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Abstract

In this paper, some directions to exploit grid/off-grid points for
better and higher accuracy of one-step methods for solving Ordinary
differential equations were suggested. Some methods were obtained from the
continuous interpolation/collocation procedure. Numerical computations
were done on some sample problems on a micro-computer and comparisons
showed that the accuracy of the hybrid methods are better than some existing
methods.

1.0 Introduction
In this paper we survey some grid/off grid poiotdlocation methods for solving systems of

ordinary differential equations (ODES) of the form:

yh=1(xy) ¥(x,) = v, over[x;,x,] (L1)
with y satisfying additional initial condition as iy (x,) = a,i = 0 (1) n-1}
Exploiting off-grid points in collocation approadh the development of linear multistep or one-step
methods is now well-known. It is one of the proaedufor obtaining continuous methods for ODES, (See
Lamber (1973), Fatokun J., et al (2005), YakubwWD@DAmuseghan (2004) and Ademiluyi (1987). Many
areas of research for a simpler (formula), higlrdepaccuracy and efficient methods in one-stejnenr
multistep methods to ease numerical solution tephmiare through exploiting grid/off grid points in
interpolation and collocation. Onumanyi (2004), aAthuseghan (2004) showed that Hybrid linear
multistep and one-step methods respectively atdiggebetter results for solving ODES.

As Hybrid methods retain linear multistep chargsties, it shared with Runge-Kutta methods the
property of utilizing points other than grid pointse need as in this paper to explore off-grid f®in
exploitation.

A K-step hybrid formula is defined as:

k Kk
Zaj yn+1 :hZﬁj fn+j +hﬁv fn+v (1-2)
j=0 j=0

wherea, =+1, a,, B, are not both zeroy LI(rational number) andf ., = f (X, s Yy )

It should be noted that there are hybrid formukeg need a helper formula to get it started (see
Amuseghan (2004) and Lambert (1973)), but todayettage hybrid formulas that are self starting (i.e.
which does not need a helping formula to start)stMuf the past formulae could be turned to Hybrid
formula that is self starting
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Many eminent scholars have given some attentioaidbus times to solution of problems of type
(1.1) by interpolation and collocation. These inigu

Ademiluyi (1987), Oladele (1991), Awoyemi (1992Amuseghan (2004), Yakubu (2003),
Onumanyi (2004), to mention but few.

However in this paper we would show how exploitgrig/off-grid points collocation technique
yield better results to solution of ODES.

2.0 Derivation techniques and construction of methods
Continuous methods and finite difference schemefddee obtained through:

€) The Gaussian method which uses
0] TWO points, X+uw Xn+v
(i) Three points, Xew Xn+rv Xn+w
(b) The Radue’s method which uses:

0] Two points, ¥ and Y.y OF Xysu Xn+1,

(i) Three points, ¥ Xo+w Xn+v OF Xnrw Xn+v @Nd Huq

(iif) Four points, X, Xa+uw Xo+ws Xnsw O Xy Xnsvs Xnrw AN K1
NOTE: In Radau’s method one end point is included.
(d) The Lobatto’s method which uses:

(i) Three points, X Xauw Xn+1,

(ii) Four points, X, Xurw Xntv X+t

(iii) Five points, %, Xasu Xnrv Xorw Xned.
NOTE: In Lobatto’s method, the two end points are ineliid

Respective values can be assigneditos, w, z.. or evaluated to obtain our finite difference
schemes based on:

() Two Gussian valuet) = (3 - \/é)/G, V= (3+ \/5)/6
(b) Three Gussian valuekl = (5— \/1_5)/10, V= % , W= (5+ \/E)/lo

(c) Two arbitrary valuest) = }/ , U =%

i ) = = = 3
(d) Three arbitrary valuesJ % , Vv %, W A
(e) The zeroes of Legendre polynomial

0] Of degree 2, giving the value¥: = —1/% , U =+1/%
(i) Of degree 3, giving the valudé =0, U = —113 , W =+J%

Some proposed points
Exploitation of grid/off-grid points could be doas suggested:

(a) A pair of block point: at X =X Xq+v, Xpews Xn+1 With (Xoss Xaew) @S Off-step pair block. This is
already in use, (see Onumanyi (2004),and Amuse(2@iy)),

(b) Two pairs Blocks (close to centre and to the &md points). AK = Xy, Xq+vs Xn+vs Xnews Xntzr X+l

(% +v @and X, + ), @ block close to centre. ar(X,,,,andx.,,), a block close to the two end

points.

(c) Right hand collocation (for one-step method and point interpolation at the centre. That iss at
= Xy Xn+w Xnve---- Xne1, UL the one point collocation at the centre whalé other collocation points
should be at the right hand of the interpolatiompo

(d) Left hand collocation (for one-step method)ra&) above.
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(e) Perfecting Gaussian values. Evaluate surd fomchconvert to numerical values. Then sought for
better points included/around, for a better collmca
Development of method through canonical polynom{@s in Adeniyi (1991) and Oladele

(1991)), canonical polynomial have been applieddiy via collocation to solve: '¥f(x,y), y(X,) = Yo
where y,fJ R™, OOyOO < oo for a suitable normld.00 andX[] [a, b] (2.1)

a, b R,we seek an approximate solution to (2.1) of thenfor

Y, (x)=a, Qx) + 8,Q,() +A +a,Q,(%) (2.2)
where Q; (X), ] = 0,1, A are the canonical polynomials generated by theatperl = d£+ 1 with Q
X

(x) defined as LQ, (X) = x',j=012A (2.3)
and we obtain {X) explicitly as

Lx'= jx)™t + x!

Lx'=jLQ ., (X) +LQ, ()

' =L(jQ,, (0 + Q, (x)
we assume that Lexist, we have

x' =] Q, (x)+Q; (x)

Q; () =x"-jQu (x) (2.4)
Thus, we obtain a recursive relation (2.4) with,j£® to have

Q, (x)=1

Q, (X) =x-1

Q,(x) = x*-2x+2. (2.5)
From (2.1.2), whem = 1 we have y, (x)=a, Q, (x) + a, Q, (X). (2.6)
Substituting the canonical polynomial, into (2.6 have. Y, (X) =a, + a, (x-1 (2.7)

1
Thus substituting (2.7) into (2.1) and collocatatgX = X; vy =Xt Eh we have
2

alzf((xi +%,y(xH%D = fi+}/2 (2.8)
from (2.7) we have
Yi=Yi (Xi) =3, t a, (Xi _1)
Yi =a, t (Xi _1)

a =Y —a (Xi _1)

3, =y, ~(x-1) fi .y (2.9)
we substituted these values in (2.8) and (2.9)éaquation (2.7) to give us the continuous approtiona

y(x)=y, (x) =y, +(x = x;) fi+}/2 X, SXSX, (2.10)

atx =x+1 (2.10)) yields the discrete approximation formula
yl()g+1):yi +(Xi+1_xi) fi +1
v = Y tht 2.11
y|+1 y| [— % ( )
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whereh =X, = X;
we apply the backward Euler method with a steptleigh to obtain a formula for approximating the- off
grid function value fu,

= +Df
yi+% yi 2 i+%.
2yi+}/2 = 2y, +hf, oy (2.12)

substituting (2.12) in (2.11) foﬁ’lfi .y we get
2
Yin =Y F 2yi+% (2.13a)
where Vi, =i+ %hfﬂy (2.13b)
2 2

The continuous scheme (2.10) with (2.13b) becomes

2(X=X) (y”% =)

y(x) =y, (x) =y, + - (2.14)
whereyi.., is obtained from{2.13b). We now express (2.13) by an equivalemi-$eplicit method, as
follows: Vi = Y Thik
where =y = 1(X ¥ )= f(xi+;hh, yi%j (2.14b)
but from Backward Euler with step length ¥2h we have

Y., = Y, thk, wherek, = f(><i+1h, Yiiy +hkl) (2.15)

2

Note that, IfX = X L1y is the zero of the Legendre polynomia)(X), X U [Xi : )§+1]- That is

2
4+ X
pl(x) - 2X()§+l X|) - O
h
.+ X
(=t X
2
wherex, = X+ ih, X =X, +ih+h
X = (X% +ih) + ¥2h
X =% +1, 1S @ zero ofpy(x).
Discrete scheme like (2.15) and continuous schékee(2.10) are already well known. They can also be
obtained through a real polynomial function of agé variablex, as a basis function. We then obtained
our methods through as in Kayode (2004),0Olorunfé¢2@i05)and Amuseghan (2004), we find a real
polynomial function of a single variablg as a basis function in the form:

y(x) = > X
i=0
yielding y(x)= Zm: a, x/ (2.16)
i=0

as our approximate solution to equation (1.1), wtadk g's are m real coefficients. The first derivatige
given as
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y! (x):ij a,x™ (2.17)
i=0

Two different methods developed by collocation artdrpolation will be considered in this paper.
In this case, equations (2.16) and (2.17)nfior 2,j = 0, 1, 2 is considered. Whebg, is the only
interpolation point, and the two collocation poiatg atX .,and X ...
From (2.16) we will have:

y(x)=ao+a, x+a, x (2.18)

and from (2.17) we will have:
1 _

y*(x)=a, +2a, x (2.19)
and from (1.1) and (2.19) we have a, +2a, x=f (X, y). (2.20)
and we have the following non-linear system of ¢igna as a result of collocating and interpolatasy
required. a, +2a, X, = f .. (2.21)

a, +2a, X, =f.., (2.22)

8 +a, X, +a,X," =y, (2.23)

Solving for theg’s and substituting into (2.18) and simplify to aista continuous method of the form
Y=Y + (=%, )y =20 (=% )(X00s) +K(x=%, ) (x+%,)

= Yo (=% g = 2K (=, ) (%, +uh) +k (x=x, ) (x+ x,) (2.24)
wherek = ;[ foe — fn+u]. From (2.24) substitute for k, we have
2h(v —u)
=y 2 o ) ()20, ]
= + - - + - —
yiX yn 2h (V_ U) V=X Xn n+u X Xn u n +v (225)
Evaluating (2.25) at = X, + 1, X, + 4 @andx, +, we obtained the following three finite differermehemes.
y(xn+l)_ Yn :ﬁ[(zv_l) f n+u +(1_ 2U) f n+v] (2.26a)
y(Xn+u) - yn = 2(\7? U) [(2\/_ U) f n+u + Uf n+v] (226b)
y(xn+v)_ yn :2(\>/—r—1l,l)[\/f n+u + (V_ 2U) f n+v] (2.26¢)
settingu :}:/3 ) V:% in equation 2.26 (a to c) we get:
Yo = Ya =g[f ww o] (2.27a)
Yoew = Yn =2[3 Foeu = T oo (2.27b)
yn+v - yn :2[2 f n+u] (2.270)

Considering equations (2.16) and (2.17) with3, j=0, 1, 2, 3, andx, is the only interpolation
point while collocation is done &} .y, X, +vandx, .+, Thus from (2.16) and (2.7) we have
Y(X) = @ + aX + ax + agc (2.28
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and VH(X) = &g + 2ax +3a¢ (2.29)
Also collocating and interpolating at points, , x, +yandx, we have

ag + 28Xy + 38y = fnuy (2.30a)
ar+ 28 X + 333X2n+v = fos (2.30b)
A+ 28 Xpuw + 380Cnw = frew (2.30c)

8o+ & %+ aXn+ A, = Yn (2.30d)

Solving for theaj's and substitute in (2.28b) we obtain the continuoeshod:

y(x)= e (\(/X _u))((v)v 0 [+ 6h? vw—3hw(x — x,)-3hv(x — x_ )+ 2(x - x, )2] f

n+u

n+v

+ (x-x,) - 6h*uw+3hw(x —x,) +3hu(x-x,)-2(x-Xx,)*
ey Suwrawlxx,) +3hu(-x, )2 )

(x=x,)
6h? (w—u)(w-v)
Evaluating(2.31) at X = Xp+1, Xa+u, Xnev 8Nd %4, We obtained the following four finite difference
schemes.

+

[6h2uv—3hv(x -x.)=3hu(x-x,)+2(x-x,)? ]f ew (2.31)

h h
-y, =————— [vw-3w-3v+2|f |+ ————— - -2t
y(xn+1) yn 6(V—U)(W—U)[6VW 3VV 3V+ ] n+u+6(v_u)(w_v)[ GUW+3\N+3"I ] n+v
h
——— -3v- 2|f :
+6(w R )[6uv v-3u+2|f ., (2.32a)
- =— evw—3uw—3vu+2u“|f ———— |~ 3 f
(X, ) =Y Slv—u)w-u) [ Vw—3uw—3vu+ u] - 6(v u)( [ w+u] ey
+w[3uv u ]fn+w (2.32b)
Vh 2 2
Y =y [BWVE[ 22 |f
y(xn+v) Yn 6(V—U)(W—U)[3VW V] n+u+6(V u)( [ 6uw+ 3wv+3uv-— ] nev
+W[3UV u ]fn+w (2.32¢)
_ wh 3
y(xn+W) yn_G(V—U)(W—U)[3VW Wz]fn+u+6(v U)( [ 3UW+V\/2]fn+V
wh
+6(W—u)(w—v)[6uv 3uw 3uw+2vv2]1‘n+W 2.32d)
Setting U :%,V:% , W:%. Our four finite differences schemes becomes
h 7
Yn+1—=Yn = E[an+u fn+v+ n+W]order4 C —m (2.33a)
Yosu— Yo = L[23f -16f,,, +5f,,,]order3,C, -3 (2.33b)
48 n+u n+v n+w ' 204E
h -1
Yarv— Yo = E[? foo=2f., + f..,]order3,C, e (2.330)
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h -3
new—Yn= —|9f ., +3f . Jorder3,C,=—— 2.33d
Yorw =Y 16[ Jorder 2048 (2.33d)

whereu = %2 ,v="% ,w=%. At Gaussian points, witti =£—)5_1\(/]1_5 V=12, w= 5+1\(/]1_5

Equations (2.32a), (2.32b), (2.32c) and (2.32dpbec

Yo~ Y :1—hs[5f oy T8f ., 5f n+W]order6,. (2.34a)
VAR :1—gc [25f ot (40—12\/1_5)f ot (25— 6\/1_5)f W], order4, (2.34b)
Yoow= Yo =%[(10+ 3\/1_5)f L, t16f L+ (10— 3\/1_5)f . |.order4 (2.34¢)

Yoow= Y :1—;[(25+ 6\/1_5)f L, t16f |+ (10+12\/1_5)f ., +25f _ | orderd  (.34d)

whereu=% ,v=% w=%
Analyzing the basic properties of the methods giddahlquist (1963) stability theorems and
Lambert (197) approach, we find that the methodscanstant, zero-stable and convergent.

3.0 Some existing one-step related methods for comparison
There are many one-step related method to the eriged. However we are considering the
followings:

h
(@) Butcher’s implicit Runge-Kutta Method  Y,,, =Y, +—[kl + kz]

where, k1=f{xn+(l—£j —hk1+(1 \/_j z:l,
2 b 6

_ 1. 43 1 43
2 T b e

of orderp=4
(b) Yakubu’s New continuous implicit Runge-Kutta method

Vou =Y, +ﬂ[5Kl +8k, +5k,]

2
wherey, = f{xn +[5——‘/E]h.yn +D(—k1 +[i— ‘/E]kz +(i-—*/ﬁ]kgﬂ
2 10 2118 9 15 18 15
k,=f xn+lh,yn E——£k+£k2+ 3__‘/E K,
2 2 12 9 18 12
k, = f|x, + +—\/1_5 k, + i+—2\/1_5 k2+£k3
15 9 15 18

of orderp = 6 in which collocation was done at 3 points amdrpolation only ak, (one point).
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4.0 Comparing two numerical examples with previous methods, at Gaussigoints
We compare two of the numerical results with Batth4th order method and Yakubu's order 6
methods as shown in the tables below.

The errors of numerical solutionsfor example | and example Il with= 0.1 are as below:

Example |

y* =3x%y, y(0)=1,0<x< 05,

y(x)=exp(x’)

Table 4.1:.Comparing results of errors of Numerical solutionswith h = 0.1

Mesh Butcher's 4™ order method Yakubu’s order | Our new order
value x (now referred to as general six method 4/order 6
order four method) method

0.1 -5.9997 x 10 -1.9988 x 1d 5.6838 x 10
0.2 -1.8107 x 19 -1.8097 x 10 3.7366 x 10
0.3 -3.6776 x 19 -3.6722 x 10 7.7129 x 10
0.4 -6.3088 x 19 -6.2901 x 10 6.0392 x 10
0.5 -9.9115 x 19 9.8583 x 10 3.6903 x 10

Example Il

y'=x+y,y(0)=1, 0<x< 05, y(x)=2e* -x-1

Table 4.2 Comparing results of errors of numerical solusiovithh = 0.1

Mesh Butcher's 4" order method (now Yakubu’s order Our new order
value x referred to as general order four six method 4/order 6 method
method)
0.1 -4.0169 x 16 4.7377 x 10 2.8333x 10
0.2 1.9151 x 18 1.8538 x 10 2.0407 x 16
0.3 1.8454 x 18 8.7056 x 10 3.1229 x 1G
0.4 2.6395 x 16 3.5820 x 10 2.1215x 10
0.5 4.07991 x 16 5.0848 x 10 1.1199 x 16

From the results above the newly proposed methodseavery much comparable with the
earlier developed methods.
5.0 Conclusion
This paper is about exploiting off grid points fdevelopment of more accurate methods for
numerical solution of ODES.

Consequently, two off-grid points collocation meds are derived for solution of initial value
problems of ODEs.

One of the methods was used to solve some samipld value problems and compared with
some existing methods. The results show that thtbadecompared favourably.

It is believed that better collocation/hybrid farlas can be exploited more off-grid points. More
useful general purpose code for the solution of @DRay be discovered, which is what this paperlis al
about.
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