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Abstract 
 

 In this paper, some directions to exploit grid/off-grid points for 
better and higher accuracy of one-step methods for solving Ordinary 
differential equations were suggested. Some methods were obtained from the 
continuous interpolation/collocation procedure. Numerical computations 
were done on some sample problems on a micro-computer and comparisons 
showed that the accuracy of the hybrid methods are better than some existing 
methods.  

 
 
 
1.0 Introduction 
 In this paper we survey some grid/off grid points collocation methods for solving systems of 
ordinary differential equations (ODES) of the form:  

( ) ( ) [ ]nxxoveryxyyxfy ,,, 000
1 ==    (1.1) 

with y satisfying additional initial condition as in ( ) ( ) ( ) }110,0 −== nixy i
i α  

Exploiting off-grid points in collocation approach in the development of linear multistep or one-step 
methods is now well-known. It is one of the procedures for obtaining continuous methods for ODES, (See 
Lamber (1973), Fatokun J., et al (2005), Yakubu (2003), Amuseghan (2004) and Ademiluyi (1987). Many 
areas of research for a simpler (formula), higher order accuracy and efficient methods in one-step or linear 
multistep methods to ease numerical solution technique are through exploiting grid/off grid points in 
interpolation and collocation. Onumanyi (2004), and Amuseghan (2004) showed that Hybrid linear 
multistep and one-step methods respectively are yielding better results for solving ODES.  
 As Hybrid methods retain linear multistep characteristics, it shared with Runge-Kutta methods the 
property of utilizing points other than grid points, we need as in this paper to explore off-grid points 
exploitation.  

A K-step hybrid formula is defined as:  

∑∑
=

++
=

+ +=
k

oj
vnvjnj

k

j
nj fhfhy ββα

0
1      (1.2) 

where 00 ,,1 βαα +=k  are not both zero, ∈v (rational number) and ),( vnvnvn yxff +++ =  

 It should be noted that there are hybrid formulas that need a helper formula to get it started (see 
Amuseghan (2004) and Lambert (1973)), but today there are hybrid formulas that are self starting (i.e.  
which does not need a helping formula to start). Most of the past formulae could be turned to Hybrid 
formula that is self starting  
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 Many eminent scholars have given some attention at various times to solution of problems of type 
(1.1) by interpolation and collocation. These include:  
 Ademiluyi (1987), Oladele (1991), Awoyemi (1992), Amuseghan (2004), Yakubu (2003), 
Onumanyi (2004), to mention but few.  
 However in this paper we would show how exploiting grid/off-grid points collocation technique 
yield better results to solution of ODES. 
 
2.0 Derivation techniques and construction of methods 
 Continuous methods and finite difference schemes could be obtained through:  
(a) The Gaussian method which uses 

(i) Two points, xn+u, xn+v.  
(ii) Three points, xn+u, xn+v, xn+w  

(b) The Radue’s method which uses:  
(i) Two points, xn and xn+u  or xn+u, xn+1, 
(ii) Three points, xn, xn+u, xn+v or xn+u, xn+v and xn+1 
(iii) Four points, xn, xn+u, xn+v, xn+w or xn+u, xn+v, xn+w and xn+1 

NOTE: In Radau’s method one end point is included.  
(d) The Lobatto’s method which uses: 

(i) Three points, xn, xn+v, xn+1, 
(ii) Four points, xn, xn+u, xn+v, xn+1,  
(iii) Five points, xn, xn+u, xn+v, xn+w, xn+1. 

NOTE: In Lobatto’s method, the two end points are included.  
Respective values can be assigned to u, v, w, z.... or evaluated to obtain our finite difference 

schemes based on: 

(a) Two Gussian values: ( ) ( ) 633,633 +=−= VU   

(b) Three Gussian values: ( ) ( ) 1055,2
1,10155 +==−= WVU  

(c) Two arbitrary values: 3
2,3

1 == UU  

(d) Three arbitrary values: 4
3,2

1,4
1 === WVU  

(e) The zeroes of Legendre polynomial  

(i) Of degree 2, giving the values: 3
1,3

1 +=−= UV  

(ii)  Of degree 3, giving the values 5
3,5

3,0 +=−== WUV  

Some proposed points 
Exploitation of grid/off-grid points could be done as suggested:  

(a) A pair of block point: at x = xn, xn+v, xn+w, xn+1 with (xn+v, xn+w) as off-step pair block.  This is 
already in use, (see Onumanyi (2004),and Amuseghan (2004)), 

(b) Two pairs Blocks (close to centre and to the two end points). At x = xn, xn+v, xn+v, xn+w, xn+z, xn+1, 

(xn + v and xn + w), a block close to centre. and ),,( znvn xandx ++  a block close to the two end 

points. 
(c) Right hand collocation (for one-step method and one point interpolation at the centre. That is, at x 

= xn, xn+u, xn+v......xn+1, but the one point collocation at the centre while  all other collocation points 
should be at the right hand of the interpolation point.  

(d) Left hand collocation (for one-step method) as in (c) above.  
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(e) Perfecting Gaussian values. Evaluate surd form and convert to numerical values. Then sought for 
better points included/around, for a better collocation.  
 Development of method through canonical polynomial. (As in Adeniyi (1991) and Oladele 

(1991)), canonical polynomial have been applied directly via collocation to solve:  y1=f(x,y), y( ox ) = y0  

where    y, f ∈  Rm, y < ∞  for a suitable norm . and ∈x [ ]ba,  (2.1) 

 
 
 
a, b ∈  R, we seek an approximate solution to (2.1) of the form:  

( ) ( ) )()(110 xQaxQaxQaxy nnn +++= Λ    (2.2) 

where Λ,1,0),( =jxQ j are the canonical polynomials generated by the operator  1+≡
dx

d
L  with Qj 

(x) defined as   Λ,2,1,0,)( == jxxLQ j
j     (2.3) 

and we obtain Qj(x) explicitly as  

( )( )xQxQjLLx

xQLxLQjLx

xxjLx

jj
j

jj
j

jjj

+=

+=
+=

−

+

−

)(

)()(

1

1

1

 

we assume that L-1 exist, we have  

( ) ( )xQxQjx jj
j += −1     

( ) ( )xQjxxQ j
j

j 1−−=     (2.4) 

Thus, we obtain a recursive relation (2.4) with j=0, 1,2 to have  

( )
( ) 1

1

1

0

−=
=

xxQ

xQ
      

( ) .222
2 +−= xxxQ      (2.5) 

From (2.1.2), when n = 1 we have   ( ) ).()( 11001 xQaxQaxy +=   (2.6) 

Substituting the canonical polynomial, into (2.6) we have.  ( ) )1(101 −+= xaaxy  (2.7) 

Thus substituting (2.7) into (2.1) and collocating at hxxx ii 2

1
2

1 +==
+

 we have  

2
1

2
1

2
11 (,

+++
=






 





=

iii fxyxfa     (2.8) 

from (2.7) we have  
( ) ( )

( )
( )1

1

1

10

10

10

−−=
−+=

−+==

ii

ii

iiii

xaya

xaay

xaaxyy

     

( ) ..2
10 1 +−−= iii fxya      (2.9) 

we substituted these values in (2.8) and (2.9) into equation (2.7) to give us the continuous approximation  

( ) ( ) ( ) 1
2

11 ++
≤≤−+=≈ iiiii xxxfxxyxyxy   (2.10) 

at x = xi + 1 (2.10)) yields the discrete approximation formula 

2
1111 )()( +++ −+= iiiii fxxyxy  

.
2

11 ++ += iii hfyy     (2.11) 
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where ii xxh −= +1  

we apply the backward Euler method with a step length ½h to obtain a formula for approximating the off-
grid function value fi+½  

.
2 2

1
2

1 ++
+=

i
f

h
yy ii

 

2
1

2
1 22

++
+= iii

hfyy     (2.12) 

 
 
 

substituting (2.12) in (2.11) for 
2

1+i
hf  we get  

2
11 2

++ +−=
iii yyy                  (2.13a) 

where     
2

1
2

1 2
1

++
+=

iii
hfyy                  (2.13b) 

The continuous scheme (2.10) with (2.13b) becomes 

h

yyxx
yxyxy

ii

i

i
)()(2

)()( 2
1

1

−−
+==

+
  (2.14) 

where yi+½ is obtained from (2.13b).  We now express (2.13) by an equivalent semi-implicit method, as 

follows:     11 hkyy ii +=+  

where    













=





==

+++++ 2
1

2

1
2

1
2

1
2

11 ,)(,
i

h
hiiii

yxfxyxffk               (2.14b) 

but from Backward Euler with step length ½h we have 

11 hkyy ii +=+ , where 





 +=

++ 1
2

1
2

1
1 , hkyxfk

ihi   (2.15) 

Note that, If x  = 
2

1+i
x ,  is the zero of the Legendre polynomial [ ]11 ,),( +∈ ii xxxxp .  That is 

0
)(2

)( 1
1 =+= +

h

xxx
xp ii  

    
2

1 ii xx
x

+
= +

 

where xi = xo+ ih,   xi+1 = xo + ih + h 
 x = (x0 + ih) + ½h 
 x = xi + ½ is a zero of  p1(x). 
Discrete scheme like (2.15) and continuous scheme like (2.10) are already well known. They can also be 
obtained through a real polynomial function of a single variablex , as a basis function. We then obtained 
our methods through as in Kayode (2004),Olorunfemi (2005)and Amuseghan (2004), we find a real 
polynomial function of a single variable x  as a basis function in the form:  

∑
=

=
m

j
jxxy

0

)(   

yielding      ( ) j
m

j
j xaxy ∑

=

=
0

    (2.16) 

as our approximate solution to equation (1.1), where all aj’s are m real coefficients.   The first derivative is 
given as 
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( ) 1

0

1 −

=
∑= j

m

j
j xajxy     (2.17) 

 Two different methods developed by collocation and interpolation will be considered in this paper. 
 In this case, equations (2.16) and (2.17), for m = 2, j = 0, 1, 2 is considered. Where x n is the only 
interpolation point, and the two collocation points are at x n+u and x n+v.  
From (2.16) we will have:  

( ) 2
21 xaxaaoxy ++=     (2.18) 

and from (2.17) we will have:  
 
 
 
 

( ) xaaxy 21
1 2+=      (2.19) 

and from (1.1) and (2.19) we have   ( ).,2 21 yxfxaa =+     (2.20) 

and we have the following non-linear system of equations as a result of collocating and interpolating as 

required.    unun fxaa ++ =+ 21 2      (2.21) 

    vnvn fxaa ++ =+ 21 2      (2.22) 

    nnn yxaxaa =++ 2
210      (2.23) 

Solving for the aj’s and substituting into (2.18) and simplify to obtain a continuous method of the form 

( ) ( ) ( ) ( )( )nnunnunnn xxxxkxxxkfxxyxy +−+−−−+= ++ )(2  

 ( ) ( )( ) ( )( )nnnnunnn xxxxkuhxxxkfxxy +−++−−−+= + 2   (2.24) 

where k = [ ]unvn ff
uvh ++ −

− )(2

1
.  From (2.24) substitute for k, we have  

( )
( )

( ) ( ) ( )( )[ ]vnnunn

n

n fuhxxFxxhv
uvh

xx
yxy ++ −−+−−

−

−
+= 22

2
  (2.25) 

Evaluating (2.25) at x = xn + 1, xn + u and xn + v we obtained the following three finite difference schemes.  

( ) ( ) ( ) ( )[ ]vnunnn fufv
uv

h
yxy +++ −+−

−
=− 2112

21                (2.26a) 

( ) ( ) ( )[ ]vnunnun uffuv
uv

uh
yxy +++ +−

−
=− 2

2
                (2.26b) 

( ) ( ) ( )[ ]vnunnvn fuvvf
uv

vh
yxy +++ −+

−
=− 2

2
               (2.26c) 

setting 3
2,3

1 == vu  in equation 2.26 (a to c) we get: 

[ ]vnunnn ff
h

yy +++ +=−
21                    (2.27a) 

   [ ]vnunnun ff
h

yy +++ −=− 3
6

                 (2.27b) 

[ ]unnvn f
h

yy ++ =− 2
3

                 (2.27c) 

 Considering equations (2.16) and (2.17) with m=3, j=0, 1, 2, 3, and xn is the only interpolation 
point while collocation is done at xn + u, xn + v and xn + w.   Thus from (2.16) and (2.7) we have: 

y(x) = ao + a1x + a2x
2 + a3x

3    (2.28 
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and     y1(x) = a1 + 2a2x +3a3x
2     (2.29) 

Also collocating and interpolating at points хn + u, хn + v and хn we have 
a1 + 2a2xn+u + 3a3x

2
n+u = fn+u                (2.30a) 

a1 + 2a2  xn+v + 3a3x
2
n+v  = fn+v                (2.30b) 

a1 + 2a2  xn+w + 3a3x
2
n+w  = fn+w                       (2.30c) 

ao + a1  xn + a2x
2
n + a3xn

3 = yn                (2.30d) 
Solving for the aj’s and substitute in (2.28b) we obtain the continuous method: 

( ) ( )
( )( ) ( ) ( ) ( )[ ] unnnn

n fxxxxhvxxhwvwh
uwuvh

xx
xy +−+−−−−+

−−
−

= 22
2

2336
6

 

( )
( )( ) ( ) ( ) ( )[ ] vnnnn

n fxxxxhuxxhwuwh
vwuvh

xx
+−−−+−+−

−−
−

+ 22
2

2336
6

 

 
 
 

( )
( )( ) ( ) ( ) ( )[ ] wnnnn

n fxxxxhuxxhvuvh
vwuwh

xx
+−+−−−−

−−
−

+ 22

2
2336

6
  (2.31) 

 Evaluating (2.31) at x = xn+1, xn+u, xn+v and xn+w, we obtained the following four finite difference 
schemes.  

( ) ( )( ) [ ] ( )( ) [ ] vnunnn fuwuw
vwuv

h
fvwvw

uwuv

h
yxy +++ −++−

−−
++−−

−−
=− 2336

6
2336

61

   ( )( ) [ ] .2336
6 wnfuvuv

vwuw

h
++−−

−−
+                (2.32a) 

( ) ( )( ) [ ] ( )( ) [ ] vnunnun fuuw
vwuv

uh
fuvuuwvw

uwuv

uh
yxy +++ +−

−−
++−−

−−
=− 22 3

6
2336

6
 

    ( )( ) [ ] wnfuuv
vwuw

uh
+−

−−
+ 23

6
            (2.32b) 

( ) ( )( ) [ ] ( )( ) [ ] vnunnvn fvuvwvuw
vwuv

vh
fvvw

uwuv

vh
yxy +++ −++−

−−
+−

−−
=− 22 2336

6
3

6

    ( )( ) [ ] wnfuuv
vwuw

uh
+−

−−
+ 23

6
             (2.32c) 

( ) ( )( )[ ] ( )( )[ ] vnunnwn fwuw
vwuv

wh
fwvw

uwuv

wh
yxy +++ +−

−−
+−

−−
=− 22 3

6
3

6
 

( )( )[ ] wnfwuwuwuv
vwuw

wh
++−−

−−
+ 22336

6
  2.32d) 

Setting 4
3,

2

1
,4

1 === wvu .  Our four finite differences schemes becomes 

yn+1 – yn =  [ ]wnvnun fff
h

+++ +− 22
3

order 4, 
23040

7
5 =C               (2.33a) 

yn+u – yn =  [ ]wnvnun fff
h

+++ +− 51623
48

order 3, 
2048

3
4

−=C               (2.33b) 

yn+v – yn =  [ ]wnvnun fff
h

+++ +− 27
12

order 3, 
768

1
4

−=C                (2.33c) 
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yn + w – yn =  [ ]wnun ff
h

++ + 39
16

order 3, 
2048

3
4

−=C                (2.33d) 

where u = ¼ , v = ½ , w = ¾ .  At Gaussian points, with 
( ) ( )

10
155

,21,
10

155 +==−= wvu  

Equations (2.32a), (2.32b), (2.32c) and (2.32d) become 

[ ] ,.6585
181 orderfff
h

yy wnvnvnnn ++++ +=−                  (2.34a) 

( ) ( )[ ] ,4,1562515124025
180

orderfff
h

yy wnvnunnvn ++++ −+−+=−             (2.34b) 

( ) ( )[ ] 4,153101615310
72

orderfff
h

yy vnvnunnwn ++++ −+++=−                (2.34c) 

 
 
 
 
 

( ) ( )[ ] 4,251512101615625
180

orderffff
h

yy wnvnvnunnwn +++++ +++++=−       (2.34d) 

where u = ¼ , v = ½ , w = ¾    
 Analyzing the basic properties of the methods using Dahlquist (1963) stability theorems and 
Lambert (197) approach, we find that the methods are constant, zero-stable and convergent. 
 
3.0 Some existing one-step related methods for comparison 

There are many one-step related method to the one derived. However we are considering the 
followings: 

(a) Butcher’s implicit Runge-Kutta Method [ ]211 2
kk

h
yy nn ++=+  

where, 






















−++










−+= 211 6

3

4

1

4

1
,

3

2

1
hkhkyh

b
xfk nn ,  












+










−++










++= 212 4

1

6

3

4

1

4

1
,

3

2

1
hkhkyh

b
xfk nn  

of order p = 4 
(b) Yakubu’s New continuous implicit Runge-Kutta method 

[ ]3211 585
18

kkK
h

yy nn +++=+  

where 




































−+










−++










−+= 32

2

11 15

15

18

5

15

15

9

4

18

5

2
,

10

15

2

1
kkk

h
yhxfk nn

 























−++










−++= 3212 12

15

18

5

9

4

12

15

18

5

2
,

2

1
kkk

h
ynhxfk n

 












+










++










++










−+= 3213 18

5

15
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9

4

15

15

18

5

2
,

10

15

2

1
kkk

h
yhxfk nn

  

of order p = 6 in which collocation was done at 3 points and interpolation only at xn (one point). 
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4.0 Comparing two numerical examples with previous methods, at Gaussian points  
 We compare two of the numerical results with Butcher’s 4th order method and Yakubu’s order 6 
methods as shown in the tables below.  

The errors of numerical solutions for example I and example II with h = 0.1 are as below: 
Example I 

( ) 5.00,10,3 21 ≤≤== xyyxy ,  ( ) ( )3exp xxy =  
 

Table 4.1: Comparing results of errors of Numerical solutions with h = 0.1 
 

Mesh 
value x 

Butcher’s 4th order method 
(now referred to as general 
order four method) 

Yakubu’s order 
six method 

Our new order 
4/order 6 
method 

0.1 -5.9997 x 10-4 -1.9988 x 10-4 5.6838 x 10-2 
0.2 -1.8107 x 10-3 -1.8097 x 10-3 3.7366 x 10-2 
0.3 -3.6776 x 10-2 -3.6722 x 10-2 7.7129 x 10-2 
0.4 -6.3088 x 10-2 -6.2901 x 10-2 6.0392 x 10-2 
0.5 -9.9115 x 10-2 9.8583 x 10-2 3.6903 x 10-2 

 
 

 
 
 
Example II 

( ) 5.00,10,1 ≤≤=+= xyyxy , ( ) 12 −−= xexy x  
 

Table 4.2: Comparing results of errors of numerical solutions with h = 0.1 
 

Mesh 
value x 

Butcher’s 4th order method (now 
referred to as general order four 

method) 

Yakubu’s order 
six method 

Our new order 
4/order 6 method 

0.1 -4.0169 x 10-2 4.7377 x 10-3 2.8333 x 10-2 
0.2 1.9151 x 10-2 1.8538 x 10-2 2.0407 x 10-2 
0.3 1.8454 x 10-2 8.7056 x 10-3 3.1229 x 10-2 
0.4 2.6395 x 10-2 3.5820 x 10-2 2.1215 x 10-2 
0.5 4.07991 x 10-2 5.0848 x 10-3 1.1199 x 10-2 

 
From the results above the newly proposed methods are very much comparable with the 

earlier developed methods.  
 
5.0 Conclusion 
 This paper is about exploiting off grid points for development of more accurate methods for 
numerical solution of ODES. 
 Consequently,  two off-grid points collocation methods are derived for solution of initial value 
problems of ODEs. 
  One of the methods was used to solve some sample initial value problems and compared with 
some existing methods. The results show that the method compared favourably. 
 It is believed that better collocation/hybrid formulas can be exploited more off-grid points. More 
useful general purpose code for the solution of ODES may be discovered, which is what this paper is all 
about. 
 
Acknowledgement 

The authors are grateful to Dr. E. A. Adebile for his useful discussions, questions and suggestions 
that helped to improve this paper. 
 

References 



Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 379 - 386 
Accurate collocation method D. O. Awoyemi, R. A. Ademiluyi  and E. Amuseghan J of NAMP 
 

 
[1] Ademiluyi, R. A. (1987): “New Hybrid Methods for Systems of Stiff Ordinary differential equations” PhD 

(unpublished) Dissertation, University of Benin, Benin City. 
[2] Adeniyi, R. B. (1991): “On the Tau Method for the Numerical Solutions of ODES. Doctoral Thesis 

(unpublished), University of Ilorin, Ilorin, Nigeria. 
[3] Amuseghan E., (2004): “One-step Collocation Hybrid method for  solving first order ODES, M.Tech. 

Thesis, Federal University of Technology, Akure, Nigeria.  
[4] Awoyemi, D. O. (1992): “On Some Continuous Linear Multistep methods for Initial Value Problems”. Ph.D 

Thesis,  University of Ilorin, Nigeria. 
[5] Dahlquist, D. (1963): “A Special Stability Problem for Linear Multistep Methods”. BIT 3 Pp. 27-43. 
[6] Fatokun, J., Onumanyi. P, and Sirisena, U. W. (2005): “Solution of First Order System of ODES by 

continuous Finite Difference Methods with Arbitrary basis Function. J. of the Nig. Maths. Society V. 24. Pp. 
30-40. 

[7] Kayode S. J. (2004): “A Class of Multiderivative Methods for Initial value Problems of Second and Fourth 
Order ODES”. Doctoral Thesis, (unpublish), Federal Univ. of Technology, Akure, Nigeria. 

[8] Lambert, J. D. (1973): “Computational Methods in Ordinary differential Equations”. John Willey, New York. 
[9] Oladele, J. O. (1991): “Some New Collocation Formulae for the Continuous Numerical Solutions of the 

Initial Value  Problems”. M.Sc. Thesis, University of Ilorin, Ilorin, Nigeria. 
[10] Olorunfemi, M. I. (2005): “a Class of Hybrid Collocation Methods for Third Order ODES. M.Tech. Thesis, 

Federal University of Technology, Akure, Nigeria. 
[11]   Onumanyi, P. (2004): “Progress in the Numerical Treatment of Stiffness”. Inaugural Lecture delivered at  

University of Jos, on Sept. 30th, 2004, UNIJOS Inaugural Lecture Series 15, Univ. of Jos, Jos, Nigeria. 
[12] Yakubu, D. G. (2003): “Single-step stable implicit Runge-Kutta Method based on Lobatto points for ODES”. 
Journal of  the Nig. Maths Society. Vol. 22 pp. 57-70 


