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Abstract 
 

 
In Adeniyi et al. [7], we reported a generalization of the original 

formulation of the Tau method of Lanczos [14] with its associated error 
estimation.  The generalized Tau method is not however, possible for all three 
variants of the method, namely the differential (or original), the integrated 
and the recursive formulation, due to the difficulty in constructing the so-
called canonical polynomial which is the basis function required for the 
recursive form.  Yet, it is worthwhile to compare the three variants, as much 
as feasible.  Consequently, in this paper, we present the three variants 
together with their error estimates for a class of first orderoverdetermined 
ordinary differential equations with unit overdetermination.  Numerical 
evidences are provided in support of the accuracy of our results. 
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1.0 Introduction 
 Accurate approximate solution of linear ordinary differential equations with polynomial 
coefficients may be obtained by the tau method of Lanczos (See [2] – [4], [13], [14], [17]) introduced in 
1938.  The method is related to the principle of economization of a differentiable function, implicitly 
defined by a linear differential equation (DE) with polynomial coefficients.  Since then, variants of this 
method have emerged, some of which we now highlight below:  
1.1 Differential or original form of the Tau method.   
 We describe briefly here the original formulation of the tau method by considering the boundary 
value problem (BVP) in the m-th order linear DE:  
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of y(x) which is the exact solution of perturbed problem: 
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for a < x < b and where ,)1(1, mrr =τ  are parameters to be determined along with the a’s in (1.3), Tr(x) 

is the r-th degree Chebyshev polynomial (See [10], [11]) valid in [a , b] and 

 { }mrrNs r ≤≤−= 0max        (1.4) 

is the number of overdetermination of equation (1.1a) (See [2], [11]).  For more explanation on the 
parameter, also see Section 1.3. 

 We determine  mrandnra rr )1(1,,)1(0, == τ  from the linear algebraic system 

 bA =τ ,         (1.5) 

obtained by equating corresponding coefficients of powers of x from (1.3a) and then applying conditions 
(1.3b); 
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Consequently, we obtain from (1.2) our desired approximant yn(x) of y(x). 
1.2 The integrated formulation of the Tau method 

 If ∫ ∫ ∫∫ ⋅ dxxgr )(  denotes the indefinite integration r times applied to the function g(x) and 

 ∫ ∫ ∫∫= dxLI m
L (.)...        (1.6) 

then the integrated form of (1.3a) is 
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where cm(x) denotes an arbitrary polynomial of degree (m - 1), arising from the constants of integration.  
The approximant (1.2), now, then satisfies the perturbed problem 
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The tau problem (1.8) often gives a more accurate approximant of y(x) than does  (1.3) due to its higher 
order perturbation term. See ([2], [10], [11]). 
1.3 The recursive formulation of the Tau method.   
 To give some flexibility in computation of tau solution, Lanczos [13] introduced a systematic use 
of the so-called canonical polynomial, Qr(x), defined by 
     LQr(x) = xr     (1.9) 
where L is given by (1.1a), r ε N0 – S, S is a small finite or empty set of indices with cardinality s(s < m + 
h); h is the maximum difference between the exponent r of x and the leading exponent of the generating 
polynomial L xr, for r ε N0. 
 Due to the difficulties in the construction of these polynomials, Ortiz [17] in 1969 proposed a 
recursive generation of the polynomials.  Once these polynomials are generated, the tau approximant of 
y(x) is then obtained as 
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where fr, r = 0(1) F, are the coefficients of )(),( r
kCxf  is the coefficient of xk in the r-th degree Chebyshev 

polynomial, and the approximant yn(x) now takes the form 
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Their  use offer some advantages as the Q’rs neither depend on the boundary condition nor on the interval 
in which the solution is sought.  They are also re-useable for approximants of higher degrees. 
 
 
 
 In what follows in the next section we shall review briefly an error estimation technique of the Tau 
method which we had reported in [6] and [17], section 3 focuses on the central concerns of this paper, some 
numerical examples will be considered in section 4 and we shall finally conclude the paper in section 5 
with some concluding remarks. 
 
2.0 An error estimation of the Tau method.   
 We review here error estimations for the three variants of the tau method discussed in the 
preceding section.  
2.1  Error estimation for the differential form. 
 For an error estimation of the Tau method we constructed, based on the error of the Lanczos 
economization process, the error approximant. 
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which satisfies, exactly, the perturbed error problem 
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and where the extra parameters smrr += )1(1,τ  and  ϕn are to be determined; ( )xmµ is a specified 

polynomial of degree m which ensures that ( ) 1)( +nn xe   satisfies the homogeneous conditions associated 

with en(x).   
 We insert (2.1) in (2.2a) and then equate corresponding coefficients of 

11 ,...,, +−+++ mnsnsn xxx .  The resulting linear system is solved for ϕn by forward elimination, and 

consequently we obtain the apriori error estimate 
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2.2 Error Estimation for the integrated form 
 For an error estimation of the integrated form, we have from (2.2a) 
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where ( ) 1)( +nn xe  is given by (2.1).  Once (2.1) is inserted in (2.4) we equate corresponding coefficients of 

xn+s+m+1, xn+s+m … ,  xn+1.  Subsequent procedures follow as described in section 2.2 to obtain the error 

estimate Iε . 

2.3 Error estimation for the recursive form 
 Once the canonical polynomials of section 1 are generated, they can be used for an error 
estimation of the tau method (see [6], [8], [15]).  Here we consider a slight perturbation of the given 

boundary conditions (1.1b) by 1ε  to obtain an estimate of the Tau parameter sm+τ , in terms of canonical 

polynomials, which is then substituted into the expression for Iε  given in (2.3) for a new estimate 2ε .  

See section 3.3.1 below. 
 
3.0 A class of over-determined first order equations 
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 We consider here the three variants of the Tau method of the preceding section and their error 
estimation as applied to the class (1.1) when m = 1 and for s = 1, that is, 
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where 10210 ,,,, ββααα  are given constants and F < n + 1. 

Without loss of generality we shall assume that a = 0 and b = 1, since, by the transformation 

 ( ) ( ) bxaabaxu ≤≤−−= ,  

 
 
 
we may readily transform (3.1) into the interval [0 , 1]  
3.1 Tau approximant by the differential form 
 If we insert (1.2) into the perturbed form of (3.1a), we have that 
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We equate corresponding coefficients of x to zero to get the system:  
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We solve this system together with a0 = A, obtained from the condition (3.16), so as to determine ar , r = 
0(1)n in (1.2).  Consequently we obtain the desired approximant yn,1(x) of y(x). 
3.1.1 Error estimation for differential form 
 From (2.2a), we have for problem (3.1) 
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By equating the coefficients of xn+2, xn+1 and xn in (3.3), we have the system 
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nn Cϕθ .  We solve this system by forward elimination for ϕn using the well-known 
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From (2.3) we obtain the error estimate 
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3.2 Tau approximant by the integrated form   
 From (1.7) we get 
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That is, 
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We solve this for 21 ,)1(0, ττandnrar = . Subsequently, we obtain from (1.2) our approximant 

yn,2(x). 
3.2.1 Error estimation for the integrated form 

From (2.4) we have for problem (3.1) 

( ) ( ) ( ) ( )

( ) ( )[ ] ( ) ( )xTxTduuTuT

duueuduueuu

nn

x

nn

x

nn
n

x

n

1220 211

0 110
10 1

2
210 )()(

+++

+++

+++−=

++++

∫

∫∫

ττττ

ββααα
 

 ( ) +












+
+

+
−++ ∑∑

=

++
+

=

n

r

r
r

r
rr

r

n

r
n

n

n

r

xa

r

xa
xaxx

C 0

3
2

2
11

0

2
210)( 3

2

2

αααααφ
 

 
 
 
 

 
 

 
 

r
n

r

n
r

r
n

r

n
r

n

r

rn
r

n

r

rn
r

n

r

r
r

r
r

xCxC

r

xC

r

xC

r

xa

r

xa

∑∑

∑∑∑
+

=

+
+

=

+

=

+++

=

++

=

++

+

+
+

−
+

−=














+
+

+
2

0

)2(
2

3

0

)3(
1

0

1)1(

2

1

0

1)1(

1
0

3
1

2
0

1132

ττ

ττββ

 

where ( )( ) 1+nn xe  is again given by (3.5).  This leads to 
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We equate corresponding coefficients of xn+3, and xn+1
 to have the system 
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We solve this by forward elimination for ϕn to have 
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Hence the error estimate is ( )
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3.3 A Tau approximant by the recursive form 
 For the problem (3.1), from (1.10) we have that 
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If F < n + 1, then this becomes 
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where the sequence of canonical polynomials {Qr(x)}, r ε N0 – S, is generated thus: 
From (1.9) and (3.4), and by the linearity of L, 
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By assuming the existence of L-1 we obtain 
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r   (3.15) 

for r = 0 , 2 , …  and provided that .012 ≠+ βα r  

From (3.15) we generate as many canonical polynomials as needed, depending on the degree of 
the approximant yn(x).  We see that Q0(x) is undefined by (3.15) and hence  
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S ≡ {0} with s = 1.  The difficulty in generating the polynomials Qr(x) for large value of r will limit our 
discussion here to a typical approximant of degree 5.  Consequently we shall let n = 5 in (3.14)  to have. 

 ( ) [ ] ( ) [ ] ( )xQCfxQCCfxy r
r

rrr 6
)6(

616

5

0

)6(
2

)6(
15 τττ ++++= ∑

=

  (3.16) 

where Qr(x) , r = 1(1)6, are obtained from (3.15).  Since Q0(x) cannot be determined we shall equate its 
coefficient to zero to have the equation  

 12211 ητλτλ =+         (3.17) 

Whatever now remains of (3.16) constitutes our new y5(x), call this Y5(x), say.  Applying the condition 
(3.1b) to Y5(x) also yields a second equation 

 22211 ηττ =+ vv         (3.18) 

The quantities 122121 ,,,,, ηηλλ andvv  are defined as 
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66554433221101 ρρρρρρη fffffff ++++++=     (3.21) 

6655443322112 γγγγγγη ffffffA ++++++=     (3.24) 
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The system constituted by (3.17) and (3.18) is then solved for 21 ττ and , whose values, are substituted 

back into Y5(x) so as to obtain the desired approximant yn,3(x) of y(x) 
 
 
 
 
3.3.1 Error estimation for recursive form 
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From (3.14) we have 
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So then our error estimate is 
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where 22121 ,,, ηηλλ andv  are given by (3.19)  -  (3.24), and R1 by (3.7) 

 
4.0 Numerical examples 
 We consider here some selected examples for experimentation with the preceding discourse.  For 

these examples, the exact errors are obtained as ( ) ( ){ } 3)1(1,* ,
max =−= ≤≤ λklnkbxa xyxyε  

where {xk} = {0.01k} for k = 0(1) 100.  As the remark in section 3.3 relating to the use of canonical 
polynomials limits the scope of this work on the recursive formulation and for purpose of meaningful 
comparison, we shall consider an approximant of degree 5.  The results are presented in Table 4.1 below: 
Example 4.1:  

 ( ) ( ) 10,)(,1)0(,02 ≤≤===+′ − xexyyxxyxy x     (4.1) 

Example 4.2 ( ) ( ) 10,
2

1
exp)(,1)0(,0 2 ≤≤







===+′ xxxyyxxyxy   (4.2) 

Example 4.3 ( ) ( ) ( ) ( ) 10,exp)(,10,0)(21 2 ≤≤+===+−′ xxxxyyxyxxy  (4.3) 

Example 4.4 ( ) ( ) ( ) 10,exp2)(,30,4)(2 2 ≤≤−+===+′ xxxyyxxxyxy  (4.4) 

Example 4.5 ( ) ( ) ( ) ( ) ( ) 10,22,0)(122 22 ≤≤+−==−+′+− xxxxyxyxxyxx  (4.5) 

 
Table 4.1: Error and Error Estimated For Fifth Degree Approximant 

 
Problem  

Method 
 
Error Problem 

4.1 
Problem 

4.2 
Problem 

4.3 
Problem 

4.4 
Problem 

4.5 

1ε  4.08X10-5 9.81X10-5 1.34X10-2 4.08X10-5 2.080X10-4 Differential 
Form 

ε1 3.57X10-5 6.12X10-5 1.07X10-2 3.57X10-5 1.95X10-4 

2ε  1.85X10-6 3.97X10-6 5.15X10-6 1.85X10-6 6.72X10-6 Interpreted 
Form 

ε2 2.12X10-5 2.38X10-5 2.82X10-3 2.12X10-5 8.49x10-4 

3ε  4.05x10-5 9.81x10-5 1.34X10-2 4.08x10-5 2.80x10-4 Recursive 
Form 

ε3 3.57x10-5 6.12x10-5 1.07x10-2 3.57x10-5 1.95x10-4 
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5.0 Conclusion 
 Three variants of the tau method and their corresponding error estimates for a class of 
overdetermined first order ordinary differential equations with unit overdetermination have been presented.  
For meaningful comparison, the results obtained have been applied to some selected members of this class 
for a fifth degree approximant, since the recursive form becomes too cumbersome for approximants of 
higher degrees. The fifth degree approximant was also chosen, rather than lower degree approximants, 
because convergence will be better achieved  for reasonably large n, the degree of the approximant.  We 
note the effectiveness of the three variants as the error estimates compare favorably with the exact error in 
all the three cases. 
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