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Abstract

Mathematical models for the population dynamics of tuberculosis
under the implementation of the direct observation therapy strategy (DOTS)
in Nigeria are presented. The modes establish conditions for the
minimization and eradication of tuberculosisin Nigeria based on the fraction
of infectious individuals treated under DOTS. The results from the models
showed that there existed a stable disease free equilibrium provided the
fraction of treated infectious individuals exceeded a critical value. The results
showed that DOTS expansion in Nigeria must include a significant increase
in the number of infectious individuals treated under DOTS else the effect in
reducing the incidence of tuberculosisin Nigeria may not be achieved.
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1.0 Introduction

Tuberculosis (TB) was assumed to be on its wayirodieveloped countries until the number of
TB cases began to increase in the late 1980s TABJis an airborne transmitted disease. Mycobaateriu
tuberculosis droplets are released in the air lmgbing or sneezing infectious individuals [28]. Eutle
bacillus carried by such droplets lives in thefaira short period time (about two hours) and, efane, it
is believed that occasional contacts with TB-actpersons (infectious individuals) rarely lead to
transmission and that most secondary cases areshk of prolonged and sustained close contadts avi
primary case.

Latently infected individuals (inactive TB) beconiefectious (active TB) after a variable
(typically long) latency period which range from mtibs to decades. Most infected individuals never
progress towards the active TB state. On the dthed, average infectious periods are relativelytgfiew
months) and becoming shorter in developing natihresto the availability of treatment.

Tuberculosis has continued to cause a high mortafit humans especially in developing
countries, with Sub-Saharan Africa having the hijliecidence in per-capita rate [20, 22]. It israated
that a third of the world’s population is infecteith Mycobacterium tuberculosis. Of the 1.7 billion people
estimated to be infected with TB, 1.3 billion live developing countries [29]. Those infected are
responsible for 8 to 12 million active cases of il 3 million deaths [20, 26].

A global control strategy adopted by the WHO tophedduce the number of active TB caass
well as effect proper treatment of patients with tubercisids the Direct Observation Therapy Strategy
(DOTS). DOTS have evolved as a strategy that make®mpulsory for patients to complete their
treatment. The DOTS program uses a nurse or suerdgaleliver and observe the patients takinghal t
doses of their drugs rather than relying on thépés to take the drugs on their own [10]. Theegydd may
either come to a health facility (clinic based DQTV), 13] or be visited wherever the patients isnid e.g.
at work, home or shelter (community based DOT) [11]
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DOTS is seen to be highly effective at promotingcassful treatment. Although a program like
DOTS is essential to reducing TB relapse and emergef drug resistant strains, its impact on thetrob
of tuberculosis transmission is not clear [2, 4].

Nigeria has been ranked fourth among the 22 casttesignated by the WHO as high-burden
countries for TB. Nigeria is also said to have llighest number of new TB cases in Africa [23, 38}.
estimated 300,000 TB cases are recorded eachrgsalting in 30,000 deaths annually. The totalfieati
cases of all forms of TB increased from 46,473002to 59, 493 in 2004.

With DOTS implementation in Nigeria, the detectimte remained at a low 21% while treatment
rate is 59% in 2003, the lowest among any HBC [88hat condition(s) can we impose on the fraction of
infectious individuals receiving treatment unddP@TS program that could help eradicate TB in Nigeri
or at least minimize the incidence of the disease?

In this paper, we will be formulating mathematicabdels to investigate the overall effect of
DOTS on the dynamics of tuberculosis in Nigeria.

2.0 Model formulation

We will formulate a mathematical model that incagies parameters for case detection and
treatments under the DOTS program. In the formutative assume that there is a homogenous mixing of
the population when all people are equally likadybie infected by the infectious individuals in cafe
contact.

We have the following system of nonlinear ordindifferential equations for the TB model:

%zl\—ﬁlsllN—,uS (2.1a)
de
E = (1818-" ﬁZ(Tl +T2))| IN - (k tut ro)E + (1_ m)(l_ nl)qul + (1_ nz) pl’1| (2.1b)
%ZKE—(d +u+rn)l (2.1¢)
dT, _
E—rOE+nlqul +n,prl = 4T, - G,T1 /N (2.1d)
dT, _
i m@-n)qr, | —ut, -G, T,1 /N (2.1e)
where0<n <10<n,<10<m<1p=1-g,and N =S+ E+| +T, +T,is the total
population

The mathematical model (2.1a-b) is based on thigalydB treatment models (for example see
[29, 32] and the treatment models in the surveiglarby Castillo-Chavez, et al. [9]) usually writt&s
SEIT (susceptible-latent-infected-treated) modé#&lge incorporated into the SEIT framework, DOTS
implementation parameters and divided the ‘'treatéfs into two: treated individuals and re-treated
individuals who initially failed treatments. Henoar model can be calledSEIT,T, (susceptible - latent -
infected - treated - re-treated) model.

Each equation in (2.1) represents the rate of aharih respect to time, of the sub-populations.
The first term on the right hand side of equati@rilg) is the recruitment termf\ (newborns and/or
uninfected immigrants who enter into the susceptiblass). The second term is the change in the

Spopulation due to their encounter with activelyected individuals where,Bl is the transmission
coefficient while the third term shows the numbgsuasceptible that die naturally at the rgte (Usually a

positive sign in front of a term indicates movensdnto the class or compartment while a negative sign
will indicate movementsut of the class or compartment).
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We now examine Equation (2.1b), which describes e of change of the latent class. The first
term on the right hand side of (2.1b) is the coratiom of (latent) infections produced when susdaegfi

treated and re-treated individuals come in contsith actively infected persons witrﬁ2 being the
transmission coefficient for the treated and reterd classes. The second term is made up of

the rates at which latent individuals progresshi dctive TB casek), die naturally (1) or gets treated

(ry)- The third term is the number of actively infettadividuals that fail treatment and re-treatmemder

the DOTS program. These revert back to the latagies The fourth term is the number of activeleatéd
individuals that fail treatment under a non-DOT8gram; these also revert back to the latent class.

In Equation (2.1c), we have the rate of changéefdctively infected class. The first term on the
right hand side is the number of latently infectedividuals that progress to the active TB stagéhat

rateK . The second term is the combination of the nunafeactively infected individuals who leave the
class due to TB-induced death, at the eéhtalue to natural death, at the rgieand due to treatment, at the

rater, .

In Equation (2.1d), we have the rate of changdeftteated class. The first term on the right hand
side is the number of latently infected individutilat were successfully treated at the FgteThe second
term is the number of successfully treated actiBecses under the DOTS whe€g is the fraction of

active cases treated under DOTS whilgis the fraction of these that were successfubtatied. The third
term is the number of successfully treated actiBec@ses under non-DOTS program wherel - g is the
fraction of active cases treated under non-DOTQynarm while N, is the fraction of these that were
successfully treated. The fourth term is the nundiereated individuals that die naturally at tlager 4

while the fifth term is the number of treated indivals that's get infected when they come in cantath
actively infected individuals.

Finally, we examine Equation (2.1e) which descriliks rate of change of the re-treated
individuals under the DOTS program. The first tesmthe right hand side of (2.1e) is the numberdéd
treatments that were successfully re-treated wheris the fraction of the retreated cases that were
successful. The second term is the number of eedeindividuals that die naturally at the retie while

the third term is the number of re-treated indialduthat gets infected due to their contact wittivaty
infected individuals.

If we letT =T, + T, in (2.1) above, we will be having a system of fonlinear differential
equations viz:

dS

—=N-B3S/N-
m I HS
dE
E = (1318+,32T)| IN=(k+p+ ro)E +(@1-m)(1- nl)qul +(1- nz) pry
d—|=kE—(d+,u+r)I
dt !
dr _
i LE+narl +n,prl =4l = B,TI/N+nmrgl-n)l (2.2)

with N=S+E+1+T.

3.0 Sub-models without re-infection of treated individualg £, )

We analyze sub-models where the treatment clBsis pmitted for ease of analysis as well as set
the transmission parametef, to zero.

Doing this, we will have the following system ofuedions:
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ds

o NTAS NS (3.1a)
‘jj_ltz =B S IN=(kK+u+r))E+ @-n)grl +(@-n,)pr,l (3.1b)

dl

a:kE—(d+,u+r1)| (3.10)

The model (3.1) helps us explore the effect oftimesmt under DOTS on the infectious class
without the 'complications' of treated individuaistting infected again. It is assumed that themoige-
treatment of failed treatments ira= 0.

A suitable domain for the model i ={(S,E,|) OR;S+E+1 <A/}
First let us show that the compact set F is a pe$jtinvariant set of the flow described by (3.1).

Lemma 3.1
The set F is positively invariant
Proof
ds _ _ .
At S=0,—=A>0forallE,l OF. Hence the two dimensional ‘EI' plane is
dt
impenetrable from F. At = 0,% =9 IN+1-n)gr,l +@—n,)pr,l >0forallS,I OF.

dl
Hence the El plane is impenetrable erjb. At | = O,E =kE > Oforall S, EOF . Hence the

S,Eplane is impenetrable from. Define a Lyapunov functionV(S,E,I)=S+E+ 1. This
satisfies W= S+ B+ & = A - y(S+E+1) - LE-d —narl -n,prl . At the plane
S+E+1=A/yu, W=-r,E-d -ngr,l -n,pr <0

Hence, WS, E, I ) < Ofor all (S,E, 1) D{R*\ F}, and there is no flux through the plane
S+E+1| =/A/ . By virtue of the Lyapunov-LaSalle asymptotic sliapitheorem, the set- is an

attractor for the system. Therefore the $et={(S,E,|)OR’;S+E+| <A/} is positively

invariant under the flow described in (3.1a) — €3.Hence no solution path leaves through any bagnd
of F . This ends the proof.

The right sides of (3.1a) - (3.1c) are smooth, beindtial value problem have unique solutions
that exist on maximal intervals [18]. Since pattmmot leave F, solutioneemain nonnegative for
nonnegative initial conditions; solutions exist fall positive time. Thus the model (3.1a) - (3.18)
mathematically and epidemiologically well posed.

3.1 Equilibria and Threshold

To study the behaviour of the system of differdrgiguations, we find the equilibrium solution.
The equilibrium solutions are obtained by settimg équations (3.1) to zero and then solveSfd andl.

For the system under consideration, there are tyidlilerium points, the disease free equilibrium

(DFE) and the endemic equilibrium (EE). At the DREe have that(§,E,l,)=(\/ ¢00), where
S = N/ 1 is the asymptotic population size. At the EESgE; ,l; be the equilibrium point, if it exists.

After some algebraic calculations, and writing thigiilibrium in terms oRé, we have that
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d+k+u+r d+u+r

Sl — /’I 1 ' El - /’I 1
Po Po

where Ré is the basic reproduction number obtained usiegiixt generation matrix approach in [32] and

k
and
(k+p+1)-k(q@-n)r, + pA-n,)r)/ y

k
Lo, 1, =—(RE-),
(R -1 pO(Ro )

is given by Rt = f,Q, wheref, =

B

Q = ?,y= (d+ g +r)). Also from the definition of the EE

N
k(B+aq@-n)r, + p@-n,)r, —r,—d) = (d +u+r)r, .
Hence S exists only ifo, > 0. This extends to the other components of the EErdfore, the EE exists
only if o, > 0andR; >1.

Po

In the definition oiRé, Q,is the number of secondary (latent) infections poedi by a typical

infectious individual during the mean infectiousripd, 1/ ) wherey = /+d +r1,. Also, f, is the

fraction of infected individuals that develop aetifB during his/her lifespan. Hence our mathemhtica
definition of the basic reproduction number, whishthe product of the number of infected individual
produced by a typical infectious individual durihg/her mean infectious period and the fractiotheke
infections that progresses to active tuberculasepidemiologically correct.

Tuberculosis infection and re-infection are alwaygstent in a community due to respiratory
contact between the susceptible individuals, tekatdividuals and the infectious individuals. Whatithe
disease becomes persistence or dies out depenile onagnitude of the basic reproduction number. In

most cases, the stability (local or global) of gwguilibrium points can be analyzed usRé;. If F\’é is less

than one, then on average an infected person pesdass than one infected individuals over the ssof
its infectious period, and the infection cannotvgiand invade the population.

Conversely, ifF\’é is greater than one, then each infected indivigmatiuces, on average, more
than one new infection, and the disease can inWaelepopulation leading to an epidemic. Hence any
control strategy to be proposed must be such thiaditive F\’é below one.

3.2 Analysis of equilibria
To determine the behaviour of the different comparits near each of the equilibrium solutions,
we need to compute the linearization of the systeich is obtained from the Jacobian of the system.
Evaluating the Jacobian of (3.1) at the DFE, weshthe following matrix:

- U 0 -B
Jo = 0 _(k+,U+ro) :8+(1_ nl)qu+ p(l_ nz)rl
0 k -y

Let A,i = 123 be the eigenvalues df, . We then have that

(—,u—A)de(_ (k+pu+r)=A B+@L-n)ar, +pl- nZ)rl] -0
k -y=-A
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et " {— (k+u+1) B+@-n)ar+ p(l—nsz

k -y
Then from M, we have detM)=(k+u+r,)y—-k(B+@-n)gr,+p@d-n,)r;) and
Trace(M) = —(k + g +r,) — y. Clearly, TraceN) < 0 since all parameter values are positive.tRer
Det(M) > 0, we should have thatk3+ y(K+ u+r,)—k(q@-n)r, + p@d—-n,)r;)>0. This
implies thatRé <1, where Ré is the basic reproduction number of the modeb{2&n above.
Therefore the DFE is locally asymptotically stalﬁld:\’é <1 and tuberculosis will not successfully invade

the population. IR(l) >1, the DFE will become unstable; TB invasion ongb@ulation becomes possible.

Theorem 3.1
The disease free equilibrium of the system (3.1) islocally asymptotically stablein F if Ré <1

Next, we carry out the stability analysis for the. Evaluating the Jacobian of (3.1) at the EE, aselthat

=B, IN-u 0 -BS /N
Je = AN —(k+pu+ry) BS/N+@L-n)gr, + pL-n,)r,
0 k -y

The characteristic equation correspondinglto is a third-degree polynomial, which has the form
a,A°* +aA* +a,A +a, =0 wherea, =-1<0.
Hence by the third-order Routh-Hurwitz (R-H) crigerall roots of the characteristic polynomial
will be negative ifa, <0,a, <0 anda,a, —a,a; > 0. The other coefficients of the polynomial are:

1
= = (-d?+dk+K*+KB+AAd+ K u+2u +r. (2d +k(@+ p+
H O|+k+ﬂﬂl( B+3(d +K)pu+2u° +r,( @+p+a)
+3u - k(gn, + pn,) +kry))
1
a'z:m(d+k+2ﬂ+r1+ro)(k(d_ﬁ)+(l_p_q_qn1+pnz)r1)+(d+,u+r1)ro)’
_ 1 3 2
2% = i e, (OB @ 7 (e

r(=k(=1+ p+q) + u+kan, +kpn, +1o))((d + L) (k + pr+15) +
r(=k(=1+ p+0q) + g +kan, + pkn, +1,)).
It is easy to verify that all the R-H criteria asatisfied. From the expression &y <0, after much
ks <0
y(k+p+r,)—k(@@-n)r, + p@d-n,)r,)
This leads td?(l) >1, with the expression oRé giving above.

algebraic simplifications, we have—

Hence, the EE is locally asymptotically stablRif>1; the disease will invade the population
leading to an epidemic that will eventually setdean endemic state.
Theorem 3.2
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The Endemic equilibrium of the system (3.1) is locally asymptotically stable in F if Ré >1
We can use the Lyapunov function approach to peowidufficient condition for the global stability the
DFE whenR} <1.

Consider the Lyapunov functiod = KE + (K + z+1,)l. ThenV >0 except at the DFE. To
show this, differentiatd/ with respect to time. This yield
\Ee= kit (k+pu+ ro)l&‘: I (KBS/N+k(q@~-n)r, + pA=n,)r) = p(k+ u+1,))
onF,S<N'<SA/u,and so
\}&S I (k18+ k(q(l_ nl)rl + p(l_ n2)r1) - y(k Tt ro))
=1 (y(k Tt ro) - k(q(l_ nl)rl + p(l_ nz)rl))(Rcl) _1)

with equality only at the DFE. F(Ré, we have thab®< Owith equality only ifl = 0. By LaSalle's

extension to Lyapunov's method [19], the limit sBeach solutions is contained in the largest iiavdrset
for which| = 0, which is the singletofDFE}.
Theorem 3.3

The Disease free equilibrium of the system (3.1) is globally asymptotically stable in F if R(l) <1

Conversely, ifRé >1, the DFE becomes unstable and the EE is globtbjesif it exists.
Putting all of these together, we can say thatDRE& will be locally and globally asymptotically bta
if Ré < 1. Hence tuberculosis will not be able to invadetbpulation. However, iIR’é >1, the DFE loses

is stability and the EE becomes stable, if it exithe disease will be able to invade the popuidtading
to an epidemic that could eventually settles toethéemic state.
3.3 Condition for the minimization of TB

For us to minimize the incidence of tuberculosi® mequire that the population sizes of the
latently infected individuals as well as the infeus individuals decrease. This we will obtain
whendE_ _ 0 a o - Combining these inequalities, we have a conditong for us to be able to

dt "t
minimize the incidence of TB o 1n ] (BSIN'+@L-n,)r, - y(k+ u+r,)/k) =q, Withm
1~ Ny)h

# np. Hence,g must be greater than the quantity on the right rsidd of the inequality in magnitude for
there to be a reduction in the incidence of TB.

From the definition ofR(l) given earlier, we can find a condition onfor the eradication of

tuberculosis in the population. FB% <1, we have that

1
9> ————(B+A-n)r - y(k+pu+r)/k) =0,
(n,—n,)n
with Ny # No.

Both conditions g, for minimization andyj. for eradication) are quite similar except thatjin the
transmission rate is multiplied with the fractiohsoisceptible which will make the value gqf'higher' than
Om-

If eradication is achieved (i.€&£=I=0), then the expected population size will simply the
solution of dS/ dt i.e.‘:'T? = A - ys - Solving this equation gives(t) = A/ + (S - A/ u)e™,

where S is the initial number of susceptible individualsid easy to see that ds— ©,S - Ny,
which is the asymptotic population size. Hence #mtire population will be comprised wholly of

susceptible individuals.
3.4 Sub-model withm > 0
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Again, from the general equations (2.1), Wm: 0 andm > 0, while omitting theT class, we
ds
havea =N-B,S /N-uS,

?Tltz =B, S IN'—(k+u+r)E+@L-m)@-n)ar,l +(@-n,)prl % =KE-(d+u+r)l (3.2)
with N'=S+E+1 . A suitable domain for (3.2) i® ={(S,E,1)OR’;S+E+1 <A/ 1}

The domain is positively invariant and the modehathematically well posed: nonnegative initial
conditions lead to nonnegative solutions.

For the model in (3.2), using the next generatiairix approach in [32], the basic reproduction

K and
(k Tt ro) - k(CI(l— m)(l_ nl)rl + p(l_ n2)r1)/y

number isRZ = f,Q,, where f, =

Q, = ﬁ,y =(d+pu+r). In the definition ong, Q2 is the number of secondary (latent)

infections produced by a typical infectious indivad during the mean infectious period/ y while f2 is
the fraction of infected individuals that develagiae TB during his/her lifespan.
The DFE for (3.2) i(S,, Ey, 1 o) = (A/ 1£,00) while the endemic equilibrium is

d+k+u+r d+pu+r k
S, =oAL E, =L RE-D, 1, = (R D),
Ao Po Po
A

where ,0; = .
k(B+ql-m)1- n1)r1 +p@a- nz)rl -n- d)-(d+pu+ rl)rO

Hence S, exists only ifo, > 0. This extends to the other components of the Eterdfore, the EE exists
only if o, > OandR§ >1. Itis straight forward to show that the DFEdsadlly asymptotically stable as
well as globally asymptotically stable Rg <1 following the method of linearization and the udea
similar Lyapunov function as shown earlier. F§r>1, the disease free equilibrium becomes unstable and

an endemic equilibrium exists, which can also leashto be stable for this condition Rf

From the models, without the treated (and re-tdBatedividuals getting infected again, a very
important strategy to bring the value of the basfroduction numbers below one is to increaserdion
of infectious persons receiving treatment under BGibove a critical minimum, for there to be the
possibility of eradication of tuberculosis.

4.0 The General Model with 8, >0 andm >0
This is the system of equations we have in equgfidt), reproduced here:

ds
—=AN-639/N-uS
m By H
dE
rra (BiS+B,T)IIN=(k+p+r1,)E+@Q-m)(-n)ar,l + (@-n,)pr,l
d—I:kE—(d +u+r)l
dt !
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%_I: r,E+ngr,l +n,pr,l =T =B,T1/N+nmrql-n,)l 4.1)

with N=S+E+1 +T . Under the flow described by (4.1), the region
A={(S,E,I,T)OR,;S+E+I|+T <A/}

is positively invariant. Also each solution iEJiapproaches A. Since paths cannot leave A, solutions

remain positive for positive initial conditions atite model is mathematical and epidemiologicallyl we
posed.
4.1 Analytic results
4.1.1  Equilibria and Threshold
Using the next generation matrix approach in [32¢ basic reproduction number is obtained as
k B
= fQ where f = andQ ==,y=(d+u+r).
A (1) KA@M, + L)y y 1

The DFE of (4.1) is given bys, = A/ 1,E, = 0,1, = 0,T =0. There is also an EE that will exist if

R, >1, which is rather complicated to write down.

To determine the behaviour of the different comparits near the equilibria, as usual we need to
compute the linearization of the system which igaomted from the Jacobian matrix of the system.
Evaluated the Jacobian of (4.1) at the DFE, we liaae

—H 0 -p 0

J = 0 —(k+,u+r0) :81+(l_ m)(l_ nl)qu+ prl(l_ nz) 0

0 0 k -y 0
0 To n,gr, + pryn, + mr1Q(1— nl) —H

Let A,,i = 1,234 be the eigenvalues df,. We then have that
(/J+/1)2 de(_ (k tUt ro) -A ,B'*' (1_ m)(l_ nl)qu + p(l_ nz)ﬁj -0

k -y=-A
—(k+u+ ro) B+ L-ma- nl)qu +pd- nz)rl
k 4
Det(2) = (d + p)(k + pr+15) —r,(=k(p+q-1) + #+k(an + m(q—an,) + pn,) +1,) kB,
andTrace(Z) =-d —k—-2u—r, —r,. We observe that the trace #&f is less than zero since all

Let 7 :( j,from Z , we have that

parameter values are positive. We can show thatiéherminant of Z is positive precisely whiggp <1.
Hence det(z) > 0 implies that KB + y(k + ¢ +r1,) —k(q@-m)(L-n)r, + pd—-n,)r, >0. The
inequality holds il—R, >0. Therefore, det(z) > 0 if &< 1. Therefore the DFE is locally

asymptotically stable whe], <1.

Determining the local stability of the EE in gereis more complicated. However, from our
previous analysis, we were able to observe thageimeral the EE is locally asymptotically stable whe

R, >1. Hence we can say that the EE for the general himttecally stable, if it exists, as far 48, > 1.
As done earlier, a Lyapunov function can provideufficient condition for the global stability of
the DFE wherRR, <1. Consider the Lyapunov function

V=KE+(k+u+ry)l.
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ThenV >0 except at the DFE and
\Bi= KB+ (k + 1 +1,) = 1 (KBSIN +k(q@-m)(L-n)r, + pA-n,)r,) - p(k + g +r,))
on AS<N<A/u,andso
\&5 I (kB +k(q@-m)L- r]1)r1 +p- nz)rl) -pk+pu+ ro))
=1 ((k+p+1) —k(q@-m)@-n)r, + pA-n,)r))(R, —1)
with equality only at the DFE. Fd®, <1, we have tha\®< Owith equality only ifl =0.\

Theorem 4.1
The Disease free equilibrium of the system (7) islocally and globally.asymptotically stablein A if

R, =<1
If Ry> 1, the disease free state becomes unstable anttraviad endemic equilibrium exist and is

locally stable.
For the minimization of the incidence of tubercigosve will require that the population size of

di

dE
all infected classes decrease i—gt— < O’E < 0. If we combine the inequalities, we have the

following condition with respect tq:
q> BSIN+B,TIN+A-n)r —p(k+p+r)/k _
@-ny)r,-@-m@-n)r, r
where N, and MOr N, should not be equal to one.

For the eradication of tuberculosis, we will reguihatR, < 1. Writing this inequality in terms of
the fraction of infectious individuals undergoingatment under DOT$}, we have the condition anfor
elimination: q>ﬁ+(1—n2)r1—y(k+,u+r0)/k) =

(1_n2)r1_(1_m)(1_n1)r1 ¢

For the sake of disease control, if the conditimmgf is not met strictly, at least health official may
look at the condition for minimizatiorgy) and could then move a step further to carry outlamination of
tuberculosis, if possible.

Eradication of the disease from the population mélan thaE = | = 0. Hence the total population

becomesN = S + T. Therefore solving the equations f0‘§‘and'lgwith E =1=0, we have

S(t) = A +(S, - Nl p)e™ T(t) = T, e “ where Sj ande are the initial numbers of susceptible
U

and treated individuals, respectively. As— oo, S(t) — — , the asymptotic population size, while

T - 0. Therefore the entire population returns to théiahstate where there are no infected individuals
and treated people but just susceptible individaalg.

5.0 Parameter estimation and numerical results

We set the year as unit of time. The constant ditytgs is estimated as the inverse of life
expectancy at birth which is about 49 years in Nagg31]. Hence = 1/49=0.0204yr . The
recruitment rate {\) controls the total population size becabbe A/ . We shall set
A= ux10°yr ™ [28].
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Per capita TB-induced mortality rates vary frommioyi to country. They are aroun@07yr in

developed countries but could be as higH)a395yr “Lin some African countries [1, 27]. For the purpose

of this work, we shall set the TB-induced mortatiage t00.395yr .

We take the recovery rates as the time betweenciiBation and recovery. According to Styblo,
et al [30], the time between TB activation and kexg by treatment is between 4 and 6 months while i

[16], the treatment period is about 6 to 9 monthplying that, >1 per year. If we take the treatment
period to be 8 months, following [29], we obtaie tlecovery rate to be 1/0.5 = 2 per person-yedBadh a
recovery rate of 1/0.67 = 1.5 per person-year vgesluFor this study, we will sd, and I, at 1.5 per

person-year.

In [33], we find epidemiological data on DOTS sulle@mce and implementation in Nigeria since
1995. With an incidence rate of 125 per 100,000ymar ofss+ cases, the prevalence rate was 531 per
100,000 per year of all cases in 2004. Since 18@/DOTS treatment success rate has stabilizeddota
75% while re-treatment rates under DOTS have &takilto about 79%. Fraction of detected cases
undergoing treatment under DOTS has ranged from tb12d% in 2004 [33]. Hence from available data,
we estimateq = 0.21 whilen; = 05769 andn, = 0.0505. Fraction of successfully re-treated cases;
0.7273. From the expression f&, Q depends on the average infectious periods of tFectious

individuals and the transmission raf§,. The transmission rates/}{ andf3,), are chosen to match the
expected number of infections produced in they units of time. Assuming there is no significant
protection against re-infection after treatment,wilkhave that3, = £, .

The fraction of infected people who develop acthg f, has been estimated to be between 5%
and 10% in developed countries while for develomiagntries, this could be about 15% and in some
extreme cases, 30% [28]. For this study, we sletfis 0.15. The average per capita rate of progression to
active TB k) is estimated from

— k
(k+ p+15) —k(q@-m)@-ny)r, + p—n,)r,)/ y
f(u+ry)
From the above, we have thiit= 0
e 9@-m@-n)r + pd-ny)r
1-f(@1 )
4

From datag currently stands at 0.21 in Nigeria. With differeatues ofg for the past eight years,
ranging from 0.11 to 0.21 arfc= 0.15, we observe that there was not much differendbe progression
rate, wherek = 0.2433, which has been almost constant over theléastde.

Figures 5.1 to 5.3 are the numerical simulationhaee of the generalized model with the given
parameter values and values €@rWe observe from the figures that to significaritlwer R, below one,
we need to make the number of secondary infectipwery small.

Clearly, withR, below one and = 6 in figure 5.3, the DFE was achieved after g/¥eng time.
This shows that to achieve a reduction in the i@ of tuberculosis in Nigeria, attention musplaeed
to isolate infectious individuals (for treatmentden DOTS) so that the number of secondary infestisifi
be greatly minimized.
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Figure 5.1 Populationfractions with@Q = 7.5

6.0 Discussion and conclusions

In Nigeria, the incidence of tuberculosis is on itherease [31]. Among other factors that may be
contributing to this trend is the failure to incseathe number of active TB cases undergoing tredtme
under the DOTS programme. Obviously, the deteatitm is small and there is a large fraction of emted
cases leading to an increase on the number of dappinfections in the country. In order to conttioé
incidence of tuberculosis, this issue must be ax$ee:

Ry =1.05
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Figure 5.2 Population fractions witfQ = 7
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Figure 5.3 Population fractions with) = 6

In this research, we have examined the effects@f® on the dynamics of tuberculosis vis a vis
the fraction of infectious individuals undergoingdtment under DOTS. In order to understand thectsf
of DOTS in reducing the incidence of TB in Nigeria, mathematical model was formulated that
incorporated the fraction of active cases undegdiaatment under DOTS (including treatment and re-
treatment rates).

In the qualitative analysis of the model, the estise of steady states and their stability were
analyzed. The analysis showed that a disease dulbeium existed and was found to be stable piedi
the fraction of active cases receiving treatmerdeers a critical valuegf which among other things
includes the number of new infections, re-infecsioand failed treatments. The requirement for
minimization of the incidence of tuberculosig)(was obtained and is almost similar to the coadifior
eradicationg.

The results of the numerical simulations were réaaly inline with those from the qualitative
analysis of the model. Both analyses showed thecetff the fraction of treated individuals under T
Increasing this fraction can help in reducing ttesib reproduction number and hence, the number of
infectious individuals (since all infectious persaare treated under DOTS) and by extension, thebaum
of latent infections.

The basic reproduction numbé&y; is one of the tools used in determining diseasabieur in a
given population. The condition for this quantity he less than unity will mean making the fractafn
treated infectious individuals under DOTS exceedritical value () determined by the values of the
epidemiological parameters. If this critical valiee not exceeded, then there is the possibility of a
epidemic in the population that could end up sejttio an endemic state after a long time. The narabe
secondary infections must be minimized to achievedaiction in the incidence of tuberculosis in Nige
hence attention must shift to isolating infectidndividuals for treatment under DOTS to avoid irgiag
the number of infections that they may cause.

DOTS expansion should not just cover treatmentsealmt emphases should be placed on using
the dynamic nature of the programme to screen aloséacts of infectious cases of TB in order towno
how many of these could be having either laterdaative cases of tuberculosis. The approach of sorge
household contacts by Becerra, et al [3] is qusieful and timely for Nigeria. The object of thedstun [3]
was to access the feasibility and yield of a simpitive case finding strategy in a high incidence
population in northern Lima, Peru. The results stawhat the tuberculosis prevalence detected throug
combined active and passive case finding among4lh@@sehold contacts was 0.91% (914 per 100,000),
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much higher than with passive case finding alon28% ; 183 per 100,000). Hence the study concluded
that the risk of active TB among symptomatic hoafttltontacts of active case subjects in the comiypuni
is very high and results suggested that contacingan such setting may be a powerful tool in impng
case detection rates for active tuberculosis déseEise estimations used for the computer simulatimin
the general model suggests that while there haga beprovement in tuberculosis treatment succdss ra
under DOTS in Nigeria, the small number of caseésaed under DOTS and treated (or re-treated) mesnai
an obstacle to the long-term success of DOTS oredirol in Nigeria. Hence, if DOTS is expandedsthi
should include screening of close contacts of teatéd infectious individual. For now, we can Hagt
DOTS is not having much impact on efforts to redtiee incidence of tuberculosis in Nigeria as only a
little fraction of the infectious individuals arectaally treated under DOTS while the vast majooty
undetected cases are actually leading to an irer@ashe number of new infectious cases in the tcpun
and a huge pool of latent individuals, and by esi@mthe prevalence rate.

We also suggest that reaching the rural areashailé to include providing transportation for the
sick to receive their medication and if possiblekéeg the attention of the families of these pdtefior
screening. Medical personnel can be paid to ghése areas to provide medications for the patantsell
as simultaneously conduct screening for close ctstaf the patients. In this regards, we suggedicde=d
vehicle from the government or other health agenitiecarry out these tasks.

DOTS, as a strategy adopted by WHO, is to helpaediue number of active tuberculosis cases as
well as effect proper treatment of patients. Ttsgihts gained from the mathematical model treatetiis
article can be useful in the study of the impacD@TS on the dynamics of tuberculosis in NigeriaisT
may assist health and government officials plaringproving the case detection rate which will heatp i
bringing down the incidence and prevalence of TBhe country. This can be achieved if the current
DOTS service in Nigeria is greatly improved upord dhe fraction of infectious individuals undergoing
treatment (or re-treatment) is significantly ined.
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