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Abstract: 
 

In this paper are present a mathematical model of human genetics 
with overlapping generations. The model which is a system of ordinary 
differential equations is analyzed using techniques from dynamical systems 
theory. It is shown that the system is always unstable. It is also shown that if 
x(t), y(t) = z(t) are the genotype frequencies, then x(t), y(t), and z(t) 
respectively tend to constants as t increases. 
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1.0 Introduction 

Some human cells have single chromosomes (sperm or eggs), but most have chromosomes 
occurring in matched sets. When a single chromosome occurs, the cell is called a haploid cell. It is a 
diploid cell if the chromosomes occur in matched homologous pairs. Human beings are diploid organisms 
having 23 chromosome pairs, and many plants are polyploids. 

Attention is directed first at one gene locus having two alleles. These are denoted by A and a. If 
the organism is haploid, then it can be either of type A or type a at that locus. Therefore, a population of 
these organisms is partitioned by this locus into those of type A and those of type a. If the organism is 
diploid, then the possible types at the locus are AA, Aa, and aa. Note that Aa and aA and aA are 
indistinguishable in the organism, and so are lumped together in the single notation Aa. These genetic types 
in a population are called the genotypes. 

Cell reproduction occurs either through asexual reproduction (mitosis) or sexual reproduction 
(meiosis). In sexual reproduction, diploid parents each form haploid cells called gametes. These are the 
sperm (male) and the ova (female). The gametes combine to form a fertile cell called the zygote. The 
zygote is a diploid cell that goes on to reproduce by mitosis. The gametes can be thought of as having 
chromosomes being one strand each from each parent, although the actual situation is more complicated. 
For example, if the parents have genotypes AA and aa, respectively, then the gametes are A and a, 
respectively, so the offspring must have genotype Aa. 

Cells having genotypes AA and aa are called homozygotes and the Aa’s are heterozygotes. So 
mating of homozygotes results in homozygous or heterozygous progeny, depending on whether or not the 
homozygotes are identical. The type of matings and resulting frequencies of progeny genotypes were 
observed in 1850 by G. Mendel [14]. 

Many models and methods have been devised for studying human genetics. Many of these models 
used discrete models. Some of such early models include those of Ewens [5], Crow and Kimura [4], Moran 
[15], Cavalli-Sforza and Bodmer [2], Ludwig [12] and Feller [8]. 
 Fisher and Wright [9, 16] presented a discrete time model. They assumed the population to mate at 
random and be synchronized with non-overlapping generations. They further assumed the population size 
to remain constant (= µ) through the generations. The model was then analyzed.  
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 Galton, Watson and Fisher [10] used the approach of branching process and focused on the fate of 
a small number of A genes. They determined the probability distribution of offspring and its generating 
function which they assumed did not depend on the parents’ history. They also calculated the extinction 
probabilities.  Fisher, Wright and Haldane [10] used the method of averaging to formulate their own model. 
They modeled the gene pool from generation to generation by the sequence {gn}. They assumed that the 
fitnesses are almost constant but periodic and finally showed that the mean values of the fitnesses 
determined the gene pool’s evolution.  Calabrese, P[1] developed a new model to estimulate the evolution 
of so-called recombination hotspots in the genome. The mathematical model and its associated software has 
brought much-needed rigor to evolutionary investigation of how natural selection acts on individual genes. 
The model is also believed to aid the search for disease-associated genes within the human genoms. 
 Kendal, J.R. and Laland, K.N. [11] presented a mathematical model for Memetics. The goal of this 
article was to point out the similarities between memetics and cultural evolution and gene-culture co-
evolutionary theory and to illustrate the potential utility of the models to memetics. They illustrated how 
the theory can be applied by developing a simple illustrative model to test a hypothesis from the memetics 
literature.  For other mathematical models on human genetics see [3, 6, 7, 13]. 
 
2.0 The model formulation 
 One way to handle overlapping generations in the mathematical mode of human genetics is to use 
continous functions to describe the genotype frequencies. Before we go into the model we first define the 
symbols and parameters that will be used here. 
2.1 Symbols and parameters 

D(t) = number of AA genotypes at time t 
2H(t) = number of Aa genotypes at time t 
R(t) = number of aa genotypes at time t 
P(t) = total population size at time t 
b = common birth rate of D(t), H(t) and R(t) 
d1 = death rate of genotype AA 
d2 = death rate of genotype Aa 
d3 = death rate of genotype aa 

2.2 Assumptions 
(i) D(t), H(t), R(t) are smooth functions of t. 
(ii)  The subpopulations D(t), H(t), R(t) reproduce according to Malthus rule, with common 

birth rates b. 
(iii)  The different types of genotypes have different death rates. 

2.3 The model 
With the above symbols/parameters and assumptions, we now formulate the model as a system of 

ordinary differential equations. 

Let      
( )

P
RHp +=      (2.1) 

And     
( )

P
RHq +=      (2.2) 

where p is the proportion of the gene pool which are of type A and q is the proportion of the gene pool 
which are of type a. An AA fertilized by an A gene produces an AA offspring and so on. Therefore,  

( ) DdbPpDdPHbbDP
dt

dD
1

2
122 −=−+=  

HdbPpq
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Hence the model is 
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where HH 2=′  
 
3.0 Steady state analysis 

The steady state occurs at the point where 0===
′

=
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dt
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.  Solving this gives the 

steady state as ( ) ( ) 0
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steady state.  Linearizing (2.3) we obtain the Jacobian as  
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The eigenvalues are b==== 4332211  , d-  , d-  , d- λλλλ  

321  ,  , λλλ  are negative while 4λ  is positive. Since b can not take a negative value, it means that (2.3) 

can not be stable. Hence it always remains unstable. For (2.3) to be stable b must be negative which is not 
possible. 
Theorem 3.1 

 If the genotype frequencies are defined as )(R(t)(t) , )(2H(t)2y(t) , )()()( tPtPtPtDtx =Ζ==  

and the A-gene frequency p(t) = x(t) + y(t), also if there is a slow selection by death: 

3 2, 1,i , =∆+= ii dd ε  then when 0dP , 0 == dtε  and 22 q , pqy , →→→ zpx  as t 

increases 
Proof: 

Since )()()( tPtDtx = , ( ) ( )1
2

2
ddxxpb

P

dtDdPdtPdD

dt

dx −+−=−=  
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Similarly ( ) ( )2ddyypqb
dt

dy −+−= , ( ) ( )3
2 ddzqb

dt

dz −Ζ+−= , ( ) ( )ydxddpyx
dt

d

dt

dp
21 +−=+=  

where Ζ++= 321 2 dydxdd .  Setting ii dd ∆+= ε  for i = 1, 2, 3 and using method of matched 

asymptotic expansions we get ( ) ( )iii zyxdd ∆−∆=∆−∆+∆+∆=− εε 321 2  

 
 
 

( ) ( )1
2

dt

dx
 ∆−∆+−=∴ xxpb ε , ( ) ( )2dt

dy
 ∆−∆+−= yypqb ε , ( ) ( )3

2

dt

d ∆−∆+−= zzqb
z ε  

( )[ ]21 y∆x∆∆pε
dt

dp +−= , when  00 22 qpq  and  z , yp  and  x
dt

dp
 , ε →→→==  as t 

increases. 
 
4.0 Summary and Conclusion 
 In this paper we have been able to formulate a mathematical model for human genetics with 
overlapping generations. The model is based on three assumptions: 
a. The number of AA genotypes D(t), the number of Aa genotypes 2H(t) and the number of aa 
genotypes R(t) are smooth functions. 
b. D(t), 2H(t) and R(t) reproduce according to malthus’ rule with common birth rate, b. 
c. The different genotypes have different death rates. 

Based on these assumptions and the parameters defined, the model was formulated. The model 
was then analyzed. The steady state was determined as:  

( ) ( ) 0
2

32
2

10000  ,  , P , R , H , PbqpqpD ΨΨΨ=′   

and it was shown that this steady state is unstable. The conditions for the stability of the steady states is that 
the common birth rate of the different types of genotype is negative which is not possible. 
 It was later proved that if the genotype frequencies are defined as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tPtRtPtHtPtDtx =Ζ== t , 2t2y ,  

and the A-gene frequency p(t) = x(t) + y(t), also if there is slow selection by death 

3 2, 1, i  , =∆+= ii dd ε  

then when 22 qz  , pqy , p  xand  0
dt

dP
  , 0 →→→==ε  as t increases. 
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