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Abstract

In [3] - [5] we reported some classes of methods for the continuous
solution of initial value problems in ordinary differential equations which
was developed through multistep collocation and with Chebyshev basis
functions. This paper extends the work to two classes of hybrid methods with
equal success. Numerical evidences are provided in support of thiswork.
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1.0 Introduction
Continuous formulations of linear multistep methdqtMMs) for the solution of the initial value
problem in first order ordinary differential equati

y(x)= f(x,y(x)), asxsb<+o (1.1a)

y(@) =y, (1.1b)
have been reported in the literatures (see for plaf@], [4], [12], [13], [15] [16]). Various typesf basis
functions have been employed for this purpose amiesof these include the monomid) the so-called
canonical polynomials of Lanczos,(®), r € Ny, the Legendre polynomials,®), among others.

In our previous works [3] — [5], we have considktiee choice of the Chebyshev polynomials with
great success. This suggests the drive for treeptavork on the hybrid methods. The motivationtffe
choice stems from the desire to ensure equi-digidb of the error in our derived approximant Y ©4)
y(x) through the entire range of integration. Tieybyshev polynomial {x), defined over the range [a ,

b] by
— = 2x—a-b _ = o
T.(x) = cos[r cos” {( )/(b ~a) 1H = kzzoc,ﬁ) X< ... (1.2)

is most appropriate for this purpose due to its-max approximation and equi-oscillation propertiegs
entire range of definition.

In Section 2 below we shall briefly review somdezedents of the continuous formulation of
some schemes. Section 3 focuses on the centrakomf this paper. Numerical examples will be
provided in Section and while, in section 5, wellsiirzally conclude the paper with some remarks.

2.0 Some antecedents of continuous scheme for ODEs.
We review briefly here some of our recent workgtmnuse of Chebyshev basis functions for
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continuous formulation of some linear multistep neets (LMMs) by collocation techniques.
Our earlier attempts towards continuous formutatid LMMs were reported in [2 ] — [5] and
[12]. In[2], we employed the canonical polynomi@l(x) defined by
LQ:(X) =X, (2.1)
wherelL is the linear operator associated with the DE)(]4 basis functions, in a perturbed form of (L.1a
So doing, we discretized the range of integrationij] such that
a=X, < X< X TM..<X,=b (2.2)
where

x=%+kn . k=o@n =03/
and then sought the solution of the perturbed fofifi.1) over each of the rangeg [X %.1] to have

Y(x)=f(x,Y)+ P(x), x sx<x,, (2.3a)
Y(X) = Yk (2.3b)
where
Y(X) = > a Q (x) Oy(x. (2.3c)
r=0

P.(x) is then™ degree Legendre polynomial valid ixc[ X«1]. To determine the value afin
(2.3a) and then(+ 1) co-efficients, ,r = 0 (1) n, in (2.3c), we collocated at
(n + 1) selected pointsX, , I =1(1) n+ 1. The resulting equation together with (2.@keye then solved.

So doing the Trapezoidal rule, the Simpson’s metutithe Gragg and Stetter methods were recovered a
discrete forms of their corresponding continuousnigdations. In Onumanyi et al [12], we replaceB¢2

by

Y(X)=Z:ar X" ,n<+o (2.4)
r=0
in a non-perturbed collocation procedure to haeeettuivalent form of (2.3a) - (2.3c) as
Y'(x)= f(x,Y), X < X<X,, (2.5a)
Y(x,) =Y, (2.5b)
Y(x)=>a X. (2.5¢)
r=0

Various classes of LMMs were thus recovered dependn the choice of the collocation points. In4{3]
[5] and [4] we replaced (2.3c) with

Y(x) = iar T.(x), m < +e (2.6)
in both perturbed ;nd non-perturbed collocatiohnépues to have, respectively, the equivalent IVPs:

Y'(x) = f(x, Y(X))+ 7 p,(x), Y(x)=Y, 2.7)
and

Y'(x)= f(x, Y(X)), Y(x)=Y, 2.8)

where Y(x) is given by (2.6). These led to theonery of various classes of LMMs, differing ae th
choice of collocation methods. Amongst these wibee Newton-Cotes related methods, the Adams —
Moulton methods, the Adams — Bashforth methodsteadBackward Differentiation methods

We proceed to the next section to derive someithybethods based on the choice of (2.6) , the
reason for which had been earlier been stateddtidde 1.
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3.0 Derivation of hybrid methods
For clarity and sake of completeness we reserte the 1VP:

y'(X) = f(x, y(x)), a=Xx,<X<x, =b (3.1a)

¥(a) =Yo (3.1b)
whose solution we shall seek over the sub-interagtsng from the subdivisions

a=X, <X <X < . <X <Xy <X, <X, <X, =D (3.2)

where x = %+kh andh = (b-a) n: Without loss of generality, we shall assume &hat0 in (1.1),
as any problem in the general interval [a , b] fpayransformed into [0 , b] by the substitution:
x:a+@—%)1,05usb. . (33
This makes for simplification of the arithmetic thater follows.
So then, we shall seek the solution of the problem
Y'(X) = F(X),Y(X), % < X< X, (3.4a)

Y(X) = Y (3.4b)
where

n n r
Y =Ya T(0 =>a Y x
r=0 r=0 k=0
andp varies as the method to be derived.
In what now follows, we shaltonstruct some explicit and implicit hybrid methods
3.1 Explicit hybrid methods
3.1.1 A one-step explicit scheme

We consider here (3.4) with = 2 and collocation points aX, X, % while theinterpolation
3

points is X, . This leads to the equations

2 8
na T Ra Tk (3.5)
2 8
a8, —a ta, =Y, 3.7)
since
2
Y(X)=a, +a [@ —1} +a, {2 {@ —1} —1:l,forxk5x5xk+1. (3.8)
We solve the system constituted by (3.5) — (3.7)dp , k =0(1)2 to have
a, = + f + f
0= Y Tgp ey Tgp
= 3_h f + D f
al 8 k+% 8 k
= 3_h f - 3_h f
32 % 32 ¢

We insert these in (3.8) to get the continuous mehe
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YO =Yo+h| 09 i+ B0 1, |

(3.9
where
,B(X):(X‘Xk)_:"(x X )" B = 3(x- Xk)_
° h 4h? ' 4h?
At the grid point x.4, this yields the discrete form equivalent
_ h
Y =Y+ (fk ¥ 3fk+%) . (3.10)

This is the one-step explicit hybrid scheme of ottieee with an error constagt, = 29/05
For the determination ofk .2 in (3.10) we consider an approximant of y(x):
3

Y(3) =8 To(0) + oot 3, T, (X), %, < XS X,y

=a,+a (2@ - 1) +a, {2(2@ - 1)2 —1} (3.11)

By interpolating (3.11) atpas well as collocating the equation
Y09 =8 T + 3 TH09 = £(X, Y(X), X, < XS Xy= oot 4 22 [Z(X "% 1)

atx, andx,.; we obtain the linear system

1 -1 1 Y,

BRI N
h h & fk

0 2 8 a k+1
h h

the solution of which yields the values
3 1
8, = —hf g fen @ = 2h(f+ fiy)

1

a, = 1_6h(fk+1 - fk)'

We insert these into (3.11) to get the continuamheme

Y(X) =Y, +h [:Bo(x) fi + ﬁl(X) f|<+1]

(3.12)
where
2
X — X X — X
ﬁo(x) = ( h k) _( Xhzk)
2
X
Bi(x) = %
and which at the grid p0|nxk+% gives
Vg, =Y 2h (2f + fur) (3.13)
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a method of order two, with an error constagt= — %1.

Thus, the method (3.10) can be used as an acawatector formulae with the derived scheme
(3.13). From (3.10) we obtairﬁk+y for our proposed continuous scheme (3.9).
3
3.1.2  Two-step explicit scheme
Now let us consider (3.4) withh= 3 to have

Y(X) =2, T,() + a T,(X) + & T,(x) + a; T5(X)

:a0+a1[@—3}+a2 {Z{Mﬂ}z—l}
+ a3|:4{@_ }2 -3 {@_3}} (3.14)

We collocate (3.4) with (3.14) a&,,,, X, ,; and X, as well as interpolate t&,,, so as to
have the linear algebraic system:

2 8 18

%"'Eaz +Fas = f|<+1

2 96 3306

% +aa2 + 25h a = fk+2.7
2 8 18

%_Eaz +Fae = fi

& ta ta, +a; =Y,

The solution of this system yields the values

for X < X < X3

113 145 25
3y = Yiuo ~ Wsh fra — Eihf'“z + ﬁhfk+2.7
53 43 75
= —hf,, +—n 6 ——nhf
CH 272 k+1 112 k+2 952 k+27
-1 1
a = Eh fk+l + Ehfmz
5 25 5
=—nhf_  +——N"hf -—nhf, ., .
a3 816 k+1 2856 k+27 336 k+2

These, when inserted in (3.14) yields the contiswpproximant of(x) as
Y09 =Y, #0090 fin + o f + By, (9 Fucar |

_ 122 54, o\ 47T . v, 40 oy
Alx) = 51 +17h(x ) 34h2(x %) +204h3(x ) (3.15)
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27 37(x-x)* 40
B = 295, - Dfum) o XS A0y

200 200 900 2 200 3
X)= — — + X=X, )—— =\ X—X +—(X—X
At the grid point x5, this yields the explicit hybrid scheme of twogste
h
Yos Yo * 7 (221f,,, - 7f,,, +500f,,,,). (3.16)

It is of order four with an error constant= 3.103049136. See Lambert [7]. We obfain, f .+ » andfy . ,,
from (3.16) for the proposed continuous schemes{3.1
3.2 Implicit hybrid methods
3.2.2 A One-step implicit scheme
Suppose now, we consider (3.4) for 3 andp = 1 to have

Y(X) = a,T,(x) + aT,(x) + a,T,(x) +, X < X< X,

R P P
+a, {4 {M—l}s -3 {M—lﬂ : (3.17)

We collocate (3.4) with (3.17) fon =3 and p =1at X, Xer 1y and X,

as well as interpolate &t to have the matrix equation:
1 -1 1 -1
_8/ 1 8 Yi
a % 41 Z{l a | _ fi
B S f
0 % 80 14 &, k+1,
0 % S Mhla

We solve this to obtain

fin

_ h 7h h
8, =Y, +ngk +4_8fk+1+§fk+}/2
_h 3h h
a = 1_6fk +€fk+}é +1_6fk+1
h h
a = Efk _1_6fk+1
h h h

oo

= —f ——f T
48 ¢ 24 ¥% 48
These, with (3.17) yield the continuous scheme

Y() =Y, +h [ﬂo 0 fi+ B () iy, + B s (318)
where
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2h? 3h®
_ 2(X - Xk)3 _4 (X - Xk)3
ﬂ% (X) - hz 3h3
x-x) 3(x-x) 2(x-x)
ﬂl(x): ( hk)_ (thk) + (3h3k) _
At X =X+ 1, this gives the one-step implicit hybrid scheme
Yeu =Y + 2 (fk + 4fk+y2 + fkﬂ) (3.19)

of order four and error constant; = %88(' The scheme (3.19) is the Gragg and Stetter rdditee

[8] and [9]). It can be used as an accurate ctordormula with the scheme (predictor):

1 h
Y|<+}/2 = E (Yk + Yk+l) - g (fk+l - fk) (3.20)
(see [2]) in a predictor-corrector algorithm ascdissed fully by Lambert [8]. From (3.19) and (3.2

determine fk+% and f,,, for the continuous scheme (3.18).

3.2.3  Atwo-step implicit scheme
We shall consider here (3.4) for= 4 andp = 2 and thus have the approximany©d as
Y(X) = aOTO (X) + alTl (X) + a2T2 (X) + a3T3 (X) + a4T4 (X) ’ Xk £Xs Xk+2

= a, +a1[x_hxk —1}+a2 I:Z(M—ljz —1} +
(53[5 - o5 o o5 - o o

We collocate (3.4) together with (3.18) for 4 andp = 2 at %, X1, X2, and interpolate ak, -3 to get
2

8,

the linear system:

1 0 -1 0 1 a, Yoo,
1 _1 _ _1

1 Y -k -1 - A Vi3,

0 1 -4 9 -16||a,| =| hf,

0o 1 0 -3 0 a, hf .o

o 1 4 9 16 )l|a, h,.,

This yields the values
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13 22 127 121 3

a, = %Yk” + EY“% + %hfk - thk+1 T hf .2
a, = ‘5_4yk+1 + %yk% + ;Tlolhfk - ghfm + 1% hf vz
a, = %Ykﬂ + %Y“% + %h}‘k - %hfk+1 - % hf,..
a, = % f, - % fra % fraz

We substitute these into (3.18) to get the contilstscheme

Y(x) = a’1(x) Y T a% (X) Yk+% + h [ﬁo(X)Yk + ﬂl(x)fkﬂ + B, (X)fk+2]

39 4(x-x.) 376 (x - x)* 64
where =27 _ k K/ _
() = 5 h 3  h? TEAE
-4 4Mx-x) 376(x - x)° 64 . 16 (x-x.)"*
a = + - - - -2
%(X) 35 h 35 h2 7h3 (X Xk) 7 h4
23 (x-x) 293(x - x ) . 23(x - x ) 8(x - x)
IBO(X) i - > + 3 - Z
70 12h 420 h 42h h
pl) = 28 k- x) 622 (xox ) 9s(x-x ), 22 (x - %)’
70 6h 105h?  h? 21h3 21 h*
2 3 4
)= 2+ B En) Mgl BEon) o)
— _ 2 _ 3 _ 4
i) = 0 B m) bl Y s

This, at the grid point.., , yield the two-step implicit hybrid scheme
17 52 8 1 1

Yo, + ==Y ——=Y ., =h—f - —f, +=f,,
232 ¥ 35 kR [35k 70 6"2}

of order four with error constar@, = — 1%05.

4.0 Numerical examples

From our earlier works (see [2] - [4]), it is egidt that the continuous schemes perform much
better in terms of efficiency and cost comparedasaz their discrete form equivalents. For thkesaf
completeness, and emphasis, we provide again tmre swumerical evidences in support of this
assertation.
Example 4.1

We considery’ — Xy =0, y(0) =1, 0< X< 1, whose analytic solution isy(x) = exp(l XZJ.
2

The numerical results obtained from the experintemaf the schemes (3.9), (3.10), (3.15) and (3.&@6
this example are presented in Table.

Example 4.2

We consider here the IVP in first order systemafations
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LY = O, whereL =

d
dx

-2

Y

1
+1

|

Y1
Y,

Je=[3]

1 _ 1 -
and whose exact solution ¥(X) = L—g (ex —-€e ZX) ) :—_3 (ex + 2e 2X):| ,for0<s x< 1

Numerical evidences for this example based onraxpatation with the scheme (3.9) — (3.10)

and (3.15) — (3.16) are presented in Table 4.2.

Table 4.1Errors of methods for Example 4.1 with h = @x, = th'

X Discrete Continuous Discrete Continuous
method (3.10) | Scheme (3.9 ) | Method Method (3.15)
(3.16)
0.00 0.000 0.000 0.000000 0.000000
0.01 1.110E-7 9.044090E-4
0.02 4.270E-7 1.607698E-3
0.03 9.040E-7 2.109971E-3
0.04 1.467E-6 2.411305E-3
0.05 2.010E-6 2.511744E-3
0.06 2.399E-6 2.411304E-3
0.07 2.468E-6 2.109970E-3
0.08 2.022E-6 1.607697E-3
0.09 8.330E-7 9.04409E-4
0.10 1.354E - 6 1.354E-6 0.000000 0.00000
0.11 7.840E-7 9.317440E-4
0.12 7.100E-7 1.656287E-3
0.13 2.780E-6 2.173737E-3
0.14 5.045E-6 2.484176E-3
0.15 7.096E-6 2.587649E-3
0.16 8.487E-6 2.484171E-3
0.17 8.747E-6 2.173734E-3
0.18 7.368E-6 1.656284E-3
0.19 3.811E-6 9.317430E-4
0.20 2.494E - 6 2.494E-6 0.000000 0.000000
Table 4.2 Errors of methods for example 4.2 withks 0.1,5( = %C'
X Discrete Continuous Discrete Continuous Method
method (3.10 | Scheme (3.9 ) | Method (3.16) (3.15)
)
0.00 0.000 0.00000 0.000000 0.000000
0.01 5.890000E-7 6.268552E-3
0.02 3.800000E-7 3.977540E-4
0.03 3.550000E-6 8.87050043
0.04 1.408400E-5 1.565214E-3
0.05 3.405200E-5 2.425818E-3
0.06 6.623900E-5 3.464937E-3
0.07 1.133870E-4 4.678145E-3
0.08 1.781940E-4 6.061114E-3
0.09 2.633130E-4 7.609612-4
0.10 3.713590E-4 3.713590E-4 9,319504E-3 9.319504E-3
0.11 4.636890E-4 9.316058E-3
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0.12 5.559650E-4 9.474634E-3
0.13 6.50682E-4 9.791371E-3
0.14 7.502950E-4 1.0262491E-3
0.15 8.572220E-4 1.0884303E-2
0.16 9.738410E-4 1.1653204E-2
0.17 1.102499E-3 1.2565669E-3
0.18 1.245507E-3 1.3618258E-2
0.19 1.40514E-3 1.4807609E-4
0.20 1.583641E-3 1.583641E-3 1.6130439E-2 1.6130439E-2
Table 4.3:Errors for example
X Discrete method| Continuous scheme
(3.16) (3.15)
0.00 0.0 0.0
0.01 9.044090 E-4
0.02 1.607698 E-3
0.03 2.109971 E-3
0.04 2.411305 E-3
0.05 2.511744 E-3
0.06 2.411304 E-3
0.07 2.109970 E-3
0.08 1.607697 E-3
0.09 9.044090 E-4
0.10 1.000000 E-9 1.000000 E-9
0.11 9.317440 E-4
0.12 1.656287 E -3
0.13 2.173737E-3
0.14 2.484176 E-3
0.15 2.587649 E -3
0.16 2484171 E-3
0.17 2.173734 E-3
0.18 1656284 E — 3
0.19 9.317430 E-4
0.20 1.000000 E- 9 1.000000 E - 9
Max. Errorin [0, 1] 3.220000e -7 7.479670F -
5.0 Conclusion

A method for the derivation of continuous hybrithemes for the solution of IVPs in ordinary
differential equations has been presented. Ferghipose the Chebyshev polynomial has been engploye
as the basis function and a collocation approachatlapted. The schemes reproduced their corresgpnd
discrete finite difference equivalents at approxamzhosen/selected points. The higher

the step number of the methods the larger the dimenof the matrix equation that is involved and
consequently the higher the computational coste ddntinuous schemes are desirable as they exhébit
features of efficiency since they do not requirditinal interpolation to yield as many resultsdasirable

at the off-grid points and that, at no extra cdstimerical evidences also demonstrate the accurfatyese
schemes.
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