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Abstract 
 

In this paper, the convergence analysis of the modified conjugate 
gradient method was thoroughly examined. The pick perfect polynomial and 
the energy norms were employed in the analysis. The convergence of the 
modified C G M after i iterations depends on how close a polynomial Pί of 
degree i can be to zero on each eigenvector given the constraint Pί(0)-1. The 
modified C G M algorithm finds the polynomial that minimizes the 
expression, but convergence is as good as the convergence of the least 
eigenvector. Also convergence of the algorithm is a function of the condition 
number. Again, this paper reinforces our understanding that the modified C 
G M yields the exact result after n-iterations, and further proves that the C G 
M algorithm is quicker if there are duplicated eigenvalues. Given infinite 
floating point precision, the number of iterations required to compute an 
exact solution is at most the number of distinct eigenvalues. Another 
important finding from this work is that the modified C G M algorithm 
converges more quickly when eigenvalues are clustered together than when 
there are irregularly distributed between a given interval. It is clear that the 
modified C G M converges greater than the modified steepest descent method 
(S D M) of our earlier work, as well as the conventional C G M, in many 
cases. Comparing S D M with the C G M algorithm, it was concluded that 
both algorithm have different time complexities for n- dimensional problems. 
It is obvious that these results are new and clear departure from the analysis 
of modified steepest descent method; since the modified CGM is an 
improvement on the earlier mentioned method.   
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1.0 Introduction 
Optimization is a scientific approach to obtaining the best decision in any set of circumstances. 

Hence it is the act of obtaining the best result under any given circumstances. The main objective of 
optimization is to solve a problem under investigation with a high degree of precision and under a highly 
restrictive operation time, so as to minimize computing cost. It is necessary to choose a computational 
scheme that can meet this computational requirement. The desire to construct a suitable and highly 
implementable algorithm has motivated the research investigations contained in this work. As a result this 
paper seek an improvement on our earlier work on the modified steepest descent method.  
 
2.0 Conventional conjugate gradient method (CGM) 

The conventional conjugate method (CGM) was originally developed by Hestenes and Stiefel 
(1952 [3]) as a method of solution for linear systems. Fletcher and Reeves (1964 [1]) built the necessary  
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underlying theory for a successful application of the method to quadratic functional and developed its 
convergence properties. 

To this end we defined quadratic functional as: 

HH Axxxafxf ><+><+= ,,)( 2
1

0     (2.1) 

where A is an n x n symmetric positive definite operator on the Hilbert space H, and a is vector in H. The 
steps in CGM algorithm are describe as follows  
2.1 Algorithm  
Step 1 

The first element Hx ∈0  of the sequence is guessed, while the remaining members of the 

sequence are computed with the aid of step 2 to 4. 
Step 2 

)( 000 AxagP +−=−=      (2.2) 

where P0 is the descent direction, g0 is the gradient of  f (x) and 0xx =  

Step 3:  
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α is the step length.  iiiii APgg α+=+1      (2.4) 

iiii PgP β+= ++ 11      (2.5) 
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Step 4: 

If 0=ig , for some ί, terminate the sequence, else set 1+= ii  

We state the following theorem because it will give an understanding to the analysis of the convergence 
rate of the conventional conjugate gradient method by Ibiejugba et al (1999 [4]). 
Theorem 2.1 (statement only) 

The convergence rate of GM algorithm for quadratic functional remains stable if Mm=λ  

where m and M are the smallest and largest eigen values of the control operator A respectively. See proof 
in Omolehin et al (2006 [5])  
 
3.0 Convergence rate of conventional CGM. algorithm 

To fully understand this work it will be necessary to show the convergence rate of the 
conventional C G M Algorithm by Ibiejugba (1999 [4]). Recall the quadratic functional 

HH Axxxafxf ><+><+= ,,)( 2
1

0  

where 0f  is  constant, H is a Hilbert space, x is a n x n dimensional vector in H, a positive definite constant 

matrix operator. 
Theorem 3.1 

The law of convergence of the C G M algorithm is given as 
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where m and M are the smallest and largest eigen values of A respectively. 
Proof:  
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Define    HxxAxxxE >−−<= )(),(2
1)( **     (3.1) 

Therefore HxxAxxxE >−−<= )(),(2
1)( **

HaAxAaAx >++<= −− )(,2
1 11  (3.2) 

 
 
 
 

HaAAAxaAx >++<= −− 11 ,2
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Therefore, E(x) is f(x) plus a constant term, hence the convergence of E(x) is considered instead of that of 
f(x) as from now. 
Recall that 

HaAxaAxxE >++<= − ,2
1)( 1

HaAxaAxA >++<= − ),(2
1 1
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But iiii PxX α+=+1 .  Therefore, 
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Using the fact that iiii ppg −= −− 11β , we have 

HiiiiiHii ppApAgg φ)(,, 1111 −=<>< −−−− ββ HiiHiii AppApp ><+><= −−− ,, 111β  

  0,sin,, 1111 ≥><><≥ −−−− HiiHii AppceApp     (3.18) 

(due to the positive definiteness of operator A), HiiHii AppAgg >≥<>< ,, .  Therefore 

  
HiiHi

iHii
ii gAgAgg

xEgg
xExE

><><
><≥− −+ 1

2

1 ,,
)(,

)()(     (3.19) 

But for a bounded self adjoint operator in a Hilbert space H, Kantorovich established the following 
inequality 
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where m and M are respectively the greatest lower and least upper bounds of the spectrum of operator A. 
Using Kantorovich’s inequality we obtain 
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This establishes the convergence rate of the conventional C G M algorithm in this case A is a matrix 
operator, where m and M are the smallest and greatest eigen values of A respectively 
 
4.0 The modified conjugate gradient method 

In our previous work on the general convergence of the steepest descent method, the number of 
matrix-vector products per iteration can be reduced to one by using a recurrence to find the residual: 

  11 ++ −= ii Aer )( iii deA α+−= iii Adr α−=     (4.1) 

Here, the conjugate gradient is simply the method of conjugate direction where the search direction are 

constructed by conjugation of the residuals (i.e by setting ii r=µ ). The residual worked for steepest 

descent in our previous work Omorogbe and Osagiede (2008 [7]), and it will even worked better for the 
conjugate gradient method. It has the property that it’s orthogonal to the search direction, i.e.  

jird ji <= ,0  (by A- orthogonal of d-vectors)   (4.2) 

So, it’s guaranteed always to produce a new, linearly independent search direction unless the residual is 
zero, in which case the problem is always solved. As we shall see, there is an even better reason to choose, 
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the residual.  Let us consider the implication of this choice, because the search vectors are built from the 

residuals and the subspace span { }10, −ii rrr Κ  is equal to iD .  As each residual is orthogonal to the 

previous search directions, it is also orthogonal to the previous residuals  

jirr j
T

i ≠= 0       (4.3) 

Interestingly, Equation (4.1) shows that each new residual ir is just a linear combination of the previous 

residual and 1−idA , recalling that ii Dd ∈−1  this fact implies that each new subspace 1+iD is formed from 

the union of the previous subspace iD and the subspace iAd . Hence, 

},,,,{ 0
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0
2
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0
2

00 rArAArrspan i−= Κ   

 
 
 

 
According to Shewchuk (1994 [[8]), this supspace is called krylov subspace created by repeatedly applying 

a matrix to a vector. It has a fascinating property; because iAd  is included in 1+iD , the fact that the 

preceding residual 1+ir  is orthogonal to 1+iD . By using Gram-Schmidt conjugation rί+1 is already A-

orthogonal to all previous directions except id . The process of generating the set of A-orthogonal search 

directions }{ id is called conjugate Gram-Schmidt process. In the context of this paper, it follows that the 

Gram-Schmidt constant are: jjj
T

iij AddAdr /−=β  simplifying this expression and taking inner 

product of ir  and equation (4.1) 
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by equation (4.3) 
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(using Gram Schmidt conjugation) 

Clearly, most of the ijβ  term have disappeared. It is no longer necessary to store old search vectors to 

ensure the A-orthogonality of new search vectors. This major advance is what makes the modified 
conjugate gradient as important an algorithm as it is because both the iteration are reduced from 0(n2) to 

0(m), where mn is the number of zero entries of A. Henceforth, we shall use the abbreviation 1, −= iii ββ  

simplifying further. 
11 −−

=
i

T
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i
T

i
i rd

rrβ
11 −−

=
i

T
i

i
T

i

rr

rr
.  Putting everything together, the modified conjugate gradient 

algorithm is given below 
4.1 Algorithm  
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1. 000 Axbrd −== , where. 
i

T
i

i
T

i
i Add

rr=α  

2. iiii dxx α+=+1  

3. iiii Adrr α−=+1 , where   
i

T
i

ii
i rr

Trr 11
1

++
+ =β  (*) 

4. iiii drd 111 +++ += β  

4.2 Remark 
Starting: if you have a rough estimate of the value of x, use it as the starting value 0x , otherwise 

set 00 =x .  

Stopping: when the CGM algorithm reaches the minimum point, the residual becomes zero, and if (*) in the 
algorithm is evaluated on iteration later, a division by zero will result. Then Stop. 
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The above algorithm of the modified CGM is clearly an improvement on the modified steepest 
descent method.  The performance of the modified conjugate gradient method is demonstrated in Figure 
4.1. below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1:  The modified conjugate gradient method. 
 
5.0 Convergence analysis of the modified conjugate method. 
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 Normally CGM is complete after n-Iterations, However in practice, accumulated floating point 
round off error courses the residual to gradually lose accuracy, and cancellation error causes the search 
vectors to lose A- orthogonality. This convergence analysis is important because the modified CGM 
algorithm is used for large class of problems that is not feasible to run even in n-iterations. The analysis is 
done using picking perfect polynomials 
5.1 Pick perfect polynomials 
 We have seen that, each step of the modified CGM algorithm, the value ie is chosen from 

iDe +0  where  

 },,,,{ 0
1

0
2

00 rArAArrspanD i
i

−= Κ },,,,{ 00
3

)0(
2

)0( eAeAeAAespan iΚ=  

using Krylov subspaces, for a fixed ί, the error term  has the form 0
1

1 eAe
i

j

j
ji 










+= ∑

=
ψ . The 

coefficient jψ are related to the value αί and βί, but the precise relationship is that C G M algorithm closes 

the jψ  coefficients that minimize 
Aie .  The expression in parentheses above can be expressed as a 

polynomial. Let )(λiP be a polynomial of degree iPi,  can take either a scalar or a matrix as its argument, 

and will evaluate to the same; that is, if 12)( 2
2 +− λλP , then 12)( 2

2 += AAP .. This feasible notation 

comes in handy such that 0)()( =− vPvAP ii λ .  Then, we can express the error term as 0)( eAPe ii = .   

 
 
 
 
 
 

If we require that 1)0( =iP  the modified CGM chooses this polynomials when it chooses the 

jψ coefficients. Let’s examine the effect of applying this polynomial to 0e  . As in the analysis of the  

steepest descent in our earlier work Omorogbe and Osagiede (2008), This expresses e0 as a linear 

combination of orthogonal unit eigen vectors 
j

n

j
j Ve ∑

=
=

1
0 ξ  and we find that ∑= jjiji VPe )(λξ ,  

∑= jjiji VPAe )(λξ  implies ∑− jjijjAi Pe λλλξ 222
))(( .  The performance of the modified 

CGM is illustrated in figure 5.1 (a-c) below: 
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(c) P2 (λλλλ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1:  The performance of the modified C G M algorithm 
 
From figure 5.1 above, the convergence of the modified CGM after i-iterations depends on how close a 

polynomial iP  of degree i  can be to zero on each eigenvalue, given the constraint that 1)0( −iP . The 

CGM algorithm finds the polynomial that minimizes this expression, but convergence is only as good as 
the convergence of the least eigenvectors.  Letting E(A) be the set of eigenvalues of A. we have 
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Figure 5.1 illustrated, for several values of i, the pί that minimizes this expression from our illustration with 

eigen values 2 and 7. There is only one polynomial of degree zero that satisfied 1)0(0 =P , and that is 

1)(0 =λP , graphed into Figure 5.1(a). The optimal polynomial of degree one is 9/21)(1 xP −−λ  as 

graphed in Figure 5.1b. Note that 9/5)2(1 =P  and 9/5)7(1 −=P , and so the energy norm of the error 

term after one iteration of the C G M is no greater than 5/9 it initial value. Figure 5.1 (c) shows that, after 
two iterations, Equations (*) evaluates to zero. This is because of polynomial of degree two can be fit to 

three points 0)2(,1)0( 22 == PP  and 0)7(2 =P . In general, a polynomial of degree n can fit n + 1 

points, and thereby accommodate n separate eigen values. 
 The foregoing discussion reinforces our understanding that the modified C G M yields the exact 
result after n iterations; and further proves that the modified C G M is quicker if there are duplicated eigen 
values, given infinite floating-point precision, the number of iterations required to compute an exact 
solution is at most the number of distinct eigenvalues. We also find that modified C G M converges more 
quickly when eigenvalues are clustered together than when they are irregularly distributed between λmin and 
λmax, because it is easier for the algorithm to choose a polynomial that makes equation (3.1) small. 
5.2 Chebyshev polynomials. 
 A useful approach is to minimize equation (5.1) over the range [λmin, λmax] rather than at a finite 
number of points. The polynomials that accomplish this are based on Chebyshev polynomials.  The 

Chebyshev polynomial of degree i is [ ]ii
iT )1()1(2/1)( 22 −−+−+= ωωωωω .  The Chebyshev 

polynomials have the property that 1)( ≤ωiT | on the domain ]1,1[−∈ω  and further that )(ωiT is 
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maximum on the domain ]1,1[−∈ω  among all such polynomials. Equation (5.1) is minimized by 

choosing 
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This polynomial has the oscillating properties of Chebyshev polynomials with the domain maxmin λλλ ≤≤ .  

The denominator enforces our requirement that 1)0( =iP . The numerator has a maximum value on the 

interval between λmin and λmax so, from equation (5.1) we have, 
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The second addend inside the square brackets converges to zero as ί increases, so it is common to 
express the convergence of C G M with the weaker inequality 
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+<     (5.3) 

The first step of the modified C G M is identical to a step on the steepest descent method setting ί = 1 in 
equation (5.2), we obtain the convergence result for the steepest descent method of our earlier work 
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−≤      (5.4) 

This is just the polynomial case illustrated in figure 5.1(b). However in practice C G M usually converges 
faster than equation (5.3) would suggest, because of good eigenvalue distribution or good starting points. 
Comparing equation (5.3) of the modified C G M and equation (5.4) of the modified steepest descent 
method, it is clear that the convergence of the modified C G M is much quicker than that of modified 
steepest descent method as well as the conventional C G M algorithm. But it is not necessarily true that 
every iteration of C G M enjoys faster convergence for example the first equation of C G M is an iteration 
of steepest descent the factor 2 in equation (5.3) allows C G M a little slow for these poor iterations. 
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Figure 5.2: Illustration of convergence of the modified C G M as a function of condition number. 
 
6.0 Complexity, discussion and conclusion 

In this work, the dominating separations during iteration of either the modified steepest descent of 
previous work or the modified C G M are matrix vector products. In general, matrix-vector multiplication 
requires 0C(m) operations, where m is the number of non-zero entries in matrix. For many problems, A is 
sparse and m )(0 nm ∈  

Suppose we wish to perform enough iterations to reduce the norm of the error by a factor of ε; that 

is 0eei ∈≤ .   Equation (5.4) can be used to show that maximum number of iterations required to 

achieve this bound, using steepest descent method is 

   ( ))1(ln2
1

eki ≤   

Where equation (5.3) suggest that the maximum number of iterations the modified C G M requires is 

   

















∈
≤ 2

ln
2

1
ki  

We conclude that the modified steepest descent method has a time complexity of )(0 mk , whereas the 

modified C G M has a time complexity of ( )km0 . Both algorithms have a space complexity of 0(m). 

Finite difference and finite element approximations of second-order elliptic boundary value problems posed 

on d-dimensional domain often have )(0 /2 dnk ∈ . Thus, the modified steepest descent has a time 

complexity of 0(n2) for two-dimensional problems, versus 0(n3/2) for the modified C G M; and the modified 
steepest descent method has a time complexity of 0(n5/3) for three-dimensional problems, versus 0(n4/3) for 
the modified C G M. It however noted that convergence of the modified CGM algorithm converges quicker 
than the modified steepest descent method as well as the conventional CGM in many cases.  
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