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Figure 4.4: Probability density estimate using the 
leave-one-out scheme for Data 1 (Order 20) 
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Figure 4.5: Probability density estimate using the 
leave-one-out scheme for data 2 (Order 2) 
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Figure 4.6: Probability density estimate using the 
leave-one-out scheme for Data 2 (Order 4) 
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Figure 4.7: Probability density estimate using the 
leave-one-out scheme for Data 2 (Order 18) 
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Figure 4.8: Probability density estimate using the 
leave-one-out scheme for Data 2 (Order 20) 
 

Leave-One-Out Scheme for data 3 (h=0.1542693)

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7

X

pd
f

NORMAL

1ST BOOST

2nd boost

3rd Boost

4th boost

 
Figure 4.9: Probability density estimate using the 
leave-one-out scheme for Data 3 (Order 2) 
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Figure 4.10: Probability density estimate using the 
leave-one-out scheme for Data 2 (Order 4) 
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Figure 4.11: Probability density estimate using 
the leave-one-out scheme for data 3 (Order 18) 
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Figure 4.12: Probability density estimate using 
the leave-one-out scheme for Data 3 (Order 20) 
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Figure 4.13: Probability density estimate using 
the Bootsrap scheme for Data 1 (Order 2) 
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Figure 4.14: Probability density estimate using 
the Bootsrap scheme for Data 1 (Order 4) 
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Figure 4.15: Probability density estimate using the 
Bootsrap scheme for Data 1 (Order 18) 
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Figure 4.16: Probability density estimate using the 
Bootsrap scheme for Data 1 (Order 20) 
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Figure 4.17: Probability density estimate using 
the Bootsrap scheme for data 2 (Order 2) 
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Figure 4.18: Probability density estimate using 
the Bootsrap scheme for Data 2 (Order 4) 
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Figure 4.19: Probability density estimate using 
the Bootsrap scheme for Data 2 (Order 18) 
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Figure 4.20: Probability density estimate using 
the Bootsrap scheme for Data 2 (Order 20) 
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Figure 4.21: Probability density estimate using the 
Bootsrap scheme for Data 3 (Order 2) 
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Figure 4.22: Probability density estimate using the 
Bootsrap scheme for Data 3 (Order 4) 
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Figure 4.23: Probability density estimate using 
the Bootsrap scheme for data 3 (Order 18) 
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Figure 4.24: Probability density estimate using 
the Bootsrap scheme for Data 3 (Order 20) 
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Figure 4.25: Probability density estimate using 
the Meshsize scheme for Data 1 (Order 2) 
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Figure 4.26: Probability density estimate using 
the Meshsize scheme for Data 1 (Order 4) 
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Figure 4.27: Probability density estimate using the 
Meshsize scheme for Data 1 (Order 18) 
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Figure 4.28: Probability density estimate using the 
Meshsize scheme for Data 1 (Order 20) 
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Figure 4.29: Probability density estimate using 
the Meshsize scheme for data 2 (Order 2) 
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Figure 4.30: Probability density estimate using 
the Meshsize scheme for Data 2 (Order 4) 
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Figure 4.31: Probability density estimate using 
the Meshsize scheme for Data 2 (Order 18) 
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Figure 4.32: Probability density estimate using 
the Meshsize scheme for Data 2 (Order 20) 
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Figure 4.33: Probability density estimate using the 
Meshsize scheme for Data 3 (Order 2) 
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Figure 4.34: Probability density estimate using the 
Meshsize scheme for Data 3 (Order 4) 
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Figure 4.35: Probability density estimate using 
the Meshsize scheme for data 3 (Order 18) 
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Figure 4.36: Probability density estimate using 
the Meshsize scheme for Data 3 (Order 20) 
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5.0 Conclusion and remarks 

The values of h- the smoothing parameter obtained using equation (3.1) for m = 1,4,6, … 20, are 
displayed in Table 4.1 and are used for the different boosting algorithms for all three data set . Some 
selected smoothing parameter choices (namely, orders 2,4,18 and 20) are used in plotting estimates for the 
kernel density function for the three different data sets, and the density estimates are displayed in figures 
4.1 – 4.36. In all, the order two choices showed some noises at the ‘peaks’ of all three density estimates. 
Thus, we recommend the use of higher orders greater than or equal to four smoothing parameter choices 
when using boosting algorithms in kernel density estimates. This also supports Jones and Signorini’s [9] 
order four choice of smoothing parameter arguably the “best”. The estimates for the density curves as 
shown in Figures 4.1 – 4.36, are done for all three algorithms namely; Algorithm 1 (Mazio and Taylor 
[11]), Algorithm 2 (Ishiekwene et.al 2007a [8]) and Algorithm 3 ( Ishiekwene et.al 2007b [7]). The results 
showed that apart from the order two choice of the smoothing parameter, all other smoothing parameter 
choices are appropriate for any of the boosting algorithm employed. We therefore recommend the use of 
these higher order smoothing parameter choices in boosting in kernel density estimation. 
 

Table 4.2: Showing bias reduction 
 

 Data 1 Data 2 Data 3 
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