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Abstract 
 

 This paper is concerned with the tau methods for initial value 
problems in the class of non-overdetermined second order ordinary 
differential equations.  Three variants namely the differential, the integrated 
and the recursive formulation are considered.  The corresponding error 
estimates for the three variants are obtained and some selected examples are 
provided for illustration.  The numerical evidences confirm the order of the 
tau approximants so obtained for all the cases. 
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1.0 Introduction 
 Accurate approximate solution of initial value problems and boundary value problems in linear 
ordinary differential equations with polynomial coefficients can be obtained by the Tau method originally 
introduced by Lanczos [14] in 1938.  The Techniques based on this method have been reported in literature 
with application to more general equations including non-linear ones as well as to both partial differential 
equations and integral equations.  We review briefly here some of the variants of the method. 
1.1 Differential or original form of the Tau Method 
 Consider the mth order ordinary differential equation 
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and where mkmrxaba krkrk )1(1,1)1(0,,,,||,|| =−=∞<∞< α  are given real numbers, f(x) and 

mrxPr )1(0),( = , are polynomial functions or sufficiently close polynomial approximants of given real 

function.  For the solution of (1.1) by the Tau method (see [2] – [4], [13], [14] and [17]), we shall seek an 
approximant of the form 
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of  y(x) which is the exact solution of perturbed problem. 
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for a < x < b and where ,)1(1, mrr =τ  are parameters to be determined along with the a’s in (1.3c), 

Tr(x) is the r-th degree Chebyshev polynomial (See [10], [11]) valid in [a , b] and 

    { }mrrNs r ≤≤−= 0max     (1.4) 

is the number of over determination of equation (1.1a) (See [2], [11]).  For more explanation on the 
parameter, also see Section 1.3. 

 We determine  nrar )1(0, =Λ  and mrr )1(1, =Λτ  from the linear algebraic system 

     bA =τ ,     (1.5) 

obtained by equating corresponding coefficients of powers of x from (1.3a) and then applying conditions 
(1.3b); 
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Consequently, we obtain from (1.2) our desired approximant yn(x) of y(x). 
 
1.2 The integrated formulation of the Tau method 

 If ∫∫ ∫ ∫
r

dxxg )(  denotes the indefinite integration r times applied to the function g(x) and 

    ∫ ∫ ∫∫= dxLI m
L (.)...     (1.6) 

then the integrated form of (1.3a) is 
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where cm(x) denotes an arbitrary polynomial of degree (m - 1), arising from the constants of integration.  
The approximant (1.2), now, then satisfies the perturbed problem 

 ( ) ( ) ( ) ( )xTxxcdxxfxyI rn

sm

r
rsmm

m
nL 1

1

0

)(...)( ++

−+

=
−+∑∫ ∫ ∫∫ ++= τ   (1.8a) 

    ( ) mkxyL krkn )1(1,* == α     (1.8b) 

where )(xyn is here again given by(1.2). Problem (1.8) often gives a more accurate Tau approximate than 

(1.3) does, due to its higher order perturbation term.  
 
1.3 The recursive formulation of The Tau method 
 The so-called canonical polynomials SNrxQr −∈ 0)},({  associated with operator L of (1.1) 

is defined by 

     r
r xxLQ =)(      (1.9) 

where S is a small finite or empty set of indices with cardinality hhmss ),( +≤  being the maximum 

difference between the exponent r of x and the leading exponent of the generating polynomial rLx , for 
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0Nr ∈  (see Ortiz (17)).  Once these polynomials are generated, we seek, in this case, an approximant of 

)(xyn of the form 
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which is the exact solution of the perturbed problem 
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where ,)1(0 Frfr =  are the coefficients of )(xf . 

Their  use is advantageous as they neither depend on the boundary condition nor on the interval in which 
the solution .  Furthermore, they are re-usable for approximants of higher degrees. 

We shall now proceed to an error estimation of the Tau method in the next section, Section 3 
addresses the central issues of this paper, Section 4 presents some numerical evidences in support of the 
work while finally, Section 5 concludes the paper with some remarks. 

 
2.0 An error estimation of the Tau method.   
 We review briefly here error estimation of the Tau method for the three variants of the proceeding 
section and which we had earlier reported in [2], [6] and [7].  
2.1  Error estimation for the differential form. 
 While the error problem 
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Satisfies the error problem 
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satisfies the perturbed error problem 
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where the extra parameters smrr += )1(1,τ  and  ϕn are to be determined; ( )xmµ is a specified 

polynomial of degree m which ensures that ( ) 1)( +nn xe   satisfies the homogeneous conditions (2.2b).   

 We insert (2.3) in (2.4a) and then equate corresponding coefficients of ,...,,1 snsn xx +++  
1+−mnx  and the resulting linear system is solved for ϕn by forward elimination, and since we do not need 

the sτ ′ .  Consequently we obtain 
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2.2 Error estimation for the integrated form 
 The error polynomial (2.3) satisfies the perturbed problem 
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We insert (2.3) in (2.6) and then equate coefficients of mnmsnmsn xxx −+++++ ,...,,1 for the determination 

of the parameter nϕ of ( ) 1)( +nn xe .  Subsequent procedures follows suit as described above in section (2.1) 

in order to obtain the error estimate .2ε  

 
 
 
 
 
2.3 Error estimation for the recursive form 
 Once the canonical polynomials of section 1 are generated, they can be used for an error 
estimation of the Tau method (see [14], [16], [8] and [15]).  Here we consider a slight perturbation of the 

given boundary conditions (1.1b) by 1ε  to obtain an estimate of the Tau parameter sm+τ , in terms of 

canonical polynomials, which is then substituted into the expression for Iε  given in (2.5) for a new 

estimate 2ε . 

 
3.0 A class of over-determined first order equations differential equations 
 We consider here the three variants of the Tau method of the preceding section for the problem 
(1.1) when m = 2 and s= 0, that is, the class 
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Without loss of generality we shall assume that a = 0 and b = 1, since, by the transformation 
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Takes the problem (3.1) into the interval [0,   1].  
3.1 Tau approximant by the differential form 
 By inserting (1.2) into the perturbed form of (3.1a), we have that 
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We now equate coefficients to have the linear system of (n + 1) equations 
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We solve this system together with two other equations arising from the conditions (3.1b) for the 

determination of the (n + 3) parameters nrar )1(0, =  and .2,1, =rrτ   Consequently, we obtain from 

(1.2) our desired approximant ).(1, xyn  

3.1.1 Error estimation for differential form 
From (3.1) we have for problem (2.4a) that 
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By equating the coefficients of xn + 1, xn - 1 from (3.5) to have the system 
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From (2.5) we obtain the error estimate  
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3.2 Tau approximant by the integrated form  
From (1.8) we get 
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This yields the system 



 
Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 387 - 398 
Tau method for a class of second order differential equations      R. B. Adeniyi and A. I. M Aliyu    J of NAMP 
 

200
)2(

02
)2(

01020 PCCaP nn αττ =−− ++ )2(
12

)1(
1112001021 )( ++ −−++− nn CCaPaPP ττ 100210201 PPP ααα +−=  

 −








−
−−+−++







 +−+ −− 2
221100

1
1021

20 )1(
)3()2()2()2(

rrr a
rr

PrrPrP
a

r

PPr
aP  

nr
rr

f
CC rn

r
n

r )1(2,
)1(
2)1(

2
)2(

1 =
−

=−− −++ ττ  

1
2211001021

)1(

)2)(1()1(

1

)1(
−









+
−−+−++









+
+−

nn a
nn

PnnPnP
a

n

PPn

)1(
1)1(

12
)2(

11 +
=−− −+

+
+

+ nn

f
CC rn

n
n

n ττ (3.16) 

 
)2()1()2()1(

)1( )2(
21

2211`00

++
=−









++
−++ +

+ nn

f
Ca

nn

nPnnPP nn
nn τ  

We solve this system for nrar )1(0, =  and 21,ττ  to subsequently obtain from (1.2) the approximant 

)(2, xyn of )(xy . 

3.2.1 Error estimation for the integrated form 
From (2.6) we have for problem (3.1) 
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where ( )( ) 1+nn xe  is again given by (3.7).  This leads to the equation 
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We equate coefficients of xn + 3, xn + 2  and xn + 1
 to have the system 
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We solve this by forward elimination for ϕn to get 
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Hence we obtain the error estimate  
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3.3 A Tau approximant by the recursive form 
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If nF ≤  , then this becomes 
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where the sequence of SNrxQr −0)},({ ε  is generated thus: 

From (1.9) and (3.6), and by the linearity of L, 
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By assuming the existence of L-1 we obtain 
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provided that 0)1( 221100 ≠−++ PrrrPP  and for Λ2,1,0=r .  Now from (3.10) and (1.11) we get 

for problem (3.1) 

 [ ] [ ] )()()()( )(
1

1

0

)(
2

)(
1

1

0

xQCfxQCCfxQaxQa n
n

rn

n

r
r

n
r

n
rrn

n

r
nrr τττ ++++=+ ∑∑

−

=

−

=

 

giving us 

 1)1(0,)1(
2

)(
1 −=++= − nrCCfa n

r
n

rrr ττ  

 )(
1

n
nnn Cfa τ+=         (3.26) 

This values 1τ  and 2τ  are obtained by applying the conditions (1.3b) to (2.23) and this gives the system 
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We solve the Tau system (3.27) for 1τ  and 2τ , insert them in (3.26) to determine nrar )1(0, =  and then 

obtain the desired approximant )(3, xyn  from (1.10). 

 
 
 
 
 
 
 
3.3.1 Error estimation for recursive form 

From the conditions  (1.3b) we get 
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From (3.28) we have 
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We insert this in (3.29) to obtain 

( ) ( ) ( ) =














 ′






−














 ′= ∑∑∑∑
=

−

=

−

=

−

=

−
n

r
r

n
r

n

r
r

n
r

n

r
r

n
r

n

r
r

n
r QCQCQCQC

0

)(
1

0

)1(

0

)(
1

0

)1(
2 000)0(τ  

( ) ( ) ( )






 ′






 −−= ∑∑ ∑
== =

n

r
r

n
r

n

r

F

r
rrr

n
r QCQfQC

0

)(

0 0
0

)(
1 000 αα  



 
Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 387 - 398 
Tau method for a class of second order differential equations      R. B. Adeniyi and A. I. M Aliyu    J of NAMP 
 

( ) ( ) ( )






 ′






−






−′ ∑∑∑∑
=

−

=

−

=

−

=

−
n

r
r

n
r

n

r
r

n
r

n

r
r

n
r

n

r
r

n
r QCQCQCQC

0

)(
1

0

)1(

0

)(
1

0

)1(
2 000)0(τ  

( ) ( ) ( ) 1
0

)(

0
0

0

)(
1 000 εαα +







 ′






 −






≤ ∑∑∑
===

n

r
r

n
r

F

r
rr

n

r
r

n
r QCQfQC  

since ,01 ≥ε  given by (3.12).  This leads to  

( ) ( ) ( )

( ) ( ) ( ) ( ) n
n

r
r

n
r

n

r
r

n
r

n

r
r

n
r

n

r
r

n
r

n

r
r

n
r

F

r
rr

n

r
r

n
r

QCQCQCQCR

QCQfQCR

2

0

)(

0

)1(

0

)(
1

0

)1(
11

0

)(

0
0

0

)(
11

2

20000

000

−






 ′






−














 ′








 ′






 −−








≤

∑∑∑∑

∑∑∑

==

−

=

−

=

−

===

α

αα
τ (3.30) 

Hence 

( ) ( ) ( )

( ) ( ) ( ) ( )
1

0

)(

0

)1(

0

)(
1

0

)1(2

0

)(

0
0

0

)(
1

1

2
2

1

100002

000
2

ε
αα

τ
ε =

−






 ′






−














 ′








 ′






 −−
≤=

∑∑∑∑

∑∑∑

==

−

=

−

=

−−

===

n

r
r

n
r

n

r
r

n
r

n

r
r

n
r

n

r
r

n
r

n

n

r
r

n
r

F

r
rr

n

r
r

n
rn

QCQCQCQC

QCQfQC

R
(3.31) 

where R1 is given in section by (3.11).  Thus, our new error estimate is  
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A striking interest in respect of (3.32) is that an estimate is possible prior to the computation of yn(x) once 
the canonical polynomials are known. 
 
4.0 Numerical examples 
 We consider here five selected examples for experimentation with our results of the preceding  
 
 
 
 
section.  The exact errors are defined as 

   ( ) ( ){ } 3,2,1,,
max =−= ≤≤ λλ klnkbxa xyxyε  

Where },01.0{}{ kxk = for 100)1(0 ≤=k .  The numerical results are presented in the tales below the 

examples: 
Example 4.1 

  ( ) ( ) 10,3)0(,0)0(,2 ≤≤==′==+′′ xyyxxyxy    (4.1) 

Analytical solution 2sin3cos2)( 2 −++= xxxxy  

Example 4.2 

( )1,0)0(,2.0)0(,5)(25)( 2 ≤≤=′=+=+′′ xyyxxxyxy     (4.2) 

Analytical solution 125)25255sin5cos27()( 2 −++−= xxxxxy  

Example 4.3 
 ( ) ( ) 10,10)0(,0)0(,8)(2 ≤≤=′==−′−′′ xyyxyxyxy    (4.3) 
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Exact solution, xxx eeexy 322

2

3

2

1
)( −− +−=  

Example 4.4 
 ( ) 1,1)0(,1)0(,0)(6)(5 ≤≤−=′==+′+′′ xyyxyxyxy    (4.4) 

True solution, xx eexy 322)( −− −=  

Example 4.5 

 ( ) 10,2
5)0(,4

3)0(,)(2)(3 2 ≤≤=′==+′−′′ xyyxxyxyxy        (4.5) 

Closed form solution, ( )76232)( 2
4
12 +++−= − xxeexy xx  

 
Table 4.1: Error and error estimated for problems 4.1 

 
Degree (n)  

Method 
 

Error 2 3 4 5 

1ε  5.93 × 10-2 7.59 × 10-3 2.07 × 10-4 1.68 × 10-5 Differential 
Form 

ε1 8.88 × 10-2 2.65 × 10-3 9.03 × 10-4 4.15 × 10-5 

2ε  6.46 × 10-4 4.23 × 10-5 7.00 × 10-7 3.85 × 10-8 Interpolated 
Form 

ε2 8.84 × 10-3 1.06 × 10-3 2.86 × 10-5 2.14 × 10-6 

3ε  4.05 × 10-2 1.82 × 10-3 5.53 × 10-4 1.99 × 10-6 Recursive 
Form 

ε3 9.21 × 10-5 2.86 × 10-2 1.54 × 10-3 9.96 × 10-5 

 
Table 4.2: Error and error estimated for problems 4.2 

 
Degree (n)  

Method 
 
Error 2 3 4 5 

1ε  1.74 × 10-1 5.18 × 10-2 2.15 × 10-2 6.22 × 10-3 Differential 
Form 

ε1 3.24 × 10-1 2.28 × 10-1 3.45 × 10- 5.21 × 10-4 

2ε  1.36× 10-3 7.77 × 10-4 1.67 × 10-4 7.38 × 10-6 Interpolated 
Form 

ε2 1.1 × 10-1 3.76 × 10-3 1.34 × 10-4 5.46 × 10-5 

3ε  1.05 × 10-1 1.03 × 10-1 1.36 × 10-2 7.18 × 10-3 Recursive 
Form 

ε3 5.78 × 10-1 1.54 × 10-2 1.52 × 10-2 2.35 × 10-3 

 
 
 
 

Table 4.3: Error and error estimated for problems 4.3 
 

Degree (n)  
Method 

 
Error 2 3 4 5 

1ε  400 × 10-1 1.10 × 10-0 8.18 × 10-2 6.31 × 10-3 Differential 
Form 

ε1 8.97 × 10-1 3.36 × 10-0 7.12 × 10-2 8.60 × 10-3 

2ε  9.42 × 10-2 4.27 × 10-3 2.12 × 10-4 5.07 × 10-3 Interpolated 
Form 

ε2 2.85 × 10-1 2.95 × 10-2 5.40 × 10-3 4.56 × 10-4 

3ε  9.36 × 10-1 4.04 × 10-1 8.12 × 10-2 2.14 × 10-3 Recursive 
Form 

ε3 4.01 × 10-1 3.03 × 10-1 5.36 × 10-2 6.69 × 10-3 
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Table 4.4: Error and error estimated for problems 4.4 
 

Degree (n)  
Method 

 
Error 2 3 4 5 

Differential 
1ε  3.43 × 10-2 1.38 × 10-2 2.18 × 10-3 4.24 × 10-4 

Form ε1 4.17 × 10-2 4.63 × 10-2 8.03 × 10-3 8.97 × 10-4 

2ε  1.38 × 10-4 5.38 × 10-3 8.84 × 10-6 1.10 × 10-6 Interpolated 
Form 

ε2 4.77 × 10-3 2.29 × 10-3 6.63 × 10-4 9.98 × 10-5 

3ε  3.40 × 10-2 3.47 × 10-3 6.70 × 10-4 9.58 × 10-5 Recursive 
Form 

ε3 4.49 × 10-1 7.98 × 10-2 4.03 × 10-3 3.02 × 10-4 

 
Table 4.5: Error and error estimated for problems 4.5 

 
Degree (n) Method Error 

2 3 4 5 

1ε  1.89 × 10-1 1.40 × 10-0 5.60 × 10-2 3.92 × 10-3 Differential 
Form 

ε1 2.26 × 10-0 6.47 × 10-0 7.46 × 10-2 5.04 × 10-3 

2ε  1.63 × 10-1 4.85 × 10-3 2.35 × 10-4 1.17 × 10-5 Interpolated 
Form 

ε2 6.93 × 10-1 2.21 × 10-2 3.43 × 10-3 2.28 × 10-4 

3ε  2.80 × 10-1 1.93 × 10-1 1.97 × 10-2 2.26 × 10-3 Recursive 
Form 

ε3 1.95 × 10-2 6.73 × 10-1 5.22 × 10-2 3.33 × 10-3 

 
5.0 Conclusion 
 The Tau method for solution of initial value problems in a class of second order ordinary 
differential equations with non-overdetermintaion has been presented.  Three variants of the method were 
considered for the corresponding Tau approximants of their desired analytic solutions, and the associated 
error estimates were also obtained. 
 For all the numerical examples considered the error estimates closely approximate the exact error.  
The difficulty in the generation of the so-called canonical polynomials for high degree tau approximants 
limited scope of the work to approximations of maximum degree five.  However, as we reported in, [2], [6] 
and [7], the estimates may exactly estimate the order of the Tau approximant for approximants of higher 
degrees.  While the differential form may easily be generalized for all classes of differential equations 
which lies within the scope of the Tau methods as we had reported in [2] and [7], the integrated 
interpolated form has the advantage of higher order accuracy than the other two variants due to the higher 
order of perturbation term it involves, and the recursive form, though very cumbersome for high degree 
approximants, has the advantages of minimum order Tau system, non-dependence of this  
 
 
 
 
canonical polynomials on the boundary conditions, as well as the re-usability of these polynomials for 
approximants of higher degree.  The error estimate, in the latter case, may also be determined even prior to 
the solution of its corresponding Tau problem. 
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