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Abstract

In Adeniyi et al. [7], we reported a generalization of the original
formulation of the Tau method of Lanczos [14] with its associated error
estimation. The generalized Tau method is not however, possible for all three
variants of the method, namely the differential (or original), the integrated
and the recursive formulation, due to the difficulty in constructing the so-
called canonical polynomial which is the basis function required for the
recursive form. Yet, it is worthwhile to compare the three variants, as much
as feasble. Consequently, in this paper, we present the three variants
together with their error estimates for a class of first orderoverdetermined
ordinary differential equations with unit overdetermination. Numerical
evidences are provided in support of the accuracy of our results.

Keywords. Tau method, variants, error, error estimate, reegyslifferential,
integrated, approximant, canonical polynomialsirialation

1.0 Introduction

Accurate approximate solution of linear ordinaryffedlential equations with polynomial
coefficients may be obtained by the tau method arfidzos (See [2] — [4], [13], [14], [17]) introduced
1938. The method is related to the principle odneenization of a differentiable function, impligitl
defined by a linear differential equation (DE) wipelynomial coefficients. Since then, variantstloif
method have emerged, some of which we now highbghaw:
1.1 Differential or original form of the Tau method.

We describe briefly here the original formulatiohthe tau method by considering the boundary
value problem (BVP) in the m-th order linear DE:

Ly(x)::i P(x)y"”(x) = f(x), as x<b (1.1a)
0 m-1
L* y(%,):=> 2y (%) = @, k = 1)m (1.1b)
r=0
where v, (x) = Zn:ar X ,0<n< +oo (1.2)
r=0

of y(x) which is the exact solution of perturbed problem:

m-1 m+s-1
LY, (% ):= Y P (X () = F (0 + D Toneer Taomersa(X) (1.3)
r=0 r=0
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L* y, (%): Zar.y‘”( )= 0, k=1am (1.30)
for a <x <b and wherel , r =1(1)m, are parameters to be determined along with theng’s.3), T,(x)
is the r-th degree Chebyshev polynomial (See [[1a]) valid in [a , b] and

s=max{N, -r/0<r<m (1.4)

is the number of overdetermination of equation g1.(See [2], [11]). For more explanation on the
parameter, also see Section 1.3.

We determined, , r = 0@)n, and 7, , r =1I)m from the linear algebraic system

A T :[2 , (1.5)
obtained by equating corresponding coefficientpafvers of x from (1.3a) and then applying cond#ion
(1.3b);

A=(a;),1<i, jsn+m+s+1 b=(h)l<isn+rm+s+l

—_ T
r=(a,,a,, ....a,, 7, ..7,...)" .
Consequently, we obtain from (1.2) our desired axipranty,(x) of y(x).
1.2 The integrated formulation of the Tau method

If III ' Ej g(X)dx denotes the indefinite integration r times appt@the function g(x) and

:j” m ...jL(.) dx (1.6)

then the integrated form of (1.3a) is

yx) = J'” J' f(x) dx + c,,(x) 1.7)

where r;n(x) denotes an arbitrary polynomial of degree (fj,-arising from the constants of integration.
The approximant (1.2), now, then satisfies theyrbad problem

() =™ [ 100 dx+ e (x)+ ZTWS_ () Tour (%) (1.8a)

L*y,(x,)=a, ., k=10)m (1.8b)
The tau problem (1.8) often gives a more accurpfgaximant of y(x) than does (1.3) due to its leigh
order perturbation term. See ([2], [10], [11]).
1.3 The recursive formulation of the Tau method.

To give some flexibility in computation of tau gtibn, Lanczos [13] introduced a systematic use
of the so-called canonical polynomial(x), defined by

LQ(x) =X (1.9)

wherelL is given by (1.1a), € Ny — S, Sis a small finite or empty set of indices with diaality s€<m +
h); h is the maximum difference between the expomenit x and the leading exponent of the generating
polynomial LX, forr € No.

Due to the difficulties in the construction of seepolynomials, Ortiz [17] in 1969 proposed a
recursive generation of the polynomials. Oncedhaslynomials are generated, the tau approximant of

y(X) is then obtained as
m+s-1 —m+r +1

=300+ Sr SE QU w10

wheref,, r = 0(1)F, are the coefficients of (X), C\" is the coefficient of" in ther-th degree Chebyshev
polynomial, and the approximayi(x) now takes the form
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A (x) = iar Q (x) (1.11)

Their use offer some advantages as the Qgither depend on the boundary condition noteririterval
in which the solution is sought. They are alsaseable for approximants of higher degrees.

In what follows in the next section we shall raevieriefly an error estimation technique of the Tau
method which we had reported in [6] and [17], set8 focuses on the central concerns of this papene
numerical examples will be considered in sectioand we shall finally conclude the paper in secion
with some concluding remarks.

2.0 An error estimation of the Tau method.

We review here error estimations for the threeiavas of the tau method discussed in the
preceding section.
2.1 Error estimation for the differential form.

For an error estimation of the Tau method we conttd, based on the error of the Lanczos
economization process, the error approximant.

(€ () = 2o 20 (X) Toma (X)/CEis? DY) = ¥ (%) = €,(x) (2.1)
which satisfies, exactly, the perturbed error peabl
m+s-1 m+s-1
L(en (X))n+1 =~ zrm+s—r Tn—m+r+1(x) + zfm+s—r Tn—m+r+2 (X) (226.)
r=0 r=0
L* (€, (X4 )y =0 (2.2b)

and where the extra parametdfs, I = 1) m+ S and ¢, are to be determinedt/,, (X)is a specified

polynomial of degree m which ensures tlﬂep;(x))

with e,(x).
We insert (2.1) in (2.2a) and then equate corneding coefficients of

XXM L, X"™L The resulting linear system is solved figy by forward elimination, and

consequently we obtain the apriori error estimate

= — max - (n—-m+1)

81 T asxs<b |(en (X))n+1 - |¢n|/‘cn—m+1
2.2 Error Estimation for the integrated form

For an error estimation of the integrated form,hage from (2.2a)

.+ Satisfies the homogeneous conditions associated

0 . le(x) =4 (2.3)

<x<b

m+s-1 m+s-1
IL(eh (X))n+1 = _J-J-j " '[( zrrms—r Tn—rmr+1(x)j dX + Cm(X)-l_ zfrms—r Tn—m+r+3(x) (3'4)

r=0 r=0
where (en (X))n+1 is given by (2.1). Once (2.1) is inserted in J2v equate corresponding coefficients of
xmstml yamstme 0 X™ Subsequent procedures follow as described itiose®.2 to obtain the error
estimate&, .
2.3 Error estimation for the recursive form

Once the canonical polynomials of section 1 areegsed, they can be used for an error
estimation of the tau method (see [6], [8], [15]Here we consider a slight perturbation of the give

boundary conditions (1.1b) bg, to obtain an estimate of the Tau parametgy, , in terms of canonical

polynomials, which is then substituted into the resgion for&, given in (2.3) for a new estimatg, .
See section 3.3.1 below.

3.0 A class of over-determined first order equations
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We consider here the three variants of the Tathogedbf the preceding section and their error
estimation as applied to the class (1.1) when mandlfor s = 1, that is,

A
Ly(0):=(a, +a, x+ @, %) y(x) + (8, + BX)y(0 =D f, x'; asxsb (3.1a)
r=0

wherea,, a,, a,, B, , B, are given constants and < 1.
Without loss of generality we shall assume thatGaand b = 1, since, by the transformation

u=(x-a)/b-a), asx<b

we may readily transform (3.1) into the interval, [0]
3.1 Tau approximant by the differential form
If we insert (1.2) into the perturbed form of &),lwe have that

.
(0’0 ta, X+a, XZ) ir a, X+ (,Bo + ﬁlx) iar x' :Z fox"+0, T ,(X)+7, Tn(X)
r=0 r=0 r=0
Thatis (8, a, +a,a,-1, C{" -1, C{™ - f,)
-1
+ nZ[(az(r ) +p8)a_ +(ar +8,)a +(r+l)a, a,-1,C" - r1,C"™ - fr] X'
r=1

+ [(az(n _1) + ﬂl) A +(a1n+/80) a, -7, Crgn) - Cr(1n+l) - 1:n]xn
+ [(azn + ,31) a, -0 CQT) - fn+1] x"=0
We equate corresponding coefficients of x to zergett the system:

ﬂo ayta,a, — T, Cén) - Cc(>n+l) = fo
(az(r _1) + :81) a_, * (al r +:Bo) a +0’O(I‘ +1)ar+l_r2 Cr(n) -n Cr(n+1) = fr ,r=10n-1
(0'2 (n _l) + :81) an-l + (al n+:80) an - TZCrgn) - Tlcrgnﬂ) fn(az n+ﬁ1) a'n - Tlcrgnﬂ) = fn+1
We solve this system together wilk = A, obtained from the condition (3.16), so as to chetee a , r =
0(1)nin (1.2). Consequently we obtain the desiegroximant y;(x) of y(x).

3.11 Error estimation for differential form
From (2.2a), we have for problem (3.1)

L(en (X))n+1 =0 T, (X) + (fz - Tl) Tha (X) -7, T, (X)

where L=(a, + a,x +a, xz)% +(B8,+B,x) (3.4)
). = X TR =0, S0 Jet e
r=0

By equating the coefficients of %, X" and X in (3.3), we have the system
65, +(n+a,c”| =7, cy?
6la, (n+1)C” +na, ) +£,CY + BCU] =7, Cl? + (7, - 7, )l
Bla, (n+2)C? +na, CY +(n-Va,CY) + AL + B |=
I Cr(:IZ) + (Z_-z -0 )Crgnﬂ) - T2Cr(1n)’
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-1
where 8 = ¢n (C,(]”)) . We solve this system by forward elimination fiar using the well-known

_ 1
relations cm=2"* clW=-=nc"
2
to have ¢, = -2"7r,/R (3.6)

where R =16[2**(n+1)a, - 22" n?a, +(n-1)a,C", - 222n g, +B,C",
-[8+(n+1)a,] C™? + 22 (n+1) [2(n+1) @, +(3n+2)a, +28,+28] (3.7
From (2.3) we obtain the error estimate
g =2°r,|/|R)| (3.8)

3.2 Tau approximant by the integrated form
From (1.7) we get

J'(ao+alu+ a, 1) y/(u) du+j B, + Bu)y (u)du :jox(f0+f1u+ f,u?) du

for
r+1

and

or (ao +a,x +a, xz)y(x)—jox(a1 + 2a,u) y(u)du +(8, +Bu)y(u)du=a, A+ Z

from (1.8a) together with (1.2) we have

n nfa.a X 2a, a x'?
Z“(ao+alx+azx2)ar xf—Z( Chans 2 +

r=0 r=0 r+1 r+2

m a, Xr+1 a, Xr+2 F fr X'Jrl
Z(ﬁo + ﬁl jar =aq, A+Zr—+1+r Tn+2( ) tr Tn+2( )

r=0 r+1 r+2
That is,
(@p 3 -7, C&™ - 1,C™ - a, A)
. 2a y . f )
' ZHGZ = ﬁj % (al T ﬂoj a,+a,8 —7,C™ -1, C™? —“—ﬂx +

r

20'2 ﬁl al (n+1) _ (n+2) _ f n+l
- + = + - C C +
|:(a2 n +1 n +1j a'n—l (al n +1 n +1 an T n+l T n+l +1 X

(N AT R

n+2 n+2 n+2
From this we obtain the linear system
a,a, —1,C{"™ - r,C{"™ =a, A

1 1
?(raz - 20’2 + /81) a,_,+ ?(ral -a t /80) a_ taza -7, Cr(n+l) -

f (3.9)
r,CM™ =L r=1@)n
r
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(naz - 4a, +:31j a . + ( na, - al+ﬁ0j C(n+1) C(n+2) _ fn !
n-1

n+1 n+1 i i n+1
na f
72 rFo ﬂO an + z.l CéEEZ) - n
n+2 n+2

We solve this foa, , r=0@)n and 7, 7,. Subsequently, we obtain from (1.2) our approximan
Yn2X).

3.2.1  Error estimation for the integrated form
From (2.4) we have for problem (3.1)

[[la + aw + a,u?) (@u),.) du+ ['(5, + B.u) (e,(W),, du

- jox[rl Tn+1( +T2 ] du + Z-Tn+2( ) + TZ Tn+1(x)

C(n) |:i( + alx + az X2) ar Xr+1 _ i(alar Xr+2 .\ 20'261, Xr+3] .\

= = r+2 r+3

r+2 r+3 1 ~(n+) r+l (n+1)
Z”:(,[z’oa,x , Biax J L, uC Z“: X"
1

r+2 r+3 = r+1 - r+1

n+3 (n+3) n+2 (n+2)
= n+ r = n+ r
T, E C"x + 17, EOCr X
r =l

r=0

where (en (X)) is again given by (3.5). This leads to

n+l

n n(a,a x™*? 2a,a x'*?
2 rl 1 2
( Z(ao+alx+azx)arx —Z[ s + s +
n

=0 e r+2 r+3

$(Bax?  pax=| g x icw X
r+2 !

pr r+3 = r+1 = r+1
n+3
+ Z.l zc(n+3)x + T zc(n+2)x
r=0

We equate corresponding coefficients 8fxand X*'to have the system
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(n) (n)
¢n a C(n) _ 20'2 Cnn + ﬂlCnn =7 C(n+3)
2%n - n+3
civ n+2 n+3
I aCl”  2a,ct  pCY  pCY

¢(?1) aC"” +a,ClN - =0 - 212 4 A | PG (3.11)

C, n+2 n+2 n+2 n+2
— C(n+3) + 7 C(n+2) _ 1 C(n+l)
= 0L Lo I, Chrz E Iy Chn

¢ a C(n) 2a C(n) ,B C(n) ,B C(n)
n ac(n)+ac(n) +a C(n) _ “Y1~n1 _ 2 n—2+ 1~n-2 + 0~n-1
(n 0~n 1~n-1 2~n-2
C, n+1 n+1 n+1 n+1
(n+1) (n)
=T C(n+3) +7 C(n+2) _ T1Cn _ Z-2Cn
— 1 “nH 2 “n+l
n+1 n+1
-2 (n+3) 1
We solve this by forward elimination f¢r, to have¢n = ( ) 2
R,

where

R, = 22"5(n+1)(n+2)a, +32|(n+1) (n+3)C, -2 n(n+2)n+3)+2°™ (n+1)°(n+2)|a,
+ 22 (n+3) B, +(n+1)[32(n +3)C, -C"¥ +2°4(n+3)| B,
+(n+ 1)[22n+4 n(n+3)-64(n+3)C", - nC("? ] a, (3.12)
+n(n+ 1)[22"+3 (h+2)(n+3) - cm?

Hence the error estimate & = 2°™° (n +3)|% |
2

3.3 A Tau approximant by the recursive form
For the problem (3.1), from (1.10) we have that
F n+l n
yn (X) = z fr Qr (X) + lecr(n+l) Qr (X) + Tzzcr(n) Qr (n) (3'13)
r=0 r=0 r=0

If F<n+ 1, then this becomes
n
yn (X) = Z[fr +Tlcr(n+l) + Z-ZCr(n) ]Qr (X) + [fn+1 +Tlcrgzil) ]Qn+1 (X) (3-14)
r=0
where the sequence of canonical polynomialgX)® r € Ng— S, is generated thus:
From (1.9) and (3.4), and by the linearity of L,
LX =(a, +a,x + a, X)X+ (B, + Bx) X'
= L{ao rQr—l(X) + (0!1r +:BO) Qr (X) + (azr +131) Qr+1(x)}
By assuming the existence of we obtain
_ -1
Qr+1(x) = [Xr - a, rQr—1(X) - (alr +,Bo Qr (X))] (0’2 r +131) (3.15)

forr=0,2, ... and provided tha, r + 3, # O.

From (3.15) we generate as many canonical polyrsmis needed, depending on the degree of
the approximant¥x). We see thaDy(x) is undefined by (3.15) and hence
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S= {0} with s= 1. The difficulty in generating the polynomiay(x) for large value of r will limit our
discussion here to a typical approximant of de§re€onsequently we shall let n =5 in (3.14) dwén

5

y5 (X) = Z[fr + Z-1 Cr(6) + Z-2 Cr(e)] Qr (X) + [fG + Tl Cée)] QG (X) (3-16)

r=0

where Q(x) , r = 1(1)6, are obtained from (3.15). Sincg{xp cannot be determined we shall equate its
coefficient to zero to have the equation

A+ A 1,=n (3.17)
Whatever now remains of (3.16) constitutes our wyefx), call this Y5(x), say. Applying the condition
(3.1b) to ¥5(x) also yields a second equation

iyt V, T, =17, (3.18)
The quantitiesd, ,A,,77,, V,,V,, and 7, are defined as
A=CPp +CP p, +CP p, +CP p, +CF p, + CY p, (3.19)
A, =CPp +CPp, +CP p, +CP p, + C p, + CY p, (3.20)
Vi =COy +CPy, +CPy +CPy, + C& s + C g (3.22)
v, =CPy, +CPy, +CP y; +C y, +CP g (3.23)
m=f+fip+fp+t o+ 1,0+ 1 0,+10 (3.21)
m=A+t i+, vty s+ fo ) (3.24)

_ & _ ﬂo(al + :80) _ a,

where 0, =

57" " Bla,+B) a, +5

b= 2B, (20,4 { a _ Bl +ﬁo)}
’ :81(20'2 +ﬁ1) (202 +ﬁ1) az +181 :31(0'2 +ﬁl)

_ 3a, o _ Bla+B)]_
P27 s, + B \a, + B B, +B)
(30, +,) { 20,8, (201+ﬂo)( a ﬁo(aﬁﬁo)ﬂ
(302 +ﬁl) 181(202 + 181) (202 +181) 0'2 + ﬁl :81(0'2 + ﬁl)
0. = — 4a, { 2a, 5, + (20'1+,80)( a, _,Bo(al"'ﬁo)ﬂ
° (402 +181) ﬂl(zaz +181) (20'2 +ﬂl) 0'2+ﬂ1 ﬂl(az +181)
+

(4a1+/30){ 3a, ( a, _ﬂo(aﬁﬂo)]_ (30,+4,)
(42,+8) | Ba,+ B) \a, + B Bla, +B)) (Ga, +8)

+(ﬁ(za0 B, (2a1+,[>’0)( a, _ﬁo(a1+ﬁo)m

20’2 +16,1) (20’2 +ﬁ1) aZ +ﬁl 16,1(02 +ﬁ1)
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50, {(woﬂo (ao _ﬂo(al+,80)j

P "oa, + ) |Ga, +B)\ay+ B Bla, + B)
_(a+8) ( 20, By (201+ﬂo)( a _ﬂo(aﬁﬂo)n
(Ba, +B) \ B(2a, +B) (20, + B)a,+ B Bla, +B)
- 5a1+ﬂ0 { 40’0 ( 20’0 /80 + (2a1+ﬂo) ( 0’0 _ﬂo(al"'ﬂo)j
5a, + B, | (4, + B)\ B(2a, +B) (20, + B) \a,+ B Bla, +B)
. (4a1+ﬂ0)( 3, [ a, _ ﬂo(aﬁﬂo)j
(4a2 +181) (30'2 +181) a2+181 ,81(0'2 +181)
_ (3,+5,) [ 20, B, (2a,+p,) ( a, _ﬂo(a1+ﬂo)j
(302 +ﬁ1) :81(20'2 +ﬁ1) (202 +ﬁ1) 0’2+ﬁ1 :81(0'2 +ﬁ1)
po-L oo larp) o @arB)atps) 2
o8 Bla,+B) " Bla,+B)(a,+B8) Bl(a, +B)
Y, = — 3C"o(c"l +/80) + (30'1 +/80) [ 20’0 _ (Zal +ﬁo)(a1 +ﬁo) }
Y BBa, +B) e, +B) B, +B) |Bla, +B) B2, +B)(a,+B)

) = 4a, { 20, (2a1+ﬁ0)(a1+ﬂo)}
° Blda,+8) |B(2a, +B) Bl2a,+B)(a,+8)

_(4a,+ 5,) { s+ p) , Ba+p) ( 2a, _ (2a,+ ) o, + ) ”
(4a, + B) | BBa, + Bla, + B)  Ba,+B) \B(a, +5) Bl2a, +B)(a, + B)

y = 5% [ 3aa +B) | Ba+B) (44, + By)

° (5, +/aa) B.(Ba, +B)a, +B) Ga,+pB) (4a,+8)
( (2a, + B,)(a, + B,) H
B 2a2 +,81 B.(2a, + B)(a, + B)
50+ﬂo){ 4a, ( 20, (2a1+ﬂo)(al+ﬁo)J
 (Ba, +B) |(4a, +B) \B(a, +B) Ba, +B)(a, +B)

_ (4al+ﬁo)( 3a, (@, + ) +(3al+ﬁo)( 20, (20, +B) (@, *+B) m

(4a, + B) | @Ba, +B)a, +B) (Ba,+B)\ Ba, +8) Blea,+B)(a, +B)

The system constituted by (3.17) and (3.18) is taluwed for 7, and T,, whose values, are substituted
back into ¥(x) so as to obtain the desired approximgprtx) of y(x)

3.3.1 Error estimation for recursive form
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i /]2 I,

From (3.14) we have, = . Insert (3.22) in (3.15) to get

A,
;—1(/71—/12 )+v, 1, =m,00(A v, = A, )1, =An0,-nV,
Hence|A, V, = A, Vi| [T, <|A, 11, =1, vy| + &, sinceg, 2 0. Thatis
AV, = Ay 1] <A 2, = 7w + WT'

which gives|r2| < L ||||jl| |/11 ’72/]— /7] V1|22n 3:‘ . Hence, from (3.7)
Ri| A v, = A, vy| = :

£, < 22 { |R1| |/]1 My =1 V1| } S |/11 My =1 V1| =g
|R1| |R1| |/11 Vy T /]2 V1| - 2% 273 |R1||/]1 nm, =1 V1|_1
Ay, =y v
27C"IR||A, v, = A, vy
where A, , A, .17, , vV, and 77, are given by (3.19) - (3.24), and B (3.7)

So then our error estimate is g, = -

4.0 Numerical examples
We consider here some selected examples for emeetation with the preceding discourse. For

these examples, the exact errors are obtaineéd as =, _, ﬂy(xk) = Yo, (x, )‘}, A=113

where {x} = {0.01k} for k = 0(1) 100. As the remark in section 3.3 relatiogthe use of canonical
polynomials limits the scope of this work on theuesive formulation and for purpose of meaningful
comparison, we shall consider an approximant ofee§. The results are presented in Table 4..belo
Example 4.1:

y'(x)+2xy(x)=0, y(0)=1 y(x) =e™*,0< x<1 (4.1)
Example4.2  y'(x) +xy(x)=0, y(0)=1, y(x) =exp(% xzj, 0<x<1 (4.2)

Example43  y'(X)-(1+2x)y(0)=0, y(0)=1 y(x) = exp(x+ x?), 0< x<1  (43)
Example4.4  y/(X)+2xy(X) = 4x, y(0)=3, y(x) = 2+exp[-x?) 0< x<1 (4.4)
Example45  (2-x+ X2 )y (X)+(2x -Dy(x) = 0,y(x)=2/(2-x+x?),0<sx<1 (5)

Table 4.1:Error and Error Estimated For Fifth Degree Approaar

Problem
Method Error Problem Problem Problem Problem Problem
4.1 4.2 4.3 4.4 45

Differential | z 4.08X10° | 9.81X10° | 1.34X10° | 4.08X10° | 2.080X10"
Form ! 5 5 2 5 vy

£ 3.57X10 6.12X10 1.07X10 3.57X10 1.95X10
Interpreted | z 1.85X10° | 3.97X10° | 5.15X10° | 1.85X10° | 6.72X10°
Form 2 : : . :

€, 2.12X10 2.38X10 2.82X10 2.12X10 8.49x10°
Recursive g, 4.05x10° 9.81x10° 1.34X10° | 4.08x10° 2.80x10°
Form £ 3.57x10° | 6.12x10° | 1.07x10° | 3.57x10° | 1.95x10°
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5.0 Conclusion

Three variants of the tau method and their cornedipg error estimates for a class of
overdetermined first order ordinary differentiauatjons with unit overdetermination have been presk
For meaningful comparison, the results obtainedeHzeen applied to some selected members of thés cla
for a fifth degree approximant, since the recurdiwem becomes too cumbersome for approximants of
higher degrees. The fifth degree approximant wae ahosen, rather than lower degree approximants,
because convergence will be better achieved fmsomably large n, the degree of the approximane W
note the effectiveness of the three variants asttar estimates compare favorably with the exactrén
all the three cases.
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