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Abstract 

 
In this paper, we consider a modified steepest method and its 

convergence Analysis. The application of the eigen vectors and 
eigenvalues were properly used in the analysis. The more ill condition 
the matrix (i.e, the larger its condition number), the slower the 
convergence rate of the modified steepest descent method. In the 
same vein, the smaller the condition number K, the faster the 
convergence rate. Convergence of the modified steepest descent 
method is instantaneous if the eigenvalues are equal, are  some of the 
results drawn from this work. However, it is concluded that if the 
condition number k is small convergence of the modified steepest 
descent method is quick irrespective of the starting point unlike the 
conventional method which is not amenable to such analysis. 

 
 
 
1.0 Introduction  
 Steepest Descent method searches in the direction of the negative gradient for a minimum. The 
reason for this search direction is not far fetched since the, error function decreases most rapidly in this 
direction. This is logical as the search must continue for a non-zero distance. The search will only be in the 
direction of the negative gradient for a small distance. According to Ibiejugba (1999 [1]), the steepest 
descent method basically consists of two interlocking component parts, first a choice of direction in which 

to move followed by a minimization over a line in the selected direction. It is conceivable when nRX ∈  
the application of the steepest descent method necessitates an infinite number of steps to actually achieve 
the desired minimum, though only a finite number of steps are required to solve:  

    nRXxfAx ∈∈= ,  

where A is a densely defined symmetric operator on a Hilbert space H. According to Omorogbe et al (2006 
[2]), this phenomenon is attributable to an asymptotic restriction of the steepest descent directions to only a 
two-dimensional subspace; thus, residuals are said to have failed in searching the whole space, H. In this 
work a modified steepest descent method which attempt to obviate the computational deficiency of the 
conventional steepest descent methods is considered together with its convergence analysis. 
 
2.0 The conventional steepest descent method 
 The conventional steepest descent method is contained in the following algorithm. 
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2.1 Algorithm 
 It is assumed that an estimate x(0) of a minimized x* of f is known. 
a. Set   k = 0       (2.1) 

b. Compute P(k)  from )( )()( kk XgP −=      (2.2) 

c. Compute λ(k) such that  )(min)( )()()()()( kkkkk PXfPXF λλ +=+   (2.3) 

d. Compute )1( +kX from )()()()1( kkkk PXX λ+=+     (2.4) 
e. set   k = k+1 and Go To 2      (2.5) 
 According Wolfe (1978 [5]), to understand, intuitively how this algorithm works, we consider an 

objective function 12: RRf → with contours near a minimizer x*, this is illustrated in Figure 2.1 below. 

For such an object function it is clear that there are only two descent directions, namely )0(g−  and )1(g−  

is orthogonal to )0(g . All other descent directions are parallel either to )0(g− or to )1(g− . For an 

objective function with nearly circular contours near x*, it would seen that Algorithm 2.1 would make rapid 
progress. For an object function with contours as shown in Figure 2.2 however it is clear that Algorithm 2.1 
would soon cease to make effective progress after the first little iteration. The kind of subsequent progress 
to be expected is illustrated in Figure 2.2 by the zig-zag dotted lines. Very many short steps are needed for 
convergence to x*. The type of contours in Figure 2.2 is more common in practice than the type shown in 
Figure 2.1, so it would seem that Algorithm 2.1 although appealingly simple, is not very efficient for 
practical problems. It is used in conjunction with certain more efficient methods because it is the precursor 
of all gradient methods and provides a useful insight into the nature of descent methods. (Shmuel, 1966 [4])  
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Figure 2.2 

 
 
3.0 The modified steepest descent method 
 The modified steepest descent method is contained in the following  algorithm  
3.1 Algorithm  
a.    )()( ii Axbr −=       (3.1) 

where )()(
1 )( ii rXf =−  is the direction opposite )( )(

1
iXf  

b.     
)()(

)()(
)(

i
T
i

i
T
i

i Arr

rr
=α       (3.2) 

c.    )()()()1( iiii rXX α+=+      (3.3) 

 The algorithm, as written above, requires two matrix-vector multiplications per iteration. The 
computational cost of the modified steepest descent is dominated by matrix-vector products; fortunately, 
this can be eliminated, by premultiplying both sides of Equation (8) by –A and adding b, we have: 

    )()()()1( iiii Arrr α−=+      (3.4) 

 Although equation (3.1) is still needed to compute )0(r , then equation (3.4) can be used for every 

iteration thereafter. The product Ar, which occurs in both equations (3.2) and (3.4) need only be computed 
once. The disadvantage of using this recurrence is that the sequence defined by equation (3.4) is generated 

without any feedback from the value of )(ix , so that accumulation of floating point round off error may 

cause )(ix to converge to some point near x.(Shewchuk 1994 [3]). 

However, this effect can be avoided by periodically using equation (3.1) to recompute the correct residual. 
 To determine α as used in equation (3.2), note that 

    )()(
1 )( ii rxf −=       (3.5) 

and we have:  

    0)0()( =rrT
I       (3.6) 

    0)(( )0()( =− rxAb T
i      (3.7) 

0)( )0()0()0( =+− rrAxb Tα      (3.8) 

0()( )0(0()0()0( =−− rrArAxb TT α    (3.9) 

)0()0()0()0( (( rArrAxb TT α=−     (3.10) 

)( )0()0()0()0( Arrrr TT α=     (3.11) 

)0()0(

)0(0(

Arr

rr
T

T

=α       (3.12) 

 
4.0 Convergence analysis of the modified steepest descent method 
 Let us consider the case where )(ie is an eigenvector with eigenvalue eλ .  Then, the residual  

)()()( ieii Aer λ−=−=     (4.1) 

 is also aneigenvector. Equation (3.3) gives            

       
)()(

)()(
)()1(

i
T
i

i
T
i

ii Arr

rr
ee +=+     (4.2) 
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i.e. choosing 1
)(

−= ei λα  gives us instant convergence. 

 For a more general analysis, we must express )(ie  as a linear combination of eigenvectors, and we 

shall further require these eigenvectors to be orthonormal.  Symmetrically, there exists a set of n orthogonal 

eigenvectors of A, such that we can express the eigenvectors arbitrarily. Let us choose 1
)(

−= ei λα  so that 

each eigenvector is of unit length. This choice gives us the property that 

    




≠
≠

=
kj

kj
VV k

T
j ,0

,1  

Then we express the error term )(ie  as a linear combination of the eigenvectors 

j

n

j
ji Ve ∑

=

=
1

)( ξ       (4.4) 

where ξ is the length of each component of )(ie .  From equations (4.3) and (4.4) we have the following 

identities:    ∑
=

−−=
n

j
jjjii VAer

1
)()( λξ     (4.5) 

    ∑−= 2
)()(

2

)( ji
T
ii eee ξ      (4.6) 

   ( ) ( ) ∑∑∑ ==
j

jjjj
T
jji

T
i VVAee λξλξξ 2

)()(    (4.7) 

    ∑== 22
)()(

2

)( jji
T
ii rrr λξ     (4.8) 

    ∑= 32
)()( jji

T
i Arr λξ      (4.9) 

Equation (4.5) shows that )(ir can also be expressed as the sum of eigenvector Components, and the length 

of these components are jjλξ− .  Equations (4.6) and (4.8) are just Pythagoras law. 

 We can proceed with the analysis as follows: equation (3.3) gives 

     )( )(
)()(

)()(
)()1( i

i
T
i

i
T
i

ii r
Arr

rr
ee +=+ )( )(32

22

)( i
jjj

jjj
i re =+=
∑
∑

λξ
λξ

  (4.10) 

 We saw earlier in this work that, If )(ie has only one eigenvector component, then convergences is 

achieved in one step by choosing 1
)(

−= ei λα . Let us consider the case where )(ie is arbitrary, but all the 

eigenvector have a common eigenvalue λ. Then, equation (4.10) becomes: 

   0)( )(23

22

)()1( =−+=
∑
∑

+ i
jj

jj
ii eee λ

ξλ
ξλ

 

 Once again, there is instant convergence. This is because all the eigenvalues are equal, the 
ellipsoid is spherical; hence, no matter what point we start at, the residual must point to the centre of the 
sphere, this is demonstrated in Figure 4.1. However, if there are several unequal, nonzero eigenvalues, then 

no choice of )(ia  will eliminate all the eigenvector components, and our choice becomes a sort of 

compromising fact, the fraction in Equation (4.10) is best thought of as a weighted average of the values of 
1−

eλ .  The weight 2
jξ  ensure that longer components of )(ie are given precedence. As a result, on any given 

iteration, some of the shorter components of )(ie might actually increase in length (though never for long). 
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5.0 General convergence. 
 To bound the convergence of the modified steepest descent method in the general case, we shall 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: Steepest descent method converges to exact solution on the first iteration if the eigenvalues are all equal. 
 

define the energy norm 2
1

)( Aeee T

A
= . This norm is easier to work with than the Euclidean norm, and 

is in some sense a more natural norm. Let us consider the slope because if at some arbitrary point p and at 

the solution point  bAx 1−=  then, 

    )()()()( 2
1 xpAxpxfpF T −−+=    (5.1)  

If A is symmetric as well as positive definite, it follows that x is a global minimum of f. suppose we 

examine equation (5.1) shows that minimizing 
Aie )(  is equivalent to minimizing )( )(ixf  with this norm, 

we have 
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(by identities 4.7, 4.8 and 4.9).  When 
( )

( )( )∑∑
∑−=

jjjjjj

jjj

λξλξ
λξ

ω
232

222
2 1    (5.2) 

The analysis depends on finding an upper bound for ω to demonstrate how the weight and eigenvalues 
affect convergence. We shall derive a result for n = 2, assume that λ1 > λ2. The spectral condition number of 

A is defined to be 1/ 21 ≥= λλK .  The slope of )(ie which depends on the starting points, is denoted 

12 / ξξµ = . We have  
( )

( )( )3
2

2
2

3
1

2
12

2
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2
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2
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+

−=      
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))((
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232

222

µµ
µ

+−+
+−=

kk

k      (5.3) 

The value of ω, which determines the rate of convergence of the modified steepest descent is expressed as a 
function of µ and k. if e(0) is an eigenvector, then the slope µ is zero or infinite, when ω is zero then 
convergence is instant. If the eigenvalues are equal, then the condition number k is one, implied ω equals 
zero. The quadratic forms with a large condition number, the modified steepest descent can converge 
quickly if a fortunate starting point is chosen, but it is usually worst when k is large. However, if the 
condition number is small, the quadratic form is nearly spherical, and convergence is quick regardless of 
the starting point.  Holding k constant (because A is fixed), a little basic calculus reveals that equation (5.3) 
is maximized when k±=µ . An upper bound for ω which may be the worst starting point is found by 

setting 22 k=µ , Such that 
345

4
2

2

4
1

khk

k
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−≤ω
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345
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kkk
,     

it follows that    
1

1

+
−≤

k

kω      (5.4) 

The more ill-condition the matrix (i.e, the larger its condition number k), the slower the convergence of the 
modified steepest descent method. It is proven by using Chebyshev polynomial that equation (5.4) is also 
valid for n>2, if the condition number of a symmetric, positive-definite matrix is defined to be:  

     ./ minmax λλ=K  

 The ratio of the largest and smallest eigenvalues of A. The convergence results for steepest descent 

are   
A
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6.0 Discussion of results and conclusion 
 Convergence of the modified steepest descent method (per iteration) worsens as the condition 
number of the matrix (i.e the larger its condition number k), the slower the convergence rate of the 
algorithm. Convergence is instant if eigenvalues are equal.  However, if the condition number k is small, 
convergence is quick irrespective of the starting point. However, the analysis depends on finding an upper 
bound for ω. The value of ω is expressed as a function of µ and k, if e(0) is an eigen vector, then the slope µ 
is zero or infinite, when ω is zero convergence is instant. If the eigen values are equal, then the condition 
number k is one, implies ω equals zero. In the quadratic form with large condition number, the modified 
steepest descent method can converge quickly if a good starting point is chosen, but it is usually worst 
when k is large. If k is small the quadratic form is nearly spherical and convergence is quick regardless of 
starting point. From the foregoing, it is worthy of note that the conventional steepest descent method is not 
amenable to this analysis. 
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