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Abstract 
 

Mathematical models for the population dynamics of tuberculosis 
under the implementation of the direct observation therapy strategy (DOTS) 
in Nigeria are presented. The models establish conditions for the 
minimization and eradication of tuberculosis in Nigeria based on the fraction 
of infectious individuals treated under DOTS. The results from the models 
showed that there existed a stable disease free equilibrium provided the 
fraction of treated infectious individuals exceeded a critical value. The results 
showed that DOTS expansion in Nigeria must include a significant increase 
in the number of infectious individuals treated under DOTS else the effect in 
reducing the incidence of tuberculosis in Nigeria may not be achieved. 
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1.0 Introduction 

Tuberculosis (TB) was assumed to be on its way out in developed countries until the number of 
TB cases began to increase in the late 1980s [28]. TB is an airborne transmitted disease. Mycobacterium 
tuberculosis droplets are released in the air by coughing or sneezing infectious individuals [28]. Tubercle 
bacillus carried by such droplets lives in the air for a short period time (about two hours) and, therefore, it 
is believed that occasional contacts with TB-active persons (infectious individuals) rarely lead to 
transmission and that most secondary cases are the result of prolonged and sustained close contacts with a 
primary case. 

Latently infected individuals (inactive TB) become infectious (active TB) after a variable 
(typically long) latency period which range from months to decades. Most infected individuals never 
progress towards the active TB state. On the other hand, average infectious periods are relatively short (few 
months) and becoming shorter in developing nations due to the availability of treatment.  

Tuberculosis has continued to cause a high mortality in humans especially in developing 
countries, with Sub-Saharan Africa having the highest incidence in per-capita rate [20, 22]. It is estimated 
that a third of the world’s population is infected with Mycobacterium tuberculosis. Of the 1.7 billion people 
estimated to be infected with TB, 1.3 billion live in developing countries [29]. Those infected are 
responsible for 8 to 12 million active cases of TB and 3 million deaths [20, 26]. 

A global control strategy adopted by the WHO to help reduce the number of active TB cases as 
well as effect proper treatment of patients with tuberculosis is the Direct Observation Therapy Strategy 
(DOTS). DOTS have evolved as a strategy that makes it compulsory for patients to complete their 
treatment. The DOTS program uses a nurse or surrogate to deliver and observe the patients taking all the 
doses of their drugs rather than relying on the patients to take the drugs on their own [10]. The patients may 
either come to a health facility (clinic based DOT) [10, 13] or be visited wherever the patients is found e.g. 
at work, home or shelter (community based DOT) [11]. 
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DOTS is seen to be highly effective at promoting successful treatment. Although a program like 

DOTS is essential to reducing TB relapse and emergence of drug resistant strains, its impact on the control 
of tuberculosis transmission is not clear [2, 4].  

Nigeria has been ranked fourth among the 22 countries designated by the WHO as high-burden 
countries for TB. Nigeria is also said to have the highest number of new TB cases in Africa [23, 33]. An 
estimated 300,000 TB cases are recorded each year, resulting in 30,000 deaths annually. The total notified 
cases of all forms of TB increased from 46,473 in 2003 to 59, 493 in 2004. 

With DOTS implementation in Nigeria, the detection rate remained at a low 21% while treatment 
rate is 59% in 2003, the lowest among any HBC [33]. What condition(s) can we impose on the fraction of 
infectious individuals receiving treatment under a DOTS program that could help eradicate TB in Nigeria 
or at least minimize the incidence of the disease? 

In this paper, we will be formulating mathematical models to investigate the overall effect of 
DOTS on the dynamics of tuberculosis in Nigeria. 
 
2.0 Model formulation 

We will formulate a mathematical model that incorporates parameters for case detection and 
treatments under the DOTS program. In the formulation, we assume that there is a homogenous mixing of 
the population when all people are equally likely to be infected by the infectious individuals in case of 
contact. 

We have the following system of nonlinear ordinary differential equations for the TB model: 

SNSI
dt

dS µβ −−Λ= /1     (2.1a) 

IprnIqrnmErkNITTS
dt

dE
121102121 )1()1)(1()(/))(( −+−−+++−++= µββ  (2.1b) 

  IrdkE
dt

dI
)( 1++−= µ      (2.1c) 

NITTIprnIqrnEr
dt

dT
/12112110

1 βµ −−++=   (2.1d) 

NITTIqrnm
dt

dT
/)1( 22211

2 βµ −−−=   (2.1e) 

where 2121  ,1,10,10,10 TTIESNandqpmnn ++++=−=≤≤≤≤≤≤ is the total 

population. 
The mathematical model (2.1a-b) is based on the typical TB treatment models (for example see 

[29, 32] and the treatment models in the survey article by Castillo-Chavez, et al. [9]) usually written as 
SEIT (susceptible-latent-infected-treated) models. We incorporated into the SEIT framework, DOTS 
implementation parameters and divided the 'treated' class into two: treated individuals and re-treated 
individuals who initially failed treatments. Hence our model can be called a SEIT1T2 (susceptible - latent -
infected - treated - re-treated) model. 

Each equation in (2.1) represents the rate of change, with respect to time, of the sub-populations. 
The first term on the right hand side of equation (2.1a) is the recruitment term, Λ  (newborns and/or 
uninfected immigrants who enter into the susceptible class). The second term is the change in the 

S population due to their encounter with actively infected individuals where 1β  is the transmission 

coefficient while the third term shows the number of susceptible that die naturally at the rate µ . (Usually a 

positive sign in front of a term indicates movements into the class or compartment while a negative sign 
will indicate movements out of the class or compartment). 
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We now examine Equation (2.1b), which describes the rate of change of the latent class. The first 
term on the right hand side of (2.1b) is the combination of (latent) infections produced when susceptible, 

treated and re-treated individuals come in contact with actively infected persons with 2β  being the 

transmission coefficient for the treated and re-treated classes. The second term is made up of  
 
 
 

the rates at which latent individuals progress to the active TB case (k ), die naturally (µ ) or gets treated 

( 0r ). The third term is the number of actively infected individuals that fail treatment and re-treatment under 

the DOTS program. These revert back to the latent stage. The fourth term is the number of actively infected 
individuals that fail treatment under a non-DOTS program; these also revert back to the latent class. 

In Equation (2.1c), we have the rate of change of the actively infected class. The first term on the 
right hand side is the number of latently infected individuals that progress to the active TB stage at the 
ratek . The second term is the combination of the number of actively infected individuals who leave the 
class due to TB-induced death, at the rated , due to natural death, at the rate µµµµ  and due to treatment, at the 

rate 1r . 

In Equation (2.1d), we have the rate of change of the treated class. The first term on the right hand 

side is the number of latently infected individuals that were successfully treated at the rate0r . The second 

term is the number of successfully treated active TB cases under the DOTS where q  is the fraction of 

active cases treated under DOTS while 1n  is the fraction of these that were successfully treated. The third 

term is the number of successfully treated active TB cases under non-DOTS program where p = 1 - q is the 

fraction of active cases treated under non-DOTS program while 2n  is the fraction of these that were 

successfully treated. The fourth term is the number of treated individuals that die naturally at the rate µ  

while the fifth term is the number of treated individuals that’s get infected when they come in contact with 
actively infected individuals.  

Finally, we examine Equation (2.1e) which describes the rate of change of the re-treated 
individuals under the DOTS program. The first term on the right hand side of (2.1e) is the number of failed 
treatments that were successfully re-treated where m is the fraction of the retreated cases that were 
successful. The second term is the number of re-treated individuals that die naturally at the rate µ  while 

the third term is the number of re-treated individuals that gets infected due to their contact with actively 
infected individuals. 

If we let T = T1 + T2 in (2.1) above, we will be having a system of four nonlinear differential 
equations viz: 

SNSI
dt

dS µβ −−Λ= /1  

IprnIqrnmErkNITS
dt

dE
1211021 )1()1)(1()(/)( −+−−+++−+= µββ  

IrdkE
dt

dI
)( 1++−= µ  

InqmrNITTIprnIqrnEr
dt

dT
)1(/ 11212110 −+−−++= βµ  (2.2) 

with TIESN +++= . 
 

3.0 Sub-models without re-infection of treated individuals ( 2ββββ ) 
We analyze sub-models where the treatment class (T) is omitted for ease of analysis as well as set 

the transmission parameter, 2β  to zero. 

Doing this, we will have the following system of equations: 
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SNSI
dt

dS µβ −−Λ= '/1     (3.1a) 

IprnIqrnErkNSI
dt

dE
121101 )1()1()('/ −+−+++−= µβ   (3.1b) 

 
 
 
 

IrdkE
dt

dI
)( 1++−= µ     (3.1c) 

The model (3.1) helps us explore the effect of treatment under DOTS on the infectious class 
without the 'complications' of treated individuals getting infected again. It is assumed that there is no re-
treatment of failed treatments i.e. m = 0. 

A suitable domain for the model is: }/;),,{( 3
0 µΛ≤++∈= ≥ IESRIESF  

First let us show that the compact set F is a positively invariant set of the flow described by (3.1). 
 

Lemma 3.1 
The set F is positively invariant 

Proof 

At   ., allfor  0,0 FIE
dt

dS
S ∈>Λ== Hence the two dimensional ‘EI’ plane is 

impenetrable from F.   At   ., allfor  0)1()1('/,0 1211 FISIprnIqrnNSI
dt

dE
E ∈>−+−+== β  

Hence the EI plane is impenetrable from30≥R . At FESkE
dt

dI
I ∈>== , allfor  0,0 . Hence the 

ES, plane is impenetrable fromF .  Define a Lyapunov function IESIESW ++=),,( . This 

satisfies IprnIqrndIErIESIESW 12110)(    −−−−++−Λ=++= µ&&&& .  At the plane 

,/ µΛ=++ IES  012110 ≤−−−−= IprnIqrndIErW&  

Hence, }\{),,( allfor  0),,( 3 FRIESIESW +∈≤& , and there is no flux through the plane 

./ µΛ=++ IES  By virtue of the Lyapunov-LaSalle asymptotic stability theorem, the set F  is an 

attractor for the system.  Therefore the set }/;),,{( 3
0 µΛ≤++∈= ≥ IESRIESF  is positively 

invariant under the flow described in (3.1a) – (3.1c). Hence no solution path leaves through any boundary 
of F . This ends the proof.       �  

The right sides of (3.1a) - (3.1c) are smooth, hence initial value problem have unique solutions 
that exist on maximal intervals [18]. Since paths cannot leave F, solutions remain nonnegative for 
nonnegative initial conditions; solutions exist for all positive time. Thus the model (3.1a) - (3.1c) is 
mathematically and epidemiologically well posed. 

3.1 Equilibria and Threshold 
To study the behaviour of the system of differential equations, we find the equilibrium solution. 

The equilibrium solutions are obtained by setting the equations (3.1) to zero and then solve for S, E and I. 
For the system under consideration, there are two equilibrium points, the disease free equilibrium 

(DFE) and the endemic equilibrium (EE).  At the DFE, we have that )0,0,/(),,( 000 µΛ=IES , where 

µ/0 Λ=S  is the asymptotic population size.  At the EE, let S1, E1 ,I1 be the equilibrium point, if it exists. 

After some algebraic calculations, and writing this equilibrium in terms of 1
0R , we have that 
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S
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where 1
0R  is the basic reproduction number obtained using the next generation matrix approach in [32] and 

is given by 11
1
0 QfR =  where

γµ /))1()1(()( 12110
1 rnprnqkrk

k
f

−+−−++
=  and  

 
 
 

 
 

)(, 11 rdQ ++== µγ
γ
β

.  Also from the definition of the EE 

0111211
0 )())1()1(( rrddrrnprnqk ++−−−−+−+

Λ=
µβ

ρ . 

Hence 1S exists only if 00 >ρ . This extends to the other components of the EE. Therefore, the EE exists 

only if 1 and 0 1
00 >> Rρ . 

In the definition of 1
0R , 1Q is the number of secondary (latent) infections produced by a typical 

infectious individual during the mean infectious period, γ/1 where 1rd ++= µγ . Also, 1f  is the 

fraction of infected individuals that develop active TB during his/her lifespan. Hence our mathematical 
definition of the basic reproduction number, which is the product of the number of infected individuals 
produced by a typical infectious individual during his/her mean infectious period and the fraction of these 
infections that progresses to active tuberculosis is epidemiologically correct.  

Tuberculosis infection and re-infection are always existent in a community due to respiratory 
contact between the susceptible individuals, treated individuals and the infectious individuals. Whether the 
disease becomes persistence or dies out depends on the magnitude of the basic reproduction number. In 

most cases, the stability (local or global) of the equilibrium points can be analyzed using10R . If 1
0R  is less 

than one, then on average an infected person produces less than one infected individuals over the course of 
its infectious period, and the infection cannot grow and invade the population. 

Conversely, if 1
0R  is greater than one, then each infected individual produces, on average, more 

than one new infection, and the disease can invade the population leading to an epidemic. Hence any 

control strategy to be proposed must be such that will drive 1
0R  below one. 

3.2 Analysis of equilibria 
To determine the behaviour of the different compartments near each of the equilibrium solutions, 

we need to compute the linearization of the system, which is obtained from the Jacobian of the system. 
Evaluating the Jacobian of (3.1) at the DFE, we have the following matrix: 

















−
−+−+++−

−−
=

γ
βµ

βµ

k

rnpqrnrkJ

0

)1()1()(0

0

121100  

Let  3,2,1, =iiλ  be the eigenvalues of0J . We then have that 

0
)1()1()(

det)( 12110 =








−−
−+−+−++−

−−
λγ

βλµ
λµ

k

rnpqrnrk
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Let   








−
−+−+++−

=
γ

βµ
k

rnpqrnrk
M 12110 )1()1()(

 

Then from M, we have ))1()1(()()det( 12110 rnpqrnkrkM −+−+−++= βγµ  and 

γµ −++−= )()( 0rkMTrace . Clearly, Trace (M) < 0 since all parameter values are positive. For the 

Det(M) > 0, we should have that 0))1()1(()( 12110 >−+−−+++− rnprnqkrkk µγβ .  This 

implies that 11
0 <R , where 1

0R  is the basic reproduction number of the model (3) given above.   

Therefore the DFE is locally asymptotically stable if 11
0 <R  and tuberculosis will not successfully invade 

the population. If 11
0 >R , the DFE will become unstable; TB invasion on the population becomes possible. 

 
 
 
Theorem 3.1 

The disease free equilibrium of the system (3.1) is locally asymptotically stable in F if 11
0 <R  

 

Next, we carry out the stability analysis for the EE. Evaluating the Jacobian of (3.1) at the EE, we have that 

















−
−+−+++−

−−−
=

γ
βµβ

βµβ

k

rnpqrnNSrkNI

NSNI

J E

0

)1()1('/)('/

'/0'/

1211101

11

 

The characteristic equation corresponding to EJ  is a third-degree polynomial, which has the form 

032
2

1
3

0 =+++ aaaa λλλ  where 010 <−=a . 

Hence by the third-order Routh-Hurwitz (R-H) criteria, all roots of the characteristic polynomial 

will be negative if 0,0 31 << aa  and 03021 >− aaaa . The other coefficients of the polynomial are: 

)))(3

)1(2( 2)(3(
1

021

1
222

1
1

krpnqnk

qpkdrkdkkdkd
rkd

a

++−+

++++++++++−
+++

=

µ

µµβ
µ  

),)())1()()(2(
1

0112101
1

2 rrdrpnqnqpdkrrkd
rkd

a ++++−−−+−++++
+++

= µβµ
µ

)).)1((        

))())(()1((        

)()()((
1

0211

00211

0
2

1
3

rpknkqnqpkr

rkdrkpnkqnqpkr

rdkddk
rkd

a

++++++−−
++++++++++−−

++++++−
+++

=

µ
µµµ

µµµβ
µ

 

It is easy to verify that all the R-H criteria are satisfied. From the expression for 03 <a , after much 

algebraic simplifications, we have 0
))1()1(()(

1
12110

<
−+−−++

−
rnprnqkrk

k

µγ
β

 

This leads to 11
0 >R , with the expression of 1

0R  giving above. 

Hence, the EE is locally asymptotically stable if 11
0 >R ; the disease will invade the population 

leading to an epidemic that will eventually settle to an endemic state.  
 

Theorem 3.2 
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The Endemic equilibrium of the system (3.1) is locally asymptotically stable in F if 11
0 >R  

We can use the Lyapunov function approach to provide a sufficient condition for the global stability of the 

DFE when 11
0 <R . 

Consider the Lyapunov function .)( 0 IrkkEV +++= µ   Then 0>V  except at the DFE. To 

show this, differentiate V with respect to time. This yield 

))())1()1(('/( )( 012110 rkrnprnqkNSkIIrkEkV ++−−+−+=+++= µγβµ &&&  

on µ/', Λ≤≤ NSF , and so 

)1))()1()1(()((    

))())1()1(((
1
012110

01211

−−+−−++=

++−−+−+≤

RrnprnqkrkI

rkrnprnqkkIV

µγ
µγβ&

 

 
 
 

with equality only at the DFE. For1
0R , we have that 0≤V& with equality only if I = 0. By LaSalle's 

extension to Lyapunov's method [19], the limit set of each solutions is contained in the largest invariant set 
for which I = 0, which is the singleton {DFE}. 
Theorem 3.3  

The Disease free equilibrium of the system (3.1) is globally asymptotically stable in F if 11
0 ≤R  

Conversely, if 11
0 >R , the DFE becomes unstable and the EE is globally stable if it exists. 

Putting all of these together, we can say that the DFE will be locally and globally asymptotically stable 

if 11
0 ≤R . Hence tuberculosis will not be able to invade the population. However, if 11

0 >R , the DFE loses 

is stability and the EE becomes stable, if it exists; the disease will be able to invade the population leading 
to an epidemic that could eventually settles to the endemic state. 
3.3 Condition for the minimization of TB 

For us to minimize the incidence of tuberculosis, we require that the population sizes of the 
latently infected individuals as well as the infectious individuals decrease. This we will obtain 
when 0,0 <<

dt

dI

dt

dE . Combining these inequalities, we have a condition on q for us to be able to 

minimize the incidence of TB: 
mqkrkrnNS

rnn
q =++−−+

−
> )/)()1('/(

)(

1
012

121

µγβ  with n1 

≠ n2. Hence, q must be greater than the quantity on the right hand side of the inequality in magnitude for 
there to be a reduction in the incidence of TB. 

From the definition of 1
0R  given earlier, we can find a condition on q for the eradication of 

tuberculosis in the population.  For 11
0 <R , we have that 

cqkrkrn
rnn

q =++−−+
−

> )/)()1((
)(

1
012

121

µγβ   

with n1 ≠ n2. 
Both conditions (qm for minimization and qc for eradication) are quite similar except that in qm, the 

transmission rate is multiplied with the fraction of susceptible which will make the value of qc 'higher' than 
qm. 

If eradication is achieved (i.e. E=I=0), then the expected population size will simply be the 

solution of dtdS /  i.e. S
dt

dS µ−Λ= .  Solving this equation gives t
i eStS µµµ −Λ−+Λ= )/(/)( , 

where iS is the initial number of susceptible individuals. It is easy to see that as µ/, Λ→∞→ St  , 

which is the asymptotic population size. Hence the entire population will be comprised wholly of 
susceptible individuals.   
3.4 Sub-model with m > 0 
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Again, from the general equations (2.1), with 2β = 0 and m > 0, while omitting the T class, we 

have SNSI
dt

dS µβ −−Λ= '/1 ,  

IprnIqrnmErkNSI
dt

dE
121101 )1()1)(1()('/ −+−−+++−= µβ IrdkE

dt

dI
)( 1++−= µ  (3.2) 

with IESN ++=' .  A suitable domain for (3.2) is }/;),,{( 3
0 µΛ≤++∈= ≥ IESRIESD  

The domain is positively invariant and the model is mathematically well posed: nonnegative initial 
conditions lead to nonnegative solutions. 

For the model in (3.2), using the next generation matrix approach in [32], the basic reproduction 

number is 22
2
0 QfR = , where 

γµ /))1()1)(1(()( 12110
2 rnprnmqkrk

k
f

−+−−−++
=  and  

 
 
 
 
 

)(, 12 rdQ ++== µγ
γ
β .  In the definition of 2

0R , 2Q  is the number of secondary (latent) 

infections produced by a typical infectious individual during the mean infectious period,  γ/1 while 2f  is 

the fraction of infected individuals that develop active TB during his/her lifespan. 

The DFE for (3.2) is )0,0,/(),,( 000 µΛ=IES  while the endemic equilibrium is 

),1(),1(, 2
0*

0
2

2
0*

0

1
2*

0

1
2 −=−

++
=

+++
= R

k
IR

rd
E

rkd
S

ρρ
µ

ρ
µ

 

where 
0111211

*
0 )())1()1)(1(( rrddrrnprnmqk ++−−−−+−−+

Λ=
µβ

ρ . 

 

Hence 2S exists only if 00 >ρ . This extends to the other components of the EE. Therefore, the EE exists 

only if 1 and 0 2
00 >> Rρ .  It is straight forward to show that the DFE is locally asymptotically stable as 

well as globally asymptotically stable if 12
0 ≤R  following the method of linearization and the use of a 

similar Lyapunov function as shown earlier. For 12
0 >R , the disease free equilibrium becomes unstable and 

an endemic equilibrium exists, which can also be shown to be stable for this condition on20R . 

From the models, without the treated (and re-treated) individuals getting infected again, a very 
important strategy to bring the value of the basic reproduction numbers below one is to increase the fraction 
of infectious persons receiving treatment under DOTS above a critical minimum qc for there to be the 
possibility of eradication of tuberculosis. 
 
4.0 The General Model with 02 >ββββ  and m > 0 

This is the system of equations we have in equation (2.2), reproduced here: 

SNSI
dt

dS µβ −−Λ= /1
 

IprnIqrnmErkNITS
dt

dE
1211021 )1()1)(1()(/)( −+−−+++−+= µββ  

IrdkE
dt

dI
)( 1++−= µ  
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InqmrNITTIprnIqrnEr
dt

dT
)1(/ 11212110 −+−−++= βµ  (4.1) 

with TIESN +++= .  Under the flow described by (4.1), the region  

}/;),,,{( 4
0 µΛ≤+++∈= ≥ TIESRTIESA  

 is positively invariant. Also each solution in 4
+ℜ approaches A. Since paths cannot leave A, solutions 

remain positive for positive initial conditions and the model is mathematical and epidemiologically well 
posed. 
4.1 Analytic results 
4.1.1 Equilibria and Threshold 

Using the next generation matrix approach in [32], the basic reproduction number is obtained as 

fQR =0  where 
γµ /))1()1)(1(()( 12110 rnprnmqkrk

k
f

−+−−−++
= and )(, 1rdQ ++== µγ

γ
β

. 

 

The DFE of (4.1) is given by 0,0,0,/ 000 ===Λ= TIES µ . There is also an EE that will exist if  

 
 
 
 

10 >R , which is rather complicated to write down. 

To determine the behaviour of the different compartments near the equilibria, as usual we need to 
compute the linearization of the system which is obtained from the Jacobian matrix of the system. 
Evaluated the Jacobian of (4.1) at the DFE, we have that 
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0)1()1)(1()(0
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1121110
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Let 4,3,2,1, =iiλ  be the eigenvalues of0J . We then have that 

0
)1()1)(1()(

det)( 121102 =








−−
−+−−+−++−

+
λγ

βλµ
λµ

k

rnpqrnmrk
 

Let 








−
−+−−+++−

=
γ

βµ
k

rnpqrnmrk
Z 12110 )1()1)(1()(

, from Z , we have that 

1021110 )))(()1(())(()( βµµµ krpnqnqmqnkqpkrrkdZDet −++−+++−+−−+++=  

and 012)( rrkdZTrace −−−−−= µ . We observe that the trace of Z is less than zero since all 

parameter values are positive. We can show that the determinant of Z is positive precisely when 10 <R . 

Hence det(Z) > 0 implies that .0)1()1)(1(()( 12110 >−+−−−+++− rnprnmqkrkk µγβ   The 

inequality holds if 01 0 >− R . Therefore, det(Z) > 0 if R0 < 1.  Therefore the DFE is locally 

asymptotically stable when 10 <R . 

Determining the local stability of the EE in general is more complicated. However, from our 
previous analysis, we were able to observe that in general the EE is locally asymptotically stable when 

10 >R . Hence we can say that the EE for the general model is locally stable, if it exists, as far as 10 >R . 

As done earlier, a Lyapunov function can provide a sufficient condition for the global stability of 

the DFE when 10 ≤R .  Consider the Lyapunov function 

.)( 0 IrkkEV +++= µ  
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Then 0>V  except at the DFE and  

))())1()1)(1((/()( 012110 rkrnprnmqkNSkIIrkEkV ++−−+−−+=+++= µγβµ &&&  

on µ/, Λ≤≤ NSA , and so 

))())1()1)(1((( 01211 rkrnprnmqkkIV ++−−+−−+≤ µγβ&  

)1))()1()1)(1(()(( 012110 −−+−−−++= RrnprnmqkrkI µγ  

with equality only at the DFE. For 10 ≤R , we have that 0≤V& with equality only if I = 0.\ 

Theorem 4.1 
The Disease free equilibrium of the system (7) is locally and globally.asymptotically stable in A if 

10 ≤R  

If R0 > 1, the disease free state becomes unstable and a nontrivial endemic equilibrium exist and is 
locally stable. 

For the minimization of the incidence of tuberculosis, we will require that the population size of 

all infected classes decrease i.e. .0,0 <<
dt

dI

dt

dE
 If we combine the inequalities, we have the  

 
 
 

following condition with respect to q: 

rq
rnmrn

krkrnNTNS
q =

−−−−
++−−++

>
1112

01221

)1)(1()1(

/)()1(// µγββ
 

where 2n  and 1or  nm should not be equal to one. 

For the eradication of tuberculosis, we will require that R0 < 1. Writing this inequality in terms of 
the fraction of infectious individuals undergoing treatment under DOTS, q, we have the condition on q for 

elimination:   
cq

rnmrn

krkrn
q =

−−−−
++−−+

>
1112

012

)1)(1()1(

)/)()1( µγβ  

For the sake of disease control, if the condition for qc is not met strictly, at least health official may 
look at the condition for minimization (qr) and could then move a step further to carry out an elimination of 
tuberculosis, if possible. 

Eradication of the disease from the population will mean that E = I = 0. Hence the total population 

becomes N = S + T. Therefore solving the equations for TS &&  and with E = I = 0, we have 

t
j

t
j eTtTeStS µµµ

µ
−− =Λ−+Λ= )(,)/()( where jj TS  and  are the initial numbers of susceptible 

and treated individuals, respectively. As µ
Λ→∞→ )(, tSt  , the asymptotic population size, while 

.0→T  Therefore the entire population returns to the initial state where there are no infected individuals 
and treated people but just susceptible individuals only. 
 
5.0 Parameter estimation and numerical results 

We set the year as unit of time. The constant mortality µ  is estimated as the inverse of life 

expectancy at birth which is about 49 years in Nigeria [31]. Hence 102041.049/1 −== yrµ . The 

recruitment rate (Λ ) controls the total population size because µ/Λ≈N . We shall set 
1510 −×=Λ yrµ  [28]. 
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Per capita TB-induced mortality rates vary from country to country. They are around 107.0 −yr in 

developed countries but could be as high as 1395.0 −yr in some African countries [1, 27]. For the purpose 

of this work, we shall set the TB-induced mortality rate to 1395.0 −yr . 

We take the recovery rates as the time between TB activation and recovery. According to Styblo, 
et al [30], the time between TB activation and recovery by treatment is between 4 and 6 months while in 

[16], the treatment period is about 6 to 9 months implying that 10 >r  per year. If we take the treatment 

period to be 8 months, following [29], we obtain the recovery rate to be 1/0.5 = 2 per person-year. In [30], a 

recovery rate of 1/0.67 = 1.5 per person-year was used. For this study, we will set 0r  and 1r  at 1.5 per 

person-year. 
In [33], we find epidemiological data on DOTS surveillance and implementation in Nigeria since 

1995. With an incidence rate of 125 per 100,000 per year of ss+ cases, the prevalence rate was 531 per 
100,000 per year of all cases in 2004. Since 1997, the DOTS treatment success rate has stabilized to about 
75% while re-treatment rates under DOTS have stabilized to about 79%. Fraction of detected cases 
undergoing treatment under DOTS has ranged from 11% to 21% in 2004 [33]. Hence from available data, 
we estimate q = 0.21 while n1 = 0.5769 and n2 = 0.0505. Fraction of successfully re-treated cases, m = 
0.7273.   From the expression for R0, Q depends on the average infectious periods of the infectious 

individuals and the transmission rate,1β .  The transmission rates, ( 21  and ββ ), are chosen to match the 

expected number of infections produced in the γ/1  units of time. Assuming there is no significant 

protection against re-infection after treatment, we will have that 21 ββ = .   

 

 
 
 

The fraction of infected people who develop active TB, f, has been estimated to be between 5% 
and 10% in developed countries while for developing countries, this could be about 15% and in some  
extreme cases, 30% [28]. For this study, we shall set f = 0.15. The average per capita rate of progression to 
active TB (k) is estimated from  

γµ /))1()1)(1(()( 12110 rnprnmqkrk

k
f

−+−−−++
=  

From the above, we have that 

)
)1()1)(1(

1(1

)(

1211

0

γ

µ
rnprnmq

f

rf
k

−+−−−−

+=  

From data, q currently stands at 0.21 in Nigeria. With different values of q for the past eight years, 
ranging from 0.11 to 0.21 and f = 0.15, we observe that there was not much difference in the progression 
rate, where k = 0.2433, which has been almost constant over the last decade. 

Figures 5.1 to 5.3 are the numerical simulation we have of the generalized model with the given 
parameter values and values for Q. We observe from the figures that to significantly lower R0 below one, 
we need to make the number of secondary infections Q very small. 

Clearly, with R0 below one and Q = 6 in figure 5.3, the DFE was achieved after a very long time. 
This shows that to achieve a reduction in the incidence of tuberculosis in Nigeria, attention must be placed 
to isolate infectious individuals (for treatment under DOTS) so that the number of secondary infections will 
be greatly minimized. 
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Figure 5.1: Population fractions with 5.7=Q  

 
6.0 Discussion and conclusions 

In Nigeria, the incidence of tuberculosis is on the increase [31]. Among other factors that may be 
contributing to this trend is the failure to increase the number of active TB cases undergoing treatment 
under the DOTS programme. Obviously, the detection rate is small and there is a large fraction of untreated 
cases leading to an increase on the number of secondary infections in the country. In order to control the 
incidence of tuberculosis, this issue must be addressed. 

 
 

 
 

 
Figure 5.2: Population fractions with 7=Q  
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Figure 5.3: Population fractions with 6=Q  

 
In this research, we have examined the effects of DOTS on the dynamics of tuberculosis vis a vis 

the fraction of infectious individuals undergoing treatment under DOTS. In order to understand the effects 
of DOTS in reducing the incidence of TB in Nigeria, a mathematical model was formulated that 
incorporated the fraction of active cases undergoing treatment under DOTS (including treatment and re-
treatment rates). 

In the qualitative analysis of the model, the existence of steady states and their stability were 
analyzed. The analysis showed that a disease free equilibrium existed and was found to be stable provided 
the fraction of active cases receiving treatment exceeds a critical value (qc) which among other things 
includes the number of new infections, re-infections and failed treatments. The requirement for 
minimization of the incidence of tuberculosis (qr) was obtained and is almost similar to the condition for 
eradication, qc. 

 
 
The results of the numerical simulations were remarkably inline with those from the qualitative 

analysis of the model. Both analyses showed the effect of the fraction of treated individuals under DOTS. 
Increasing this fraction can help in reducing the basic reproduction number and hence, the number of 
infectious individuals (since all infectious persons are treated under DOTS) and by extension, the number 
of latent infections.  

The basic reproduction number, R0 is one of the tools used in determining disease behaviour in a 
given population. The condition for this quantity to be less than unity will mean making the fraction of 
treated infectious individuals under DOTS exceed a critical value (qc) determined by the values of the 
epidemiological parameters. If this critical value is not exceeded, then there is the possibility of an 
epidemic in the population that could end up settling to an endemic state after a long time. The number of 
secondary infections must be minimized to achieve a reduction in the incidence of tuberculosis in Nigeria; 
hence attention must shift to isolating infectious individuals for treatment under DOTS to avoid increasing 
the number of infections that they may cause. 

DOTS expansion should not just cover treatments alone but emphases should be placed on using 
the dynamic nature of the programme to screen close contacts of infectious cases of TB in order to know 
how many of these could be having either latent or active cases of tuberculosis. The approach of screening 
household contacts by Becerra, et al [3] is quite useful and timely for Nigeria. The object of the study in [3] 
was to access the feasibility and yield of a simple active case finding strategy in a high incidence 
population in northern Lima, Peru. The results showed that the tuberculosis prevalence detected through 
combined active and passive case finding among 1,094 household contacts was 0.91% (914 per 100,000), 
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much higher than with passive case finding alone (0.18% ; 183 per 100,000). Hence the study concluded 
that the risk of active TB among symptomatic household contacts of active case subjects in the community 
is very high and results suggested that contact tracing in such setting may be a powerful tool in improving 
case detection rates for active tuberculosis disease. The estimations used for the computer simulations of 
the general model suggests that while there have been improvement in tuberculosis treatment success rate 
under DOTS in Nigeria, the small number of cases detected under DOTS and treated (or re-treated) remains 
an obstacle to the long-term success of DOTS on TB control in Nigeria. Hence, if DOTS is expanded, this 
should include screening of close contacts of the treated infectious individual.  For now, we can say that 
DOTS is not having much impact on efforts to reduce the incidence of tuberculosis in Nigeria as only a 
little fraction of the infectious individuals are actually treated under DOTS while the vast majority of 
undetected cases are actually leading to an increase on the number of new infectious cases in the country 
and a huge pool of latent individuals, and by extension the prevalence rate.   

We also suggest that reaching the rural areas will have to include providing transportation for the 
sick to receive their medication and if possible seeking the attention of the families of these patients for 
screening. Medical personnel can be paid to go to these areas to provide medications for the patients as well 
as simultaneously conduct screening for close contacts of the patients. In this regards, we suggest dedicated 
vehicle from the government or other health agencies to carry out these tasks. 

DOTS, as a strategy adopted by WHO, is to help reduce the number of active tuberculosis cases as 
well as effect proper treatment of patients. The insights gained from the mathematical model treated in this 
article can be useful in the study of the impact of DOTS on the dynamics of tuberculosis in Nigeria. This 
may assist health and government officials plan on improving the case detection rate which will help in 
bringing down the incidence and prevalence of TB in the country. This can be achieved if the current 
DOTS service in Nigeria is greatly improved upon and the fraction of infectious individuals undergoing 
treatment (or re-treatment) is significantly increased. 
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