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Abstract 
 
 

Ching-Tzong Su and Feng Cheng Chang introduced a method of 
evaluation of determinants by order reduction in their paper “Quick 
evaluation of determinants. Here we moved further to state that the 
determinant of any given matrix is equal to the determinant of the reduced 
matrix of order (2 ×××× 2). In addition we assert that the process leads to a huge 
saving in computing storage space as a matrix of order (n ×××× n) (n >2) is 
reduced to order (2 ×××× 2). This was demonstrated by examples. 
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1.0 Introduction 

Ching – Tzongh Su and Fen Ching Chang in their paper titled “Quick evaluation of Determinants 
[1] derived a quick method of evaluating the determinant of a given matrix by order reduction method. 
They showed that the reduction order formula is valid for r ≠ 0 in 
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where w, v, u and r are respectively a square matrix a column matrix, a row matrix and a scalar. The 
determinant of any large order matrix can therefore be easily obtained by applying this formula 
successively. In the process if r = 0, the modification is made by exchanging rows or columns of the matrix 
to avoid r = 0. 

 The required multiplications are found to be ( )4323
1 2 +− nnn  which is less than n3 

operations needed for the product of 2n × n matrices [1, 2]. It should be noted that a FORTRAN program 
involving the calculation of determinant is shown below: 
 
PROGRAM MTDET 

C DETERMINANT OF A GIVE MATRIX 
C ONLY 6 STATEMENT LINES 

  B Y F. C. CHANG 10/16/94 
DIMENSION A(10, 10) 
READ (5, *) n,((A(I,J),J=1,N), I = 1, N) 
WRITE(6, *) GIVEN MATRIX A(I, J) 
WRITE(6, 12) ((A(I, J), J = I, N), I = 1, N) 
12 FORMAT(6,F8.2) 
DET = 1.0 
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DO 20 K = N, 1, -1 
DO 10 I = 1, K – 1 
DO 10 J = 1, K – 1 
10 A(I, J) = A(I, J) – A(I, K) * A(K, J)/A(K, K) 
20 DET = DET * A(K, K) 
WRIT(6, *) ‘DETERMINANT =  ‘, DET 
STOP 
END 
 

2.0 Reducing the determinant of the matrix of any order (n ×××× n) n > 2  
to the determinant of the matrix of order (2 ×××× 2). 

 By repeating the above process the (arbitrary) order of a given matrix can be reduced to the order 
of (2 × 2). So for a matrix of order (n × n) as given below we have 
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where 
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For n = 4, we have the  
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where 
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where ( )
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So symbolically, we have 
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Hence for a matrix of order n × n 

( ) ( ) ( )
( ) ( )

( ) ( ) 









=



















−−

−−
−

−−−− 2
22

2
21

2
12

2
113

33
2

22
1

11

21

22221

11211

detdet
nn

nn
n

nnnnnn

nnnn

n

n

aa

aa
aaaa

aaa

aaa
aaa

Κ

Κ

Κ
Μ

Κ

 

 (2.8) 
So the determinant of a matrix of order (n × n) is reduced to the determinant of a matrix order (2 × 2) which 
leads to a great reduction in computing storage space and the reduction in calculation and the associated 
error.  
Example 2.1 

Find the determinant of the matrix. 
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By the process above 
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where 
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Example 2.2 
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3.0 Conclusion 
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From the above, it is clear that the determinant of any given matrix of order (n × n) (n > 2) can be 
reduced to the determinant of a matrix of order (2 × 2) by the repeated use of order reduction formula.  The 
leads to simple and straight forward calculation and a huge reduction in computing storage space. This 
coupled with already noted advantage is a much better and efficient way of calculating the determinant of 
any given matrix of order (n × n) where n >2. 
 

References 
 

[1] Ching – Tzong Su and Feng Cheng Chang (1996). Quick Evaluation of Determinants. Appl. Mathematics and 
Computation 75 117 – 118. 

[2] Keryszig Erwin (1979). Advanced Engineering Mathematics, John Wiley & Sons. Inc., New York, USA. 
 

 
 
 
 


