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Abstract 
 
 

 In [3] - [5] we reported some classes of methods for the continuous 
solution of initial value problems in ordinary differential equations which 
was developed through multistep collocation and with Chebyshev basis 
functions.  This paper extends the work to two classes of hybrid methods with 
equal success.  Numerical evidences are provided in support of this work. 
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1.0 Introduction 
 Continuous formulations of linear multistep methods (LMMs) for the solution of the initial value 
problem in first order ordinary differential equation: 

   ( ) ( )( ) ∞+<≤≤=′ bxaxyxfxy ,,   … (1.1a) 

     0)( yay =     … (1.1b) 

have been reported in the literatures (see for example [2], [4], [12], [13], [15] [16]). Various types of basis 
functions have been employed for this purpose and some of these include the monomial xr, the so-called 
canonical polynomials of Lanczos, Qr(x), r ε N0, the Legendre polynomials Pn(x), among others. 
 In our previous works [3] – [5], we have considered the choice of the Chebyshev polynomials with 
great success.  This suggests the drive for the present work on the hybrid methods.  The motivation for the 
choice stems from the desire to ensure equi-distribution of the error in our derived approximant Y(x) of 
y(x) through the entire range of integration.  The Chybyshev polynomial Tr(x), defined over the range [a , 
b] by  

  ( ) ( ) k
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r
kr xcab

baxrxT ∑
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
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−−=
0

)(1 1)(
2coscos  … (1.2) 

is most appropriate for this purpose due to its min-max approximation and equi-oscillation properties in its 
entire range of definition. 
 In Section 2 below we shall briefly review some antecedents of the continuous formulation of 
some schemes.  Section 3 focuses on the central concern of this paper.  Numerical examples will be 
provided in Section and while, in section 5, we shall finally conclude the paper with some remarks. 
 
2.0 Some antecedents of continuous scheme for ODEs. 
 We review briefly here some of our recent works on the use of Chebyshev basis functions for  
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continuous formulation of some linear multistep methods (LMMs) by collocation techniques. 
 Our earlier attempts towards continuous formulation of LMMs were reported in [2 ] – [5] and 
[12].  In [2], we employed the canonical polynomials Qr(x) defined by 
     LQr(x) = xr,   …  (2.1) 
where L is the linear operator associated with the DE (1.1), as basis functions, in a perturbed form of (1.1a).  
So doing, we discretized the range of integration [a , b] such that 

    bxxxxa n =<<<= ...210 π    (2.2) 

where  

   n
abhnkkhxxk
)(,)1(0,0

−==+=  

and then sought the solution of the perturbed form of (1.1) over each of the range [xk  ,  xk+1] to have  

 ( ) ( ) ( ) 1,, +≤≤+=′ kkn xxxxPYxfxY τ    …  (2.3a) 

 Y(xk) = Yk       …  (2.3b) 
where 

 ( ) ).()(
0

xyxQaxY
n

r
rr ≅= ∑

=

     …  (2.3c) 

 Pn(x) is the nth degree Legendre polynomial valid in [xk , xk+1].  To determine the value of τ in 
(2.3a) and the (n + 1) co-efficients ar , r = 0 (1) n, in (2.3c), we collocated at  

(n + 1) selected points  )1(1, =rxr  n + 1.   The resulting equation together with (2.3b) were then solved.  

So doing the Trapezoidal rule, the Simpson’s method and the Gragg and Stetter methods were recovered as 
discrete forms of their corresponding continuous formulations.  In Onumanyi et al [12], we replaced (2.3c) 
by 

 ∑
=

=
n

r

r
r xaxY

0

)( , n < + ∞     …  (2.4) 

in a non-perturbed collocation procedure to have the equivalent form of (2.3a)  -  (2.3c) as 

 ( ) 1),,( +≤≤=′ kk xxxYxfxY     …  (2.5a) 

 ( ) kk YxY =        …  (2.5b) 

 .)(
0
∑

=
=

n

r

r
r xaxY       …  (2.5c) 

Various classes of LMMs were thus recovered depending on the choice of the collocation points.  In [3] – 
[5] and [4] we replaced (2.3c) with  

 ( )∑=
m

rr xTaxY
0

)(  ,  m  <  +  ∞    …  (2.6) 

in both perturbed and non-perturbed collocation techniques to have, respectively, the equivalent IVPs: 

 ( ) ( ) ( ) ( ) kkn YxYxpxYxfxY =+=′ ,)(, τ      (2.7) 

and  

   ( ) ( ) ( ) kk YxYxYxfxY ==′ ,)(,       (2.8) 

where Y(x)  is given by (2.6).  These led to the recovery of various classes of LMMs, differing  as the 
choice of collocation methods.  Amongst these were the Newton-Cotes related methods, the Adams – 
Moulton methods, the Adams – Bashforth methods and the Backward Differentiation methods 
 We proceed to the next section to derive some hybrid methods based on the choice of (2.6) , the 
reason for which had been earlier been stated in Section  1. 
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3.0 Derivation of hybrid methods 
 For clarity and sake of  completeness we restate here the IVP:   

 ( ) bxxxaxyxfxy n =≤≤==′ 0,)(,)(    …  (3.1a) 

 
 
 
 
 y(a) = y0          (3.1b) 
whose solution we shall seek over the sub-intervals arising from the subdivisions 

 bxxxxxxxxa nnnkk =<<<<<<<<= −−+ 121210 ...   … (3.2) 

where   xk  =  x0 + kh  and  .)(
n

abh −=   Without loss of generality, we shall assume that a = 0 in (1.1), 

as any problem in the general interval [a , b] may be transformed into [0 , b] by the substitution:  

 ( ) buub
aax ≤≤−+= 0,1 .     … (3.3) 

This makes for simplification of the arithmetic that later follows.    
So then, we shall seek the solution of the problem  

 pkk xxxxYxfxY +≤≤=′ ),(),()(       (3.4a) 

 Y(xk) = Yk         (3.4b) 
where 
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and p varies as the method to be derived. 
 In what now follows, we shall  construct some explicit and implicit hybrid methods. 
3.1 Explicit hybrid methods 
3.1.1 A one-step explicit scheme  

 We consider here (3.4) with n = 2 and collocation points as 
3

2,
+kk xx  while theinterpolation 

points is kx .  This leads to the equations  
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since  

 
( ) ( )

,11
2

21
2

)(
2

210











−







 −−+







 −−+=
h

xx
a

h

xx
aaxY kk for xk < x < xk+1. (3.8) 

We solve the system constituted by (3.5) – (3.7) for 0, =kak (1)2 to have 
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We insert these in (3.8) to get the continuous scheme 
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where 
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At the grid point xk+1, this yields the discrete form equivalent  
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4 3

21 
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YY    (3.10) 

This is the one-step explicit hybrid scheme of order three with an error constant 108
23

4 =c . 

For the determination of 
3

2+kf  in (3.10) we consider an approximant of y(x): 
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By interpolating (3.11) at xk as well as collocating  the equation 
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at xk and xk+1 we obtain the linear system 
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the solution of which yields the values  
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We insert these into (3.11) to get the continuous scheme 

 ( ) ( )[ ]110)( +++= kkk fxfxhYxY ββ       (3.12) 

where 
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and which at the grid point 
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x  gives 
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a method of order two, with an error constant 81
5

3 −=c .   

 Thus, the method (3.10) can be used as an accurate corrector formulae with the derived scheme 

(3.13).  From (3.10) we obtain 
3

2+k
f  for our proposed continuous scheme (3.9). 

3.1.2  Two–step explicit scheme 
Now let us consider (3.4) with n = 3 to have 
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for xk < x < xk+3 

 We collocate (3.4) with (3.14) at 7.21, ++ kk xx  and 2+kx  as well as interpolate to 2+kx  so as to 

have the linear algebraic system: 
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The solution of this system yields the values 
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These, when inserted in (3.14) yields the continuous approximant of y(x) as 
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At the grid point xk+3, this yields the explicit hybrid scheme of two-step: 

 ( )7.21223 5007221
714 +++++ +−+= kkkkk fff

h
YY .    (3.16) 

It is of order four with an error constant c5 = 3.103049136.  See Lambert [7].  We obtain fk + 1, fk + 2 and fk + 2, 
from (3.16) for the proposed continuous scheme (3.15). 
3.2 Implicit hybrid methods 
3.2.2 A One-step implicit scheme 

Suppose now, we consider (3.4) for n = 3 and p = 1 to have 
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We collocate (3.4) with (3.17) for  1
2

1,13 ++== kkk xandxxatpandn  

as well as interpolate at xk to have the matrix equation: 
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We solve this to obtain 
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These, with (3.17) yield the continuous scheme 
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At x = xk + 1, this gives the one-step implicit hybrid scheme 
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of order four and error constant  2880
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5 =c .  The scheme (3.19) is the Gragg and Stetter method (see 

[8] and [9]).  It can be used as an accurate corrector formula with the scheme (predictor):  
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(see [2]) in a predictor-corrector algorithm as discussed fully by Lambert [8].  From (3.19) and (3.20) we 

determine 
2

1+k
f  and 1+kf   for the continuous scheme (3.18). 

3.2.3 A two–step implicit scheme 
 We shall consider here (3.4) for n = 4 and p = 2 and thus have the approximant of y(x) as 
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We collocate (3.4) together with (3.18) for n = 4 and p = 2 at xk, xk+1, xk+2, and interpolate at 
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3+kx  to get 

the linear system: 
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This yields the values 
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We substitute these into (3.18) to get the continuous scheme 
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This, at the grid point xk+2 , yield the two-step implicit hybrid scheme 
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of order four with error constant 105
13

1 −=c . 

 
4.0 Numerical examples 
 From our earlier works (see [2] - [4]), it is evident that the continuous schemes perform much 
better in terms of efficiency and cost compared viz-a-viz their discrete form equivalents.  For the sake of 
completeness, and emphasis, we provide again here some numerical evidences in support of this 
assertation. 
Example 4.1 

We consider 10,1)0(,0 ≤≤==−′ xyxyy , whose analytic solution is  






= 2

2

1
exp)( xxy . 

The numerical results obtained from the experimentation of the schemes (3.9), (3.10), (3.15) and (3.16)  on 
this example are presented in Table. 
Example 4.2 
We consider here the IVP in first order system of equations 
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and whose exact solution is ( ) ( )




 +−= −− xxxx eeeexY 22 2
3

1
,

3

1
)( , for .10 ≤≤ x  

 Numerical evidences for this example based on experimentation with the scheme (3.9) – (3.10) 
and (3.15) – (3.16) are presented in Table 4.2. 
 

Table 4.1 Errors of methods for Example 4.1 with h = 0.1, 10
hx =δ . 

 
X Discrete 

method (3.10) 
Continuous 
Scheme (3.9 ) 

Discrete 
Method 
(3.16) 

Continuous 
Method (3.15) 

0.00 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.20 

0.000 
 
 
 
 
 
 
 
 
 
1.354 E  -  6 
 
 
 
 
 
 
 
 
 
2.494E  -  6 

0.000 
1.110E-7 
4.270E-7 
9.040E-7 
1.467E-6 
2.010E-6 
2.399E-6 
2.468E-6 
2.022E-6 
8.330E-7 
1.354E-6 
7.840E-7 
7.100E-7 
2.780E-6 
5.045E-6 
7.096E-6 
8.487E-6 
8.747E-6 
7.368E-6 
3.811E-6 
2.494E-6 

0.000000 
 
 
 
 
 
 
 
 
 
0.000000 
 
 
 
 
 
 
 
 
 
0.000000 

0.000000 
9.044090E-4 
1.607698E-3 
2.109971E-3 
2.411305E-3 
2.511744E-3 
2.411304E-3 
2.109970E-3 
1.607697E-3 
9.04409E-4 
0.00000 
9.317440E-4 
1.656287E-3 
2.173737E-3 
2.484176E-3 
2.587649E-3 
2.484171E-3 
2.173734E-3 
1.656284E-3 
9.317430E-4 
0.000000 

 
 
 

 

Table 4.2: Errors of methods for example 4.2 with h = 0.1, 10
hx =δ . 

 
X Discrete 

method (3.10 
) 

Continuous 
Scheme (3.9 ) 

Discrete 
Method (3.16) 

Continuous Method 
       (3.15) 

0.00 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 

0.000 
 
 
 
 
 
 
 
 
 
3.713590E-4   
 

0.00000 
5.890000E-7 
3.800000E-7 
3.550000E-6 
1.408400E-5 
3.405200E-5 
6.623900E-5 
1.133870E-4 
1.781940E-4 
2.633130E-4 
3.713590E-4 
4.636890E-4 

0.000000 
 
 
 
 
 
 
 
 
 
9,319504E-3 
 

0.000000 
6.268552E-3 
3.977540E-4 
8.87050043 
1.565214E-3 
2.425818E-3 
3.464937E-3 
4.678145E-3 
6.061114E-3 
7.609612-4 
9.319504E-3 
9.316058E-3 
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0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.20 

 
 
 
 
 
 
 
 
1.583641E-3  

5.559650E-4 
6.50682E-4 
7.502950E-4 
8.572220E-4 
9.738410E-4 
1.102499E-3 
1.245507E-3 
1.40514E-3 
1.583641E-3 

 
 
 
 
 
 
 
 
1.6130439E-2 

9.474634E-3 
9.791371E-3 
1.0262491E-3 
1.0884303E-2 
1.1653204E-2 
1.2565669E-3 
1.3618258E-2 
1.4807609E-4 
1.6130439E-2 

 
Table 4.3: Errors for example 

 
x Discrete method 

(3.16) 
Continuous scheme  

(3.15) 
0.00 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.20 

0.0 
 
 
 
 
 
 
 
 
 

1.000000 E – 9 
 
 
 
 
 
 
 
 
 

1.000000 E- 9 

0.0 
9.044090 E-4 
1.607698 E-3 
2.109971 E-3 
2.411305 E-3 
2.511744 E-3 
2.411304 E-3 
2.109970 E-3 
1.607697 E-3 
9.044090 E-4 
1.000000 E-9 
9.317440 E-4 

1.656287 E – 3 
2.173737 E – 3 
2.484176 E – 3 
2.587649 E – 3 
2.484171 E – 3 
2.173734 E-3 
1656284 E – 3 
9.317430 E – 4 
1.000000 E - 9 

Max. Error in [0 , 1] 3.220 000 e – 7 7.479670 E - 3 
 
5.0 Conclusion 
 A method for the derivation of continuous hybrid schemes for the solution of IVPs in ordinary 
differential equations has been presented.  For this purpose the Chebyshev polynomial has been employed 
as the basis function and a collocation approach was adopted.  The schemes reproduced their corresponding 
discrete finite difference equivalents at approximate chosen/selected points.  The higher  
 
 
 
the step number of the methods the larger the dimension of the matrix equation that is involved and 
consequently the higher the computational cost.  The continuous schemes are desirable as they exhibit the 
features of efficiency since they do not require additional interpolation to yield as many results as desirable 
at the off-grid points and that, at no extra cost.  Numerical evidences also demonstrate the accuracy of these 
schemes. 
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