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Abstract

In this paper, we consider a modified steepest method and its
convergence Analysis. The application of the eigen vectors and
eigenvalues were properly used in the analysis. The moreill condition
the matrix (i.e, the larger its condition number), the dower the
convergence rate of the modified steepest descent method. In the
same vein, the smaller the condition number K, the faster the
convergence rate. Convergence of the modified steepest descent
method is instantaneous if the eigenvalues are equal, are some of the
results drawn from this work. However, it is concluded that if the
condition number k is small convergence of the modified steepest
descent method is quick irrespective of the starting point unlike the
conventional method which is not amenable to such analysis.

1.0 Introduction

Steepest Descent method searches in the direafitie negative gradient for a minimum. The
reason for this search direction is not far fetcheate the, error function decreases most rapiulthis
direction. This is logical as the search must cargifor a non-zero distance. The search will oelyrbthe
direction of the negative gradient for a small aiste. According to Ibiejugba (1999 [1]), the stestpe
descent method basically consists of two interlogldomponent parts, first a choice of directiomwirich

to move followed by a minimization over a line fretselected direction. It is conceivable wh¥n[] R"
the application of the steepest descent methodsagates an infinite number of steps to actuallyiec
the desired minimum, though only a finite numbestaips are required to solve:

Ax=f,xOXOR"

whereA is a densely defined symmetric operator on a IilbgaceH. According to Omorogbe et al (2006
[2]), this phenomenon is attributable to an asyripte@striction of the steepest descent directionsnly a
two-dimensional subspace; thus, residuals aretsalidve failed in searching the whole space, Hhis
work a modified steepest descent method which attem obviate the computational deficiency of the
conventional steepest descent methods is consitlegether with its convergence analysis.

2.0 The conventional steepest descent method
The conventional steepest descent method is ceutan the following algorithm.
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2.1 Algorithm
It is assumed that an estimat® of a minimizedx* of f is known.

a. Set k=0 (2.2)
b. ComputeP® from P® = —g(X®) (2.2)
c. compute® suchthat ~ F(X® + AWPXY =min f (X® + APX) (2.3)
d. computeX “Pfrom  X* = X® 4+ JWpk) (2.4)
e. set k=k+1 and Go To 2 (2.5)

According Wolfe (1978 [5]), to understand, intuély how this algorithm works, we consider an
objective functionf : R? . R'with contours near a minimizet, this is illustrated in Figure 2.1 below.

For such an object function it is clear that there only two descent directions, nametfyg © and - g(l)

is orthogonal to g(o). All other descent directions are parallel either—g(o) or to—g(l). For an

objective function with nearly circular contoursang’, it would seen that Algorithm 2.1 would make rapid
progress. For an object function with contourstasas in Figure 2.2 however it is clear that Algbnit 2.1
would soon cease to make effective progress dftefitst little iteration. The kind of subsequembgress
to be expected is illustrated in Figure 2.2 byzZlgezag dotted lines. Very many short steps arelegdor
convergence ta . The type of contours in Figure 2.2 is more comrimopractice than the type shown in
Figure 2.1, so it would seem that Algorithm 2.lhaiigh appealingly simple, is not very efficient for
practical problems. It is used in conjunction wétrtain more efficient methods because it is tleEymsor
of all gradient methods and provides a useful Hsigto the nature of descent methods. (Shmuel6 195

Figure 2.1

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 353 - 358
Modified steepest descent method  Dickson E. A. Omugbe and A. A. Osagiede J of NAMP



Figure 2.2

3.0 The modified steepest descent method
The modified steepest descent method is contaimtx following algorithm
3.1 Algorithm

a. ri, =b—Ax; (3.1)
where — fl(X(i)) =1, is the direction opposite l(X(i))
T
rlr.
—_ MO
(UM O]
C. Xy = Xy iy T (3.3)

The algorithm, as written above, requires two iratector multiplications per iteration. The
computational cost of the modified steepest desisedbminated by matrix-vector products; forturgatel
this can be eliminated, by premultiplying both sidé Equation (8) by —A and adding b, we have:

Fiany = Ny — a(i)Ar(i) (3.4)
Although equation (3.1) is still needed to compls, then equation (3.4) can be used for every

iteration thereafter. The product Ar, which occurdoth equations (3.2) and (3.4) need only be agap
once. The disadvantage of using this recurrenteaisthe sequence defined by equation (3.4) isrgét

without any feedback from the value at{i), so that accumulation of floating point round effor may

causeX, to converge to some point neafShewchuk 1994 [3]).

However, this effect can be avoided by periodicaling equation (3.1) to recompute the correctitesi
To determinex as used in equation (3.2), note that

(%)) = 1) (3.5)
and we have:

0o =0 (3.6)

(b= A(X;) 1) =0 (3.7)

(b= Axg +arg) 1 =0 (3.8)

(b= AXg) 1y = a(Argl =0 (3.9)
(b- AX(O)T fo =0 (Ar -{0) lo) (3.10)
fofo = Ao (ATg) (3.11)

Mol
= (3.12)
Fo) Al

4.0 Convergence analysis of the modified steepest descent method

Let us consider the case thﬁ(% is an eigenvector with eigenvalu{g. Then, the residual
oy = ~Ag;) =4 (4.1)

is also aneigenvector. Equation (3.3) gives

e(i)
.
rlr.
_ ')
S =% T T A (4.2)
i ATy
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+ o (A&))

=0 (4.3)
AT

D)

. . 31 . .
l.e. choosmga(i) — /‘e gives us Instant convergence.

For a more general analysis, we must expgssas a linear combination of eigenvectors, and we
shall further require these eigenvectors to beomdbhmal. Symmetrically, there exists a set ofthagonal
eigenvectors of A, such that we can express thengigtors arbitrarily. Let us choo.ﬂﬁm = /1;1 so that
each eigenvector is of unit length. This choiceegius the property that

VTV :{1, j %k
i Tk

! 0, j#zk
Then we express the error tegy as a linear combination of the eigenvectors
€0 = Zlf,-Vj (4.4)
e
whereg is the length of each component e(f). From equations (4.3) and (4.4) we have the Walig
identities: foy = —Ae, - Zl{i/] v, (4.5)
i=
2_ 1 _ 2
o] = &he ~2¢; (4.6)
T — T — 2
e(i)Ae(i)—(ij Vi )(Zfi A Vj)_zfi/] 4.7)
]
2
rol” = rdrey = 2 €743 (4.8)
T — 2133
M Ay = 2 &A (4.9)

Equation (4.5) shows thergi) can also be expressed as the sum of eigenvectop@unts, and the length

of these components arefj/]j . Equations (4.6) and (4.8) are just Pythagonas la
We can proceed with the analysis as follows: eqogB.3) gives

T 2132
r..I, &N
_ o' _ > _
€y =€) T 75 () = &) + & 553 = (1) (4.10)

213
iy Al D i EiA

We saw earlier in this work that, E(i) has only one eigenvector component, then convegegeisc

achieved in one step by choosiﬂgi) = /1;1. Let us consider the case whe@@) is arbitrary, but all the
eigenvector have a common eigenvalu&hen, equation (4.10) becomes:
/lzz &2
— 121 (- —
€+ =€y * W( Ae,) =0
1]
Once again, there is instant convergence. Thibesause all the eigenvalues are equal, the

ellipsoid is spherical; hence, no matter what peietstart at, the residual must point to the ceotrthe
sphere, this is demonstrated in Figure 4.1. Howaf/drere are several unequal, nonzero eigenvathes

no choice of & will eliminate all the eigenvector components, asut choice becomes a sort of
compromising fact, the fraction in Equation (4.i9pest thought of as a weighted average of theegabf
/1;1. The Weightsz ensure that longer componentsqg are given precedence. As a result, on any given

iteration, some of the shorter componente@jfmight actually increase in length (though neverdmg).
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5.0 General convergence
To bound the convergence of the modified stegestent method in the general case, we shall

X1

Figure 4.1: Steepest descent method converges to exact soartithe first iteration if the eigenvalues areegjlial.

define the energy norrjr|d|A = (eT Ae)y2 . This norm is easier to work with than the Euciidenorm, and
is in some sense a more natural norm. Let us cen#ig slope because if at some arbitrary poid at
the solution pointX = A™'b then,

F(p)=f()+%(p-X"A(p-X) (5.1)
If A is symmetric as well as positive definite, it folls thatx is a global minimum of f. suppose we

examine equation (5.1) shows that minimiz“ﬁa)HA is equivalent to minimizingf (X(i)) with this norm,

we have
— Al T 2 .7
Herm) ~ 8 AGy = (&)AG) +2a,1 T Ag,) +a =€) Ag,) + 20T A, +ag, T AT,
(by symmetry of A) —||e ”2 +2r('>¢( Py + o) 2 TA
€0 la i) Arg, |00 o Ty Al iy

_H (I>H ((I) (I)) ~ H . H [ 1= (1)’ }_e(i)z( (Z £ ) ]_emi

(o Ay egy Ae) &R )
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2322
(by identities 4.7, 4.8 and 4.9). Wheg =1 — (ZZ: 1'3{1 4] ) . (5.2)
&)X i)
The analysis depends on finding an upper bounduwfto demonstrate how the weight and eigenvalues
affect convergence. We shall derive a resulinfer2, assume thag > A, The spectral condition number of

A'is defined to b& = A, / A, 21. The slope of;, which depends on the starting points, is denoted

232 2132
u=¢,1€& . We have =1- (51/11+52)|2)
o T e e, e e )

2 2 )2
_1- (> +x?) (5.3)
(k+-p?)(k® + u?)
The value ofey which determines the rate of convergence of thdified steepest descent is expressed as a
function ofu and k. ifeg, is an eigenvector, then the slgpés zero or infinite, whemvis zero then
convergence is instant. If the eigenvalues arelethen the condition numbéris one, impliedw equals
zero. The quadratic forms with a large conditiomber, the modified steepest descent can converge
quickly if a fortunate starting point is chosent tius usually worst whek is large. However, if the
condition number is small, the quadratic form iamhespherical, and convergence is quick regardiéss
the starting point. Holding constant (becaugkis fixed), a little basic calculus reveals thatiaiipn (5.3)
is maximized wher/ = £ K . An upper bound fotwwhich may be the worst starting point is found by

4 5 _ 4 3 N2
setting 14° = k?, Such thatw? Sl—sL = k* -2k” +k* _ (k-1 ,
k®+2h* +k®  Kk°®+2k*+k® (k+1)2
it follows that w1 (5.4)
k+1

The more ill-condition the matrix (i.e, the larger condition numbek), the slower the convergence of the
modified steepest descent method. It is provendiyguChebyshev polynomial that equation (5.4) s®al
valid for n>2, if the condition number of a symmetric, po®taefinite matrix is defined to be:

K = Amax /Amin '
The ratio of the largest and smallest eigenvahiiés The convergence results for steepest descent
k-1)
ool = (155 leoll 5
T 2i
and F(Xp) = T(%) - %e“)Ae(‘) (by equation 5.1) = (k : 1j
f(xo) = T() 15ef, Aeg, k+1

6.0 Discussion of results and conclusion

Convergence of the modified steepest descent mgher iteration) worsens as the condition
number of the matrix (i.e the larger its conditibnmberk), the slower the convergence rate of the
algorithm. Convergence is instant if eigenvaluesequal. However, if the condition numieis small,
convergence is quick irrespective of the startinmpp However, the analysis depends on finding ppeu
bound fora The value ofwis expressed as a functionotnd k, ifeg, is an eigen vector, then the slope p
is zero or infinite, whenw is zero convergence is instant. If the eigen @l equal, then the condition
numberk is one, impliesw equals zero. In the quadratic form with large é¢oma number, the modified
steepest descent method can converge quickly doa gtarting point is chosen, but it is usually stor
whenk is large. Ifk is small the quadratic form is nearly spherical annvergence is quick regardless of
starting point. From the foregoing, it is worthyrajte that the conventional steepest descent méshmut
amenable to this analysis.
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