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Abstract

In this paper, the convergence analysis of the modified conjugate
gradient method was thoroughly examined. The pick perfect polynomial and
the energy norms were employed in the analysis. The convergence of the
modified C G M after i iterations depends on how close a polynomial P; of
degree i can be to zero on each eigenvector given the constraint P(0)-1. The
modified C G M algorithm finds the polynomial that minimizes the
expression, but convergence is as good as the convergence of the least
eigenvector. Also convergence of the algorithm is a function of the condition
number. Again, this paper reinforces our understanding that the modified C
G M yields the exact result after n-iterations, and further provesthat the C G
M algorithm is quicker if there are duplicated eigenvalues. Given infinite
floating point precision, the number of iterations required to compute an
exact solution is at most the number of distinct eigenvalues. Another
important finding from this work is that the modified C G M algorithm
converges more quickly when eigenvalues are clustered together than when
there are irregularly distributed between a given interval. It is clear that the
modified C G M converges greater than the modified steepest descent method
(S D M) of our earlier work, as well as the conventional C G M, in many
cases. Comparing S D M with the C G M algorithm, it was concluded that
both algorithm have different time complexities for n- dimensional problems.
It is obvious that these results are new and clear departure from the analysis
of modified steepest descent method; since the modified CGM is an
improvement on the earlier mentioned method.
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1.0 Introduction

Optimization is a scientific approach to obtainihg best decision in any set of circumstances.
Hence it is the act of obtaining the best resuldarnany given circumstances. The main objective of
optimization is to solve a problem under invesimatwith a high degree of precision and under dlgig
restrictive operation time, so as to minimize cotipu cost. It is necessary to choose a computdtiona
scheme that can meet this computational requiremEme desire to construct a suitable and highly
implementable algorithm has motivated the reseamedstigations contained in this work. As a reshis
paper seek an improvement on our earlier work emibdified steepest descent method.

2.0 Conventional conjugate gradient method (CGM)
The conventional conjugate method (CGM) was orifjindeveloped by Hestenes and Stiefel
(1952 [3]) as a method of solution for linear syste Fletcher and Reeves (1964 [1]) built the nexrgss
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underlying theory for a successful application lné tmethod to quadratic functional and developed its
convergence properties.

To this end we defined quadratic functional as:

f(x)=f,+<a,x>, +% <X, Ax>, (2.1)

where A is am x n symmetric positive definite operator on the HiltsaceH, and a is vector ifl. The
steps in CGM algorithm are describe as follows
2.1 Algorithm
Step 1

The first elementX, LIH of the sequence is guessed, while the remaininmbaes of the

sequence are computed with the aid of step 2 to 4.

Step 2
R =0, =—(a+Ax) 2.2)
whereP, is the descent directiog is the gradient of (x) and X = X,
Step 3:
<Q0,0 >
)§+1:)§+aipi’a:M’APi “H (2.3)
<R
o is the step length. 0. =0, +a,AP (2.4)
I:?+1 = gi+1+18iFi) (25)
<0 >
ﬂi - g|+l’ g|+| H (26)
<0,0 >y
Step 4

If g, =0, for some, terminate the sequence, elseisgti +1

We state the following theorem because it will gare understanding to the analysis of the convemenc
rate of the conventional conjugate gradient methptbiejugba et al (1999 [4]).
Theorem 2.1 (statement only)

The convergence rate of GM algorithm for quadratic functional remains stable if A = m/M

where m and M are the smallest and largest eigen values of the control operator A respectively. See proof
in Omolehin et al (2006 [5])

3.0 Convergence rate of conventional CGM. algorithm
To fully understand this work it will be necessaity show the convergence rate of the
conventional C G M Algorithm by Ibiejugba (1999 J4Recall the quadratic functional

f(x)=f,+<ax>, +%<x Ax>,
where f0 is constantH is a Hilbert spaces is an x n dimensional vector ik, a positive definite constant

matrix operator.
Theorem 3.1
The law of convergence of the C G M algorithmis given as

1- 2n
E(Xn) = % E(XO)

1+m

wherem andM are the smallest and largest eigen values refspectively.
Proof:
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Define E(x) = % <(x=-X), A(x=-X) >, 3.1)
ThereforeE(X) = % <(x=-X), Ax=-X)>, = % < x+Ala, A(x+Ata) >, (3.2)

:}é<x+ A'a, Ax+AATa >, 3.3)
:}é<x+ Ala, Ax+a>, (3.4)
=+ A%, AX>,, +}énA‘1a,a>H (3.5)
:}é<x+Ax>H +}é<x,a>H
:+%HA’1a,Ax>H +}én—xm,a>H (3.6)
:%nx,AxcpH +%<x,a(pH +%nx,AxD(pH +%nA‘la,Ax>H 3.7)
E(x) = f(x)—f0+%<x*,Ax* >=f(x) - f (3.8)

Therefore E(X) is f(X) plus a constant term, hence the convergen&>)fis considered instead of that of
f(x) as from now.
Recall that

E(x) = % <x+A'a, Ax+a>, :%< A (Ax+a), Ax+a>,
= 1, < A9(¥), 909 >, (3.9)

Hence E(x ) = E(x.) = %5 <x =X, A(x =X) >, = ¥ <x, =X, AlX, ) (3.10)
But X,,; =X +a,P. Therefore,

E(N)‘E(Xﬂ):%Qﬁ—X*,A(X—X*)>H—}é<>g+>g+>gp—x*,A(>g+am—x*)>H (3.11)
:%<)g+>gpl—x*, A()g+aipl—x*)>H
:%<)§—X*,A()§—X*)>H —%<)§—X*, A()g—x*)>H

-Va <p, A +ap =xX) >, - Ya <x-x,Ap >, (3.12)
=-a, < p, Alx —X) >, —Y2a, <% =X, Ap >, ~12a, < p, a,p, >, (3.13)
=-a,<p, Ax+a>, - Va’ <p, Ap >, -Ya’ <p, Ap >,
=-a; < Pg >y _%ai<gi’gi> (3.14)
Since a, :M (3.15)
<P, AR >y

=-a; < _giﬂi_’ F?—l’>H _%ai <09 >4
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=-a,<g,9 > —% <gQ >4, (since<p, —g; >, it orthogonality of p, and g;)

a,<g,9 >
=a,<0.9 >4 _%ai<gi’gi>H:%ai<gi,gi>H:}:ZpAp> "
17 T H+_
because
a, :M (3.16)
<p,Ap
Hence, E(x)—E(X,,) = <00 >y E(X) (3.17)

<P, AP >y GATG @y

Using the fact thag, = B_,p,_, — P, we have

<0, AG >y =<B.P .y A(B4R 1~ P) Py =B.1< P AL >y T<PLAR >y
2 <Py, A, >y, Since<p_,Ap, >,20 (3.18)

(due to the positive definiteness of operatpr< ¢;, Ag, >, =< p., Ap, >, . Therefore

<9.9 > E(X)

E(x) - E(X,,) 2 =

T Ag >, <g.A'g >,

But for a bounded self adjoint operator in a HitbspaceH, Kantorovich established the following
inequality

(3.19)

< X, X >% . 4mMV
<X AX> <X AT >, T (M+M)?

wherem andM are respectively the greatest lower and leastripmends of the spectrum of operafor
Using Kantorovich’s inequality we obtain

(3.20)

2
1_
E(X.) < Hﬂ E(X%) (3.21)

M

This establishes the convergence rate of the coioweth C G M algorithm in this case A is a matrix
operator, wheren andM are the smallest and greatest eigen values ofperively

4.0 The modified conjugate gradient method
In our previous work on the general convergencéhefsteepest descent method, the number of
matrix-vector products per iteration can be reduoeshe by using a recurrence to find the residual:

a=-Ag, =-Alg +ad) =r —aAd (4.1)
Here,the conjugate gradient is simply the method of egafe direction where the search direction are
constructed by conjugation of the residuals (i.eskiting 44 =1;). The residual worked for steepest
descent in our previous work Omorogbe and Osagdi2@d@8 [7]), and it will even worked better for the
conjugate gradient method. It has the propertyitlsabrthogonal to the search direction, i.e.

dir; =0,i <] (by A- orthogonal of d-vectors) 4.2)

So, it's guaranteed always to produce a new, lipgadependent search direction unless the resigual
zero, in which case the problem is always solvesiwg shall see, there is an even better reasdmtuse,
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the residual. Let us consider the implicationto$ tchoice, because the search vectors are bwiitt the
residuals and the subspace sy:{aigl, LK I’i_l} is equal to D;. As each residual is orthogonal to the
previous search directions, it is also orthogoadhe previous residuals

Kr =0 0% ] (4.3)
Interestingly, Equation (4.1) shows that each nesidual I;is just a linear combination of the previous
residual andAd,_; recalling thatd;_; 1 D; this fact implies that each new subspdag, is formed from

the union of the previous subspa[‘k and the subspaa@sdi . Hence
D, = span{d,, Ady, A’d,,K , A™"do} = span{ro, Arg, A%, K , A7}

According to Shewchuk (1994 [[8]), this supspaceaited krylov subspace created by repeatedly apgply
a matrix to a vector. It has a fascinating propetl@causeAdi is included in D,,,, the fact that the

preceding residual;,, is orthogonal toD,,,. By using Gram-Schmidt conjugatiop,ris already A-
orthogonal to all previous directions excaﬂ]t. The process of generating the set of A-orthogsealch
directions{di} is called conjugate Gram-Schmidt process. In th@eca of this paper, it follows that the
Gram-Schmidt constant aref3; = -’ Ad;/d; Ad; simplifying this expression and taking inner

product off; and equation (4.1)

riTrj+1 = riTrj -a, riTAdj .a, riTAdj =r'r —rorj+l
A A
L= J
ai
;
-r'r ..
KA, = —L i # ]
i-1
0, otherwise
by equation (4.3)
1 r'r .
_TI—I’I > ] +1
U By =1ai, d Ad
0, otherwise

(using Gram Schmidt conjugation)

Clearly, most of the,é’ij term have disappeared. It is no longer necessasfare old search vectors to
ensure the A-orthogonality of new search vectorsis Tmajor advance is what makes the modified
conjugate gradient as important an algorithm as itecause both the iteration are reduced framf) @6
0(m), where mn is the number of zero entriesAoHenceforth, we shall use the abbreviatifn= 3 ,

r'r T

simplifying further. = ——— =
dfin  Tiafig

. Putting everything together, the modified comjteggradient

— |

algorithm is given below
4.1 Algorithm
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rr

1. d, =r, =b— Ax,, where.a; = ———

d’ Ad,
2. X =% +a,q
3. r.i+1 = ri _ai Ad| , Where ﬂi+1 :—r”rljlr-:i*l (*)

4. diy =1y + 6.0

4.2 Remark
Starting: if you have a rough estimate of the valfi®, use it as the starting valug, otherwise

setX, =0.

Stopping: when the CGM algorithm reaches the mimmnpoint, the residual becomes zero, and if (*hie t
algorithm is evaluated on iteration later, a disby zero will result. Then Stop.
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The above algorithm of the modified CGM is cleaaly improvement on the modified steepest
descent method. The performance of the modifiejugate gradient method is demonstrated in Figure
4.1. below.

Figure 4.1 The modified conjugate gradient method.

5.0 Convergence analysis of the modified conjugateethod.
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Normally CGM is complete after n-lterations, Howewe practice, accumulated floating point
round off error courses the residual to graduallsel accuracy, and cancellation error causes thehsea
vectors to lose A- orthogonality. This convergerm®lysis is important because the modified CGM
algorithm is used for large class of problems thatot feasible to run even in n-iterations. Thalgsis is
done using picking perfect polynomials
51 Pick perfect polynomials

We have seen that, each step of the modified CGhdrihm, the value€ is chosen from
& + D, where
D, = span{r,, Ary, A’1y,K , A7} = span{ Aey,, A’e, , A’y K , A}

i .
using Krylov subspaces, for a fixeid the error term has the forrg =[1+ Zl/lj A’Jeo. The
j=1

coef“ficientl,l/j are related to the valuwe andf3;, but the precise relationship is that C G M althoni closes
thelﬂj coefficients that minimize”q”A. The expression in parentheses above can be ssguteas a
polynomial. Let P (A) be a polynomial of degrels P can take either a scalar or a matrix as its arggme

and will evaluate to the same; that isPj(A) — 24> +1, then P,(A) = 2A% +1.. This feasible notation
comes in handy such th& (A)V— P (A)v = 0. Then, we can express the error tern€as P (A)g, .

If we require thatF’i‘(O) =1 the modified CGM chooses this polynomials wheohboses the
l,l/j coefficients. Let’s examine the effect of applythis polynomial tog,  As in the analysis of the
steepest descent in our earlier work Omorogbe asagi®de (2008), This expressga® a linear

combination of orthogonal unit eigen vecters= Zn: &,V, and we find thatg = ZEJ. P(A,)V,,

j=1
Ag = Zgﬂ P(A,)V, implies”q”ZA —ZE]- A?(Pi(/‘j))z/]j . The performance of the modified
CGM is illustrated in figure 5.1 (a-c) below:
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() P2(A)

Figure 5.1 The performance of the modified C G M algorithm

From figure 5.1 above, the convergence of the meliCGM after i-iterations depends on how close a

polynomial P of degreei can be to zero on each eigenvalue, given the @nsthat P (0) —1. The

CGM algorithm finds the polynomial that minimizdsst expression, but convergence is only as good as
the convergence of the least eigenvectors. LeE{AJ be the set of eigenvalues/Aafwe have

le]” A<min max(R(A))*>. 24, = min max(R(A)f|e (5.1)
P, AOE(A) P, AOE(A)

Figure 5.1 illustrated, for several values,ahe pthat minimizes this expression from our illustoatiwith
eigen values 2 and 7. There is only one polynomiiadegree zero that satisfiel, (0) =1, and that is

P,(A) =1, graphed into Figure 5.1(a). The optimal polyndnofadegree one ish (A1) —1-2x/9 as

graphed in Figure 5.1b. Note th& (2) = 5/9 and B, (7) = —5/9, and so the energy norm of the error

term after one iteration of the C G M is no gredkemn 5/9 it initial value. Figure 5.1 (c) showsathafter
two iterations, Equations)(evaluates to zero. This is because of polynoofialegree two can be fit to
three pointsP, (0) =1, P,(2) =0 and P, (7) =0. In general, a polynomial of degree n cannfit 1
points, and thereby accommodate n separate eidessva

The foregoing discussion reinforces our understanthat the modified C G M yields the exact
result after n iterations; and further proves thatmodified C G M is quicker if there are dupladteigen
values, given infinite floating-point precision,etmumber of iterations required to compute an exact
solution is at most the number of distinct eigeneal We also find that modified C G M convergesamor
quickly when eigenvalues are clustered together thizen they are irregularly distributed betweagp and
Amax Decause it is easier for the algorithm to ch@pelynomial that makes equation (3.1) small.
5.2 Chebyshev polynomials.

A useful approach is to minimize equation (5.1¢othe rangeNmin, Amay rather than at a finite
number of points. The polynomials that accomplikls tare based on Chebyshev polynomials. The

Chebyshev polynomial of degrees T, (e) = 1/2[(a)+ Vot =1+ (w-vaf —1)iJ. The Chebyshev
polynomials have the property th*il'i (a))|s 1| on the domainc [J[-1,1] and further thatT, (@) is
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maximum on the domaire [J[-1, 1] among all such polynomials. Equation (5.1) is miaed by

choosing
Ti Amax + Amin - ZA
Amax B Amin

Ti Amax + Amin
Amax - Amin

This polynomial has the oscillating properties tieByshev polynomials with the domaiy,, SA<A. .,

P(1) =

The denominator enforces our requirement tRef0) =1. The numerator has a maximum value on the
interval betwee ,, andA 5 SO, from equation (5.1) we have,

-1
Amax + Amin K+1
ol <7 2t o), =1 K12,

max min

> [m] (mj .

5.2
k-1 k+1 &2

The second addend inside the square brackets gms/8y zero asincreases, so it is common to
express the convergence of C G M with the Wealenu'ality

e < (523

The first step of the modified C G M is identicald step on the steepest descent method séttingin
equation (5.2), we obtain the convergence resulthi® steepest descent method of our earlier work

, K-1)
el = (1) e 59

This is just the polynomial case illustrated inufig 5.1(b). However in practice C G M usually cages
faster than equation (5.3) would suggest, becatigead eigenvalue distribution or good startingrpi
Comparing equation (5.3) of the modified C G M aglation (5.4) of the modified steepest descent
method, it is clear that the convergence of theifi@dC G M is much quicker than that of modified
steepest descent method as well as the conventid@&IM algorithm. But it is not necessarily truatth
every iteration of C G M enjoys faster convergefuzeexample the first equation of C G M is an itema
of steepest descent the factor 2 in equation @l8\s C G M a little slow for these poor iteration
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Figure 5.2 lllustration of convergence of the modified C Gad a function of condition number.

6.0 Complexity, discussion and conclusion

In this work, the dominating separations duringat®n of either the modified steepest descent of
previous work or the modified C G M are matrix \a@cproducts. In general, matrix-vector multiplicati
requires 0C(m) operations, where m is the numberwofzero entries in matrix. For many problemssA i

sparse and nm[10(n)
Suppose we wish to perform enough iterations tacedhe norm of the error by a factorepthat
is ||q || < D||e0|| Equation (5.4) can be used to show that maximmumber of iterations required to

achieve this bound, using steepest descent method i

i< (Lkm (1))

Where equation (5.3) suggest that the maximum nuwofiterations the modified C G M requires is

)

We conclude that the modified steepest descentadetias a time complexity o®(mMk), whereas the

modified C G M has a time complexity ﬁl(m\/i) Both algorithms have a space complexity ah)0(

Finite difference and finite element approximatiofisecond-order elliptic boundary value problerosqul

on d-dimensional domain often ha\]eDO(nZId). Thus, the modified steepest descent has a time

complexity of 06 for two-dimensional problems, versusitY) for the modified C G M; and the modified
steepest descent method has a time complexityndf)Ofor three-dimensional problems, versus*S) for
the modified C G M. It however noted that converggenf the modified CGM algorithm converges quicker
than the modified steepest descent method as svéticaconventional CGM in many cases.
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