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Abstract

This paper is concerned with the tau methods for initial value
problems in the class of non-overdetermined second order ordinary
differential equations. Three variants namely the differential, the integrated
and the recursive formulation are considered. The corresponding error
estimates for the three variants are obtained and some selected examples are
provided for illustration. The numerical evidences confirm the order of the
tau approximants so obtained for all the cases.
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1.0 Introduction

Accurate approximate solution of initial value plems and boundary value problems in linear
ordinary differential equations with polynomial ¢figients can be obtained by the Tau method origna
introduced by Lanczos [14] in 1938. The Technigo@sed on this method have been reported in liberat
with application to more general equations inclgdinon-linear ones as well as to both partial diffeial
equations and integral equations. We review lyriefire some of the variants of the method.

1.1 Differential or original form of the Tau Method
Consider then™ order ordinary differential equation
Ly(x):=zm: P (x)y"(x) = f(x), asx<b (1.1a)
with associated conditionsr ”
m-1
L ybe =2 ey () = a k=10m (1.1b)
r=

and wherel@a|< o, |b|< e, a,, X, a,,r = 0@Qm-1, k =11)m are given real number§x) and

P (x), r = 0(1) m, are polynomial functions or sufficiently closelyimmial approximants of given real

function. For the solution of (1.1) by the Tau hut (see [2] — [4], [13], [14] and [17]), we shadlek an
approximant of the form

yn(X):Zn:ar X',n< + o0 (1.2)
r=0
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of y(x) which is the exact solution of perturbed problem.

m-1 m+s-1
LY, (%)= P (X)L () = F 0+ D Toneer Taomersa(X) (1.32)
r=0 r=0
L*y, (X)1:23n yO(x, )= a, , k =1a)m (1.3b)
r=0

for a < x <band where?, , I =1()m, are parameters to be determined along withateen (1.3c),
T/(X) is the r-th degree Chebyshev polynomial (S&g, [L.1]) valid in [a, b] and

s=max{N, -r/0<r <m} (1.4)
is the number of over determination of equatiorlg)l.(See [2], [11]). For more explanation on the
parameter, also see Section 1.3.

We determinea, A ,r =0@n and7, A , r =1(I)m from the linear algebraic system
AT=b, (1.5)

obtained by equating corresponding coefficientpafvers of x from (1.3a) and then applying cond#ion
(1.3b);

A=(a;),1<i, jsn+m+s+1 b=(h)l<isn+rm+s+l

—_ T
r=(a,,a,, ....a,, 7, ..7,...) .
Consequently, we obtain from (1.2) our desired axipranty,(x) of y(x).

1.2 The integrated formulation of the Tau method

If ”Ir j g(X)dx denotes the indefinite integration r times appti@the function g(x) and

=j” m ...jL(.) dx (1.6)

then the integrated form of (1 3a)is

(y(x) = j j j . j f(x) dx + ¢, (x) (1.7)
where ¢(x) denotes an arb|trary polynomial of degree-(1), arising from the constants of integration.
The approximant (1.2), now, then satisfies theysbed problem

(Y, ) =™ [ 100 de+ e (x)+ ZTWS_ () Tour (%) (1.8a)

L*y, (%) = a, ,k—1(1)m (1.8b)
where yn(X) is here again given by(1.2). Problem (1.8) ofteregia more accurate Tau approximate than
(1.3) does, due to its higher order perturbatiomte

1.3 The recursive formulation of The Tau method
The so-called canonical polynomig€), (X)}, r O N, —S associated with operator L of (1.1)
is defined by
LQ (X) =X (1.9)

whereS is a small finite or empty set of indices with diaality S(S< m+h),h being the maximum

difference between the exponenof x and the leading exponent of the generating polyabhx' , for
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r N, (see Ortiz (17)). Once these polynomials are igeted, we seek, in this case, an approximant of

Y, (X) of the form

n

Yo(¥) =D 8 Q(X), N< +o (1.10)
r=0

which is the exact solution of the perturbed proble
F m+s-1 n-m+r+1 ( 1)
— n—m+r +
Yn (X) - Z err (X) + Z Fines—r ch Qk (X) (1.11)
r=0 r=0 k=0

wheref r = O)F, are the coefficients of (X) .

Their use is advantageous as they neither depenideoboundary condition nor on the interval in ethi
the solution . Furthermore, they are re-usablafgroximants of higher degrees.

We shall now proceed to an error estimation of The method in the next section, Section 3
addresses the central issues of this paper, Settmesents some numerical evidences in suppdteof
work while finally, Section 5 concludes the papéthvsome remarks.

2.0 An error estimation of the Tau method.

We review briefly here error estimation of the Traathod for the three variants of the proceeding
section and which we had earlier reported in [@] gnd [7].
2.1 Error estimation for the differential form.

While the error problem

&,(X) = y(X) = ¥o(X) (2.1)
Satisfies the error problem
m+s-1
Len(x) =- Z Z-m+s—r Tn—m+r+1(x) (223-)
r=0
*g (%) =0, k=1()m (2.2b)
(ql (X))n+1 = :um(x)¢ m+1(x)/Crgn m“:;l) (2-3)

satisfies the perturbed error problem
m+s-1

L(en( ))n+1 - Zrm+s— n- m+r+1(x) + Zrm+s— n- m+r+2(x) (24&)

L* (qq(x))n+1 =0 (2.4b)
where the extra paramete® , I =1()m+sS and ¢, are to be determined,um(x)is a specified

polynomial of degree m which ensures t(.e,;(x)) satisfies the homogeneous conditions (2.2b).

n+s+l n+s

We insert (2.3) in (2.4a) and then equate cormeging coefficients ofxX , X,

Xn—m+l
the 7'S. Consequently we obtain
= — max (n—-m+1)
81— asxsb|( n( n+1 |¢ |/‘Cn m+1
2.2 Error estimation for the integrated form
The error polynomial (2.3) satisfies the perturpeablem

and the resulting linear system is solved ggiby forward elimination, and since we do not need

0 . le(x) =& (2.5)
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mt+s-1 mt+s-1

1 (e,(¥).., = —“ I " j ( Z;‘rm_r Tn_mﬂ(x)j dx + ¢, (x)+ Z;‘Tm_r T () (2.6)

n+s+m+1 n+s+m

We insert (2.3) in (2.6) and then equate coefficerd X , X ,ooey X "™ for the determination

of the paramete;25n of (en(x)) Subsequent procedures follows suit as descabete in section (2.1)

n+l”

in order to obtain the error estimagg.

2.3 Error estimation for the recursive form

Once the canonical polynomials of section 1 areegsed, they can be used for an error
estimation of the Tau method (see [14], [16], [BH415]). Here we consider a slight perturbatidrihe
given boundary conditions (1.1b) bg, to obtain an estimate of the Tau paramefigy,,, in terms of
canonical polynomials, which is then substitutetb ithe expression fo€, given in (2.5) for a new

estimate&, .

3.0 A class of over-determined first order equations differentialequations
We consider here the three variants of the Tathooebdf the preceding section for the problem
(1.1) when m = 2 ansk 0, that is, the class

F
Ly(x):=(P20+ B.Xx+ B, x2) y'(x)+ (R, + Y)Y () + P, y(x)= Z f. X'; asx<b  (3.1a)
r=0

y@=a, y@=a (3.1b)
Without loss of generality we shall assume thatGaand b = 1, since, by the transformation
v=(x-a)/(b-a), asx<b (3.2)
Takes the problem (3.1) into the interval [0, 1].
3.1 Tau approximant by the differential form

By inserting (1.2) into the perturbed form of @),lwe have that
n n
(on + I:)21)('+' P22X2 )z I’(I’ _1) a, X%+ (Plo + Pllx) z ra, X
r=0

r=0

F F
+ReY a X =) £ X 1T () +7,T, . (X)
r=0 r=0

This leads to

N

n— n-1

DT+ (r+2) P, X + ) (P +Ro) (r +) 3., X' +
r=0 r=0
n F n n-1
Z[(r ~1)r P, +rP, +Py]a, x" = DX+, CVX +1,) CX
Hence, r=0 r=0 r=0 r=0
{[(n —Dnk,; + nl:io]an + [(n “D(n-DF,+(n-R,+ F%)O]an—l - Crgr—])1 -0 Crgr—:l) - fn—1}xn_l
+{[(n ~)nP,, +nP, + Py la, -7,C" - fn}xn (3.3)

+SHE ) + D apa, [ + DR+ +DRa
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+[r=1r P, +rP +Pyla, - f, -7,C™ -7, C, (n-D}x =0

We now equate coefficients to have the linear sysie(n + 1) equations
(r+(r +2)Pga,, +(rB; + Ry) (r +a,,,
+ [(I’ —Dr By +rR, + Poo]ar - f - Tlcr(n) - Cr(n_l)’r =0®n-2
[(n-DnP,+nRJa, +[(N-2)(N-D P, + (N-D R, + R]a,,
- Crgrl)l -7, CﬁT) -f.=0
[(N-DnP,+nR, + Pyla, -7, €% - 1, =0

We solve this system together with two other equmstiarising from the conditions (3.1b) for the
determination of then(+ 3) parametersq, ,I = O@Mn and I, =1, 2. Consequently, we obtain from
(1.2) our desired approximaryt, , (X).

3.11 Error estimation for differential form
From (3.1) we have for problem (2.4a) that

L(e, () = 71 Toa(X) + (7, = 1) Toa(¥) - 7, T, () (35)
where
d? d
L =(Po+ R+ ) 5 + (Ro+ Rux) + R @)
n-1
=T o[ Sicree] fegr @
r=0
By equating the coefficients af * %, x"** from (3.5) to have the system
6P +(n+1) Ry+n(n+1) Pzzl Y =7, G
8 [c? Py +nCY B+ (n —n CU P,y(n+1) CUP R (38)

+nn+1) CP Rl =17, ¢ + (7, - 7,)C
Ac Ry + (1-10 Ry+{n-2n-1)ct P, +

n—=

+nCYY Ro+ (1-DCY By + n(n+3CEY By |= 7, €17 + (5, -1) €0 - 7, €
) -1
where 8 = @, (Cr(:ll)) . From this system and by using the well-knowatiehs:
- 1
ciW= 2" cim = il c™ (3.9)

we obtain for, the expression

4n-2 .2
@, = 2 (3.10)
R

where

R =(R, + B, +nR, + PR, C"2 +
Vil (2an0 +nR, + 4nR, + 3R, +6°R, + 4°R, + 4P+ 4P, + 4R, — 2131) (3.11)
—(16R, +16R, +161P, + 167, ~481R, +32,)C"
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From (2.5) we obtain the error estimate

2n
£ = 2" |r,|

R

(3.12)

3.2 Tau approximant by the integrated form
From (1.8) we get

LT (P + Pt + Pt2) y'@) cheu+ [T/ (Ry + Rit) YO dtau+ [ Roy(@) el

= .[ox.[:(i f, trj dtdu+ h Tn+2(x) tT, Tn+2(x)
r=0

This leads to

Poy(9+ Pul 3509 =2 y(u)lu | + Pl xy() - 4 y(mydu + 2[ Ty ct cu
# B [y du=[7 ) yodt du [+ R |7 ydtau+ R y(ua

+ aO PZO + (al PZO + aO I:)10 + aO P21 + aO PlO)X (313)
With (1.2) this gives

zpzoarxgzﬂ(( 2) By j +Z[ e )al+(r—2)(r—3)azja_lxr

(r=Dr°
n+2 X n+2
= +7,> Cl™Ax 4 rZSZC ") x (3.14)
r= Z(r l)r r=0 r=0
This gives

(_ Po @+ Py~ 1, C(n+2) £ C(n+l))
+ [(_ Po @y + By Gy— Ry 0y + Py + Py + )ao nC n+2) - C1(n+1)] X

C (r-2)P,+P m Pot(r—2)R,+(r-2) (r-3)P,
+;{P20 ar +[ r (r _1)r ar—z

R P e S e (n-)P,+PR
(r-2)r A n+1 %

+ Fo * (N-) R, +(n-1) (n-2) B, _ fn—1
n(n+1) * nn+))

+ POO +n|:11 + n(n_]) P22 a - fn -1, Cr(:f) Xn+2 =0
(n+h(n+2) (n+H(n+2)

This yields the system

n+l

-7, CI‘(IT-IZ) 7, C(n+l)}
(3.15)
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P _Tlc(()n+2) I, Con+2) =P (B tRoa tha -7 " _Tzci(n+2) =a, Py —aR,+a, Ry
onq+((r—2)%1+ mj&_ﬁ(%mr—2)F11+(r—2)(r—3)P22]aT

r (r=Dr N
-1, Cr(n+2) -7, Cr(n+l) — (rf_fﬁ , = 2(]_)n
(n-)B,+R, a -+ Rot(n-DR;+(n-D(n-2B, a,.,- CrngZ) C,(:il) _L(&lG)
n+1 n(n+1) n(n+1)
Py + NP, + (n—=1)nPk,, a —7,C"2 = f,
(n+1)(n+2) T (n+])(n+2)

We solve this system fol,, I' = O@Mn and 7,,T, to subsequently obtain from (1.2) the approximant
Yn2(X) of Y(X).

3.2.1  Error estimation for the integrated form
From (2.6) we have for problem (3.1)

j: j: (on + Bt + Pzztz)(e;;(t))n+1 dt du + IOXI:(HO +Pt) (&), dtdu

Xpu Xpu n n-1
L1 vl =[] Fene e Ja

n+3
+7,) CMI X+, ZC‘”+2) X' (3.17)

r=0 r=0
where (en (X))n+l is again given by (3.7). This leads to the equnti

¢ n-12 (1) , n-1 (1) n-1 C(n -1) Xr+3
—1-JP. C"™ x™+P cim x* -2
Cr(:J—-l) 20 ; r 21( z r (r +3) j

r=0 r=0
n-1 n-1 ~(n-1) ,r+4 n-1 (n-1) r+4
+p,| S x4 CoxT 5 Cx
r=0 r=0 (r +4) r=0 (r +3)(r +4)
n-1 Cr(n—l) Xr+3 n-1 Cr(n—l)xr+4 n-1 Cr(n—l) Xr+4
+Py +h, -
r=0 (r +3) r=0 (r +4) r=0 (r +3) (r +4)
n-1 C(n l)Xr+3 n C(n)Xr+2 n-1 Cr(n—l)xr+2
+ I:%)O Z Tl z T2 —_—
o +3(r+4) “Z(r+D(r+2) = (r+1)(r +1)
n+3 n+2
+7, Y CMI X471, D .CM X (3.18)
r=0 r=0

We equate coefficients of *3 x"* % andx"**

¢n I:)oo + (n +1) Pll + n(n +1) P22 C(n—l) =7 C™d
(o (n+2)(n+3) i

to have the system
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, H Ry * nPﬂj o { Ro NP, + (n—l)anzj - }

cr |l (n+2) ) ™ (n+1)(n+2)
- - r, C{"
r,c"¥+r,Cclm? —ton (3.19)
(n+DH(n+2)

o (PoH(=DP,) .. N
e {oncrﬁ_l” +(#j Clr +(Py+(n=1 B+ (n-2) (-1 Pzz)cé-ﬁ}

(n+1) (n-1)
—_ C(n+3) + C(n+2) Z-lCn—l _ Z-ZCn—l
- Z-1 n+l Z-2 n+l
n(n+l) n(n+l
We solve this by forward elimination fg, to get

(3.20)

where

R = Ci” | Ro+(n+D)B, +n(n+1P, | _
2°ne (n+2)(n+3)

{ln+2)(n+3)]2(0+3) (R, + NP, ~ (N-1) (R, + R, + 12 —nPy,)]
, (N+)(n+2)(n+ 3[Ry +(N+1)R, +n(n+1)P, ]
4(n +1)(n+2)(n+3)
+ (n B 3)('%0 + nP21 (F%)o 11 + nFiln I:)22 3nP22 + 2P22)C
2(n+1) 2°"%n(n+1)
Hence we obtain the error estimate

—Pyp (321

(3.22)

- n(n + 1)| R|

3.3 A Tau approximant by the recursive form
F n n-1
Yal¥) =2 f Q) +7, 2 C"Q () + 7, " Q (x) (3.23)
r=0 r=0 r=0
If F <n ,then this becomes

n-1
= Z[fr +T1 Cr(n) + TZ Cr(n_l) ]Qr (X) + [fn + Z-1 Crgn) ]Qn (X) (3-24)
r=0
where the sequence §6, (X)}, r € N, — S is generated thus:
From (1.9) and (3.6), and by the linearity of L,

LX =(P,y + Py X + Py xX) r(r =) X2+ (By+ BX) X 4 Py X' =
= L{r(r )P,y Q_,(X) + Ry +r (r —DP,,) Q. (X)
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+ (R + IR, +1(r ~1)P,)Q ()}
By assuming the existence of we obtain

Q (X) — r’- rr =P, Q () ~(rRy + (r —1HPF,) Q_i(¥)
r PotrR+r(r =)k,

provided thatPy, + rB, +r(r —1)P,, #0 and forr =0, 1, 2\ . Now from (3.10) and (1.11) we get

for problem (3.1)

$a000+2,Q00= 31 +1,.c" +1, ¢l 00 +[f, +7, clQ,00
giving usr_O ~

a="f+r,C"+r,C", r=00n-1

a =f +r,C" (3.26)
This valuesT; and 7, are obtained by applying the conditions (1.3b(2t@3) and this gives the system

(3.25)

Lo |2e7e0  Yaro|[n] |a-Xh Qo
|:y:1(0):|: r=0 r=0 — r=0 (3.27)

n n-1 F
2CPQO) Y C"QO |1, |a-2f QO
r=0 r=0 r=0

We solve the Tau system (3.27) foy and 7, , insert them in (3.26) to determir&, I' = O(M)n and then
obtain the desired approximapt, ;(X) from (1.10).

3.3.1 Error estimation for recursive form
From the conditions (1.3b) we get

E n n-1

Y, QO +7 Y c”Q()+17,YcrQ()=a, (3.28)
r=0 r=0 r=0

E n n-1

£, QO +5Y.c”Q)+7,>CcrqQ(0)=a, (3.29)
r=0 r=0 r=0

From (3.28) we have

T]_ = (ao - i fr Qr (O) - T2 nz_lCr(n_l) Qr (O) + z-2 j (icr(n) Qr (O)j

We insert this in (3.29) to obtain

r, = KZC” Q <0)j @cf” Q) j—[ crQ (O)J [Z cnq (O)H =
=037 Q(0)-(a,-3 1, Q) (e @)

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 387 - 398
Tau method for a class of second order differentiadquations ~ R. B. Adeniyi and A. I. M Aliyu J of NAMP



n-:

ScrQ0- @cf” Q.0) ]—(rzicf”'” Q (0)j @C,"” Q (0)]‘
a{i cQ (O)J (ao Yt Q (0)j (Z crQ (0)j

A

<

+ ‘91
r=0 r=0 r=0

since & = 0O, given by (3.12). This leads to

R|a(3c@0){a-31 o] Ferq0)
a5emq0)[Terel){Tam o) Ser q(o)j\—zzﬂ

r=0

7)< (3.30)

Ial

Hence

436" Q{431 Q0 el

DYSRETIpYSE q@j—@w Q| T ql)
whereR; is given in section by (3.11). Thus, our new egstimate is

a3 e a-31 00| Seral)]
CRETCHDYSEICIEYSIEEICI DYSRMC)

A striking interest in respect of (3.32) is thatestimate is possible prior to the computatiory,f) once
the canonical polynomials are known.

e _

< =£(3.31)
‘ R.‘ 2—2n

%:
-1

£ = = £,(3.32)

27" -1

4.0 Numerical examples
We consider here five selected examples for erpmriation with our results of the preceding

section. The exact errors are defined as

&= %y Y05) - (k) A=123
Where{x} = {001k}, for k =0(1) <100. The numerical results are presented in the tzésw the

examples:
Example 4.1
y'(x)+y(x)=x?, y©)=0, y'(0)==3 0<x<1 (4.1)

Analytical solution y(X) = 2c0sX + 3sinX + x* — 2
Example 4.2
y'(X) +25y(x) =5x* + %, y(0) = 02, Y(0) =0, (< x<1) (4.2)
Analytical solution yY(X) = (27c0S5x — Sin 5x + 25x* +5x — 2) /125
Example 4.3

y'(x)-y(x)-2y(x)=8,y(0) =0, y(0)=10, 0< x<1 (4.3)
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1 _ 3 _
Exact solution,y(X) = Ee X _ D@ 4@

Example 4.4

Y'(X)+5y(x) +6y(x) =0,y(0) =1 y(0) = -1 <x<1 (4.4)
True solution, y(X) = 2™ — ™
Example 4.5

y'(X) -3y (%) +2y(x) =X, y(0) = 3,,Y(0) = %, 0<x=1 (4.5)

Closed form solutiony(X) = 2e™* — 3¢* +%(2X2 +6X+ 7)

Table 4.2 Error and error estimated for problems 4.1

Degree )
Method Error 2 3 4 5
Differential |z 593x10° | 7.59x10° | 2.07x10' | 1.68 x 10°
Form e, | 888x1F | 2.65x10 | 9.03x10 | 415x10
Interpolated |z 6.46 x 10" 423x10 | 7.00x10 | 3.85x 10
Form &, | 884x10 | 1L06x10 | 2.86x10 | 2.14x10
Recursive | g 405x10° | 1.82x10 | 553x10° | 1.99 x 1¢°
Form
€3 9.21 x 10° 2.86x10 | 1.54x10 | 9.96 x 10°
Table 4.2 Error and error estimated for problems 4.2
Degree ()
Method Error 2 3 4 5
Differential | z 1.74 x 101 518 x 100 | 2.15x10° | 6.22x 10°
Form &, | 324x10 | 228x10 |345x10 |52Lx10
Interpolated | g 1.36x 10° 7.77x10 | 1.67x10 |7.38x 10
Form & T1x 10 376 x10 | 1.34x10 | 546 x 10
Recursive | g 1.05 x 10 1.03x10° [1.36x10 |7.18x10
Form
€3 5.78 x 10" 154 x10 |152x10 |2.35x10
Table 4.3 Error and error estimated for problems 4.3
Degree ()
Method Error 2 3 4 5
Differential | z 400 x 10" 1.10x10 [8.18x10 |6.31x10
Form &, |897x10 |336x10 |7.12x1F |8.60x10
Interpolated | z 9.42 x 10° 427x10 |[212x10 |[5.07x 10
Form &, | 285x10 | 2.95x1F |540x10 | 456 x 10
Recursive | g 9.36 x 10" 4.04x10° [812x10 |[214x10
Form
£ 4.01 x 10 3.03x10° [536x10 |6.69x10
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Table 4.4:Error and error estimated for problems 4.4

Degree )
Method Error 2 3 4 5
Differential | g 3.43 x 10 1.38x10° [ 2.18x10 |4.24x10
Form € 4.17 x 10° 463x10 |8.03x10 |8.97x10
Interpolated | g 1.38 x 10' 538x10 |8.84x10 |1.10x 10
Form & 4.77 x 10° 229%x10° | 6.63x10° | 9.98x 10
Recursive | g, 3.40 x 10° 347x10 |6.70x10° | 9.58 x 10°
F
orm €3 4.49 x 10" 7.98x10 [4.03x10 |3.02x 10
Table 4.5 Error and error estimated for problems 4.5
Method Error Degree ()
2 3 4 5
Differential | g 1.89 x 10 1.40x 10 [5.60x10 |3.92x10
Form & 226 x10 | 647 x10 | 746 x10 | 5.04 x 10°
Interpolated | g 1.63 x 10" 485x10 |[235x10 |[1.17x10
Form &, | 693x10 | 221x1F |343x10 |2.28x10
Recursive | g 2.80 x 10" 1.93x 100 [1.97x10 |2.26x10
Form
£ 1.95 x 10° 6.73x 10" [522x10 |3.33x10

5.0 Conclusion

The Tau method for solution of initial value prabie in a class of second order ordinary
differential equations with non-overdetermintaicastbeen presented. Three variants of the methoel we
considered for the corresponding Tau approximahtbeir desired analytic solutions, and the asdedia
error estimates were also obtained.

For all the numerical examples considered ther stimates closely approximate the exact error.
The difficulty in the generation of the so-calle@inonical polynomials for high degree tau approxitman
limited scope of the work to approximations of nmaxm degree five. However, as we reported in,[B],
and [7], the estimates may exactly estimate theroofl the Tau approximant for approximants of highe
degrees. While the differential form may easily dmneralized for all classes of differential equasi
which lies within the scope of the Tau methods as lvad reported in [2] and [7], the integrated
interpolated form has the advantage of higher oadeuracy than the other two variants due to thedri
order of perturbation term it involves, and theursove form, though very cumbersome for high degree
approximants, has the advantages of minimum ordarsystem, non-dependence of this

canonical polynomials on the boundary conditiorsswell as the re-usability of these polynomials for
approximants of higher degree. The error estimatthe latter case, may also be determined evien {or
the solution of its corresponding Tau problem.
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