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Abstract

In the search for high accuracy, reliable and efficient numerical
methods for initial value problems (1VPs) in ordinary differential equations
(ODEs) the need arises to incorporate more analytic information of
derivatives from the underlining ODEs into the design of a method. This
presentation considers a strategy for deriving multi-derivative general multi-
linear methods (GMLM) which is referred by Burrage and Butcher, the
original inventors, as general linear methods (GLM), for the numerical
solution of ordinary differential equations, see Hairer, Norsett and Wanner
[31 pp385-401].The proposed approach is to use continuous polynomial
interpolation and collocation of the solution of theinitial value problem. The
purpose is to show that interpolation and collocation can he used as a
veritable tool in the design of efficient, high order and highly stable GLM
compared to the other means of Taylor series expansion, integration and
differentiation, amongst other methods of deriving computational methods
for IVPsin ODEs.

1.0 Introduction
11 General multi-linear methods (GMLM)

In previous attempts at the numerical solutiontloé initial value problem the author has
considered the use of rational interpolant to dediscrete variable methods for this class of motsl
However, in [28] and [29] a different approach Heeen presented for the derivation of methods using
collocation to introduce initial value methods thae capable of continuous output of the numerical
solution of IVPs in ODEs.

In this presentation we wish to further consideatsgies for the derivation of methods for dense
out put. Already, methods in this regard are in{1[B], [16], [17], [25], [26], [27], [30], - [33]Further
theories of this class of continuous methods cafotyed in [9] — [15], [18] — [24] and [31] — [36].

The numerical solution of the initial value prafle

y = f(xy) @)=y 1.1
in ordinary differential equations may employ thengral linear methods (GLM) of Burrage and Butcher,
considered in Hairer, Norsett and Wanner [31,pp335}

n+1 [l] + h b[l]f X, + C h, V i=12,.. (1.2a)
2

where

ZaF] +h2b|[2]f(x +c;h, V! ) i=12,. (1.2b)
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the V | =12,...,S are the internal stages arm(nﬂ),i =12...,k so called external stages are the

generated numerical solution vectors we seek oinitial problem in (1.1). The statement in (1.2¢gents

a GLM as a composition dk — LMM with S number of hybrid points. It is in this regard thia¢ GLM
(1.2) of Burrage and Butcher considered in Haiatsett and Wanner, [31, pp385-401] shall be reférr
to as general Multi — linear methods (GMLM) herélio. present the picture differently, see the cotioec
with RKM by writing the above (1.2) equivalently as

y(+) 231[11 +h2b,[1]k i=12..k
(1.3)
k.()_f(x +chza,[11 +th[1]kJ i=12...s

j=

Really, the difficulty is more constructing the GM directly from this structural form, although
a direct restructuring of (1.2) into (1.3) as ie #ibove has been employed in Yakubu [30]. It thecones
glaring that the GLM are indeed also linear muiigsRKM and even more. A further generalization of
GMLM is the multi-derivative GMLM

n+1 261[1]yJ +zhr(zal[rl]f(xn+chv )J|—12 kq>1

(1.4)
Vn+1 231[2] +Zhr Zﬂ[rz]f(xn-*'ChV )J i=12..,s
j=L j=1
In a more traditional notational equivalent in gpérit we have found above is this one,
k
y(n+1 :za1[1] +Zhr Zblgr,llki(n)j’ i=12..kq=1
= = (1.5)

S
—_ 2 2 H—
fZa} ly +Zh (Zai[{ ]f(xn +c;h, kj(”))j, i=12..,S
r=1 =1

The method parametela‘[j ,a1[2] bllll],bl[]z],bIEr 4 b,E' 2l are the determinable real constants that uniquely
characterize a GMLM. In particular, with= 2 is the second derivative GLM. In fact the noeth may as
well be referred to as second derivative lineartirstiép RKM in a sense of the foregoing. Furthethods

in this regard can be found in [1]-[33].

20 The continuous multi-derivative GMLM

In this section interpolation and collocation isy@oyed in the derivation of multi-derivative
GMLM referred to as multi-derivative GLM in HaireNorsett and Wanner, [31, pp385-401], but first
introduced by Barrage and Butcher. The demerittthining methods this way is the fact that it doee
give a straight forward way of finding error congtaf the resultant method, although this is readil
obtained by a later means of Taylor's series exparafter deriving the method. However, its mesiof
immense value, to mention just a few, this appragieas the benefit of obtaining discrete and cartirs
versions of multi-derivative LMM, RKM, composite é@rhybrid method since the process employs
continuous interpolation of the solution vectorsthod initial value problem (1.1). It is worthwhite also
remark that the continuous version of a given methmvides the benefit of getting the solution amtp
values at any desired point in the integrationrirdband what is more!, variable step-size, vagatnder
variable method implementation of that family of theds which then is with continuous coefficients
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comes almost for free, although the process ofeadty this is by no means trivial. This is what is
exploited to get parallel block methods or RKMfaHlowing Onumanyi et al [33],

the new methods will be highlighted as in the failag, let Yn+j for this purpose be the approximation to
the numerical solutionynJrj (we can then put thaﬁ{n+j = Yo wherever appropriate in subsequent
derivation) of the exact solutiory'(xn+j) of (1.1). A g-step s-multi-derivative collocationethod where
{ Ko , 1] =012,...k-1k >1} interpolation points of the solution and
{X[q] ] = 0L12,.. M, -19=12,...5 S>1} collocation points of the s-order derivative inves

n+j
finding a polynomial of degregp =k + Z m, =Lk >0,m, >0,s21 that satisfies the interpolation
g=1
conditions

Y(Xye; )= Yo i = 042,k —Lk 21 2.1)

and the collocation conditions
v (<, )= £ 0 v (<, ) = 012, m, -1m, 21
vO(xld )= fed(xld y(xle)); j= 012...m ~Lq=23...5

Xow | Xorj s ¥ \Xnvj

,m, =1 (2.2)

It is to be noted that some interpolation pointymall be collocation points and vice-versa, thanciment
is allowed. A solution method to the initial valpeoblem (1.1) which employs the information of nmult
derivatives like the stiffly stable second derivatimethods of Enright [14] is therefore given b th
continuous s-order derivative GMLM of the genetalcture

Y(X)=§ar[§]1(x)yn+,— +Z,h (Zﬂ[ Ix)tt (X[rl,,Y(XLJ,))j (2.3)

assuming of course that the conditions (2.2,2.2yalhave been satisfied, where there is undeiisigind
that
O, (X, )= 16, V) T i )= 1 vl )

n+j s N+ n+j s N+ n+j s N+ n+j s N+

f(a )(X[q] Y(X[Q] ))— fa l)(x[ql] Y(X[q] )) j=0 ()mr -:q=12,...5s=1

n+j? n+j n+j? n+j

(2.4)

and ][S] (X) and {,8 I (X)}fz are the real continuous coefficients assumed faohgomials given as

k+ZmJ—l
= S ahu (o)
B (x) = za[s] () @ (x)=x12,...s (2.5)

The {lﬂi (X)}i:O are the monomial basis interpolating functiormyéver any other polynomial basis

function {R(X)}i:o which are usually orthogonal in an interval ba teal line will do as well. The
expression in (2.3) gives rise to both continuaus @iscrete appropriate LMM, hybrid, parallel blpekd
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RKM methods. In fact, by appropriately evaluatihfﬁX),Y(Q)(X), gq =12...,s at non interpolatory
points

tc u (kY_l{W rwll (Xn+j ' Xn+l )}]Y {Q{XLQ] XLcl]rnl+ +ms—l}} \{Xn ! Xn+l’ Xn+k—l} (26)

j=0 q-1
and also at non-collocatory points

LOY (v{w wold quu)}j\?{x[q] )

r=1s \ j=0

( )

denoting the results a\ﬁ we get the discrete version

k-

=St Sn| St o)

j=0 r=1 j=0

H

where now

IR SLEMS i o R0 ) |

j=0 j=0
is a particular method of interest which continuarsn is the collocation method in (2.3). Thus emsing
(2.3), and its derivatives at several point s afscmable{t,, c} leads to multiple LMM, RKM, composite

methods or their hybrids whose solution to the INP1.1) can be formed into a vector that is refdrio as

a block and thus can be implemented as a paraltelkbmethod. The motivation to introduce the
derivatives of the solution in (2.3) is to have tiég order, or rather to bypass stability and otukarier
constrains of convectional LMM and RKM, anothefas stiff stability reason and incidentally the sanig
methods may be known for smaller error constantesnmtompared with the convectional LMM for the
samek step. The overhead in computation however, isénevaluation of the s-order derivatives, but this
cost may not be so significant in cases where (%.Butonomous and indeed many real life applicatio
arises from which leads to the need to solve nioalgr autonomous ordinary differential systems. An
example to point to, is in the modeling of the spkef diseases. The problem now is to determine the
constants in (2.4),. Invoking (2.4) in (2.3), tlesult is

k+221mJ -
Y(X) = J_ (Za{f]ynﬂ +zhr(2ﬂ[ I (-1 (X[J]r], (ij))}jw' (x) (2.7)

j=0
k+i:mj -1
By writing this as Y(x)= J—Z: ai[s]z//i (x)

O'[S] _Za[s]yn+] +Zhr(z []f r l)(X[ll' (Xr[]rjj))j (2.8)

it becomes apparent that the solu'uon of the IVR)(Is been approximated by a polynomial of degree
K+m +...+ m —1. Lets have the definitions of the following versto
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all =@l ol ol o)
l//(X) = ( 0 (X)'l/ll (X)’ /- (X))T

e RN R TN N TR

o £V (v (x() £ () (xLﬂl,Y(x[jl))T
recalling the interpolatory collocatory conditiof2s1) and (2.8) we have
E ald =l

(2.9)
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where

1 X, X x>
M M M
1 Xn+k—1 X§+m—1 Xr?+m—1
0 1 28 3K
M M M M
0 1 2M o3
F=|0 © 2 6x2
M M M M
0 0 2 exld
M M M o)
0 0 0
M 0 0
0 0 0 K
k+m -1
A Xn
M
Xk
A
A (k +m _1)Xr[]1]k+n1—2
A (K +my ~2)xtn2
A (ke m =)k m =1
M
A (krm=1)(k+m - 2)xen
A M
A (krm =2 (k+m - s
M
A (krm =2K (it m —shen=?

K er[11] s-1
M

K sqlit,

K s(s —1)x(@s2

M

s(s-1)x2e2)
(s

M
s(s-1)K 21
M
s(s-1)K 21

K

AN AANARARANARAAXRARANXX R

A X!
M
K X1
K (k —1)x=2
M
K (k-1)xi2,
K (k —1)xl2-2
M
K (k-DK (k—2)x2s)
M
xK o (k=1)K (k- s)xikst
M M
LK (k1K (k- s)xskess
X:]<+n12—1
M
Xy
M
(k+my +m, —2)xfkemem-2
M

(k+m +m, —2)xionm?

(k+m +m, 2)(k +m +m, ~2)xPemem

M

(k+m +m, =2)(k +m +m, - 2)xZmm

M

(e +my +m, 1K (k+m +m, - )=

M

(k+m +m, —1K (k+m +m, -gjdemm-st
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K XrIT+ml+...+mS_1—l
M
K XrI::EEI...mS_l—l
K (k+m +..+my, —2)emesm -2
M
K (k+m +.+m —D)xomesma
K (k+m+.+m, —1)(k+m+..+m, - 2)x@cmssm.-3
M
Ko (krm+oemy =D(ksm++my, - 2)hm s mas
K M
K (k+m+otmy, —1)(k+m o+, m - s))lkmssma st
M
Ko (krm+obmy, =2k m+ o+ my = shdlonsme
K XrI:+ml+...+ms—l
M
K Xara
K (k +m +..tm, _l)xr[]l]k+ml+...+ms—2
M
K (k+m, +...+m - 1)xiome.m2
K (k+m +..+m —1)(k+m +..+m, —2)xEmem-2 (2.10)
M
K (k+m +o+m =1k +m +..+m, - 2)xdomesms
K M
K (k+m +..+m 1)k +m, +...+m, —s)xdkmesm-si
M
K (k+m+..+m -1k +m +...+m, - s)xishrmem-st

The F is of dimensior(k +m+...+ ms)(k +m+...+ ms) . the s-order derivative collocation method
(2.3) is now

Y(x)= () (F) () (2.12)
from (2.10). Observe that (2.3) can be Writea@ = HV[S] where now
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aty ay AN an gl A haL
o [2] [2] A ([)ZA " hﬁ[ll A hﬁj[,lr]q "
M M M M M M M
a|£2+]m_l+ +mg-1,0 ak+ml+ +m-11 /\ aki]rnl+_,,+ms—l,k -1 h:BIEJ;]-rnl+_,,+mS—1,O /\ h:Bk+ml+_,,+mS—l,ml—l

h?32 A G2, A h*Bs A h'gs

L L B L S R
M M M M M M M '

hsﬁl[jr]nlt,frrrg—lo A hsﬁ|[<i]n1+,,+ng—lrnz—l A h ﬁtr]n"ﬁ +my-10 A h ﬁl£+n1+ Amg-1,mg-1

ThisH is of dimensioffk + m, +...+m_)(k +m, +...+m,). Similarly, Y(x) = (V[S]) (F _l)Tlﬂ(X) in
(2.8) implying finally thatH = F* , provided non-singularity of. This is all the computational tool
needed to find the unknown constants
[s] k-Lk+m+..+m-1 [s] —1k+ml+...+ms—1 [s] mg—Lk+my+.+mg-1

{aii}j:o,i:o {ﬁ }J =0,i=0 {ﬁ }] =0,i=0 , 521 (2.13)
and thus to characterize a multi-derivative GLMtlod type in (2.3) completely. The next section setek
show how this strategy in (2.12) of constructing BW can be use as a veritable tool in the design of
efficient, high order and highly stable GLM.

3.0 Recovering some existing LMM through interpolation and  collocation
The above highlighted approach of deriving the<lkaf methods

Y()= (1) (F 2] o) (3.1)
in (2.3) and (2.12) recovers the following wellasdished and well know families of methods by fixis
F, andH appropriately. This is illustrated in what is ntwfollow.
31 Adams-Bashforth LMM
This is the implicit methods (3.1) given by setting

s=1m =1 k=1x =x,;j=0@) -1 (3.2)
1 Xy X Xaa Ko X0 ald, gl ko ohgl,
S R R S S (R3S ad, hgll K hgH,
M M M M M M| M M O M
0 1 2%y oy K (=D all, ng3 A hgll

They are of limited stability region and this regideteriorates in size as k increases.

3.2 Adams-Moulton LMM
This is the implicit methods (3.1) given by setting

s=1m =l,k=1x =x, ;j=0@) -1 (3.3)
1 Xn+| -1 Xrf+| -1 Xr?+|—1 K Xrle-:IL—l a([),zll—l hlB [1] K hﬁ [1|]—1
S [0 1 2 3 K (1 +1)x, H o a2, h,[z’ll] K hgl,
M M M M M M M M O M
0 1 2X., 3., K (-1x.., al, hgl A gl
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The stability region of these methods improves tifathe above, but again the size of this shrirk& a
increases indefinitely.

33 TheLMM of Fatunla[15]
This is the implicit method (3.1) given by setting

s=1m =1+1k=1x =x_.;j=0@) (3.4)
1 X Xus X Ko X, abil, bt Ko hgh
co|0 1 2, 3 K (+Dx |, el hE Ko hag
M M M M M M| M M O M
0 1 2%, X K (l _1)Xn+l—1 al[,zl]—l hﬁll,l(]) A hﬁl[,lL;
The explicit case of the method (3.1) is given btjisg
s=1m =l,k=1x =x, ;j=0@) -1 (3.5)
1 X Xy Kus Ko X3, alll, nglh K hpl,
c|0 1 2, 3 K (x| a, ngd Kk hgl,
M M M M M M| M M O M |
0 1 2%, 3y K (-2, ;R

These methods are weakly stable and again therrefistability shrinks ak increases.
3.4 Backward Differentiation LMM
This is the implicit methods (3.1) given by sattin

s=1m =l,k=1x =x, (3.6)
1 x X X K X2 ad, hal, K hgl,
S0 2% 3 K (D | _ad hal Ko ohg]l
M M M M M M ’ M M O M
0 1 2%y e K (=X afl, ngl, A ngll

This class of methods is of better stability cherastics compared to those above. In fact, they
are stiffly-stable fok = 1,2,3,4,5,6and instability sets imvhen K = 7. They have been implemented in
the MATLAB software package with Adam-Bashforthrites to resolve the inherent implicitness in the
methods. A direct extension of this is the one-LtM.

35 TheOne-LegLMM
k-1 m-1 .’ m-1 L
=5 a,(v,. +hf[zﬁj e, $p (x)v,ujj 67
j=o j=o

j=o0
It is stiffly-stable form=21k =1, XL” = X.,,| =1(1)5 and unstable for= 6. TheH and F are as in the

above. It is instructive to see Onumanyi et al [88{ Ikhile and Okuonghae [29] and Otunta at €] {2l
Okuonghae [32] for details.
3.6 Multi-Derivative M ethods: Second Derivative LMM

The stiffly stable implicit LMM (3.1) of Enrightlf4] is recovered completely by setting.

s=2m =l+im, =1,k=1xt =x, j =0@); x¥ =x,,, (3.8)
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1 Xy X Yo K Xpet g
0 1 2x, 3 K  (1+2x*
F=[M M M M M M ,
0 1 2¢,, 3x°, K (1-2)+1)x;
0 0 2 6x.., A ([1+2)1+2)x,
ald, ngll K ngll, gl
b o| @il heS Ko gl g

M M M
2 1 1 2
[+]2I—1 ﬁl[+]2 A hﬁl[+]2l =/ I+]2/
This resultant LMM s stiffly stable fork =](1)7 and unstable for K =8 and conjectured to be

unstable fork > 8.
37 Backward Differentiation Type Second Derivative LMM
This is the stiffly stable second derivative imflicMM given by setting,

s=2m=l+im=lk=1x=x, =xd=x (3.9)

1 x, x> x2 A X"
PN " as, ABGL WAL hBY

ad A gl h,B[l] hﬁ[z]

— 3 /+1 — 10 11-1 1l .
F=]1 Xt Xnnaa Xnwa Xii/a1 H =
» M M M

0 1 2%, 3, A (+1)x] 2] 2] N A

0 O 2 6x, A (+1x73 Ao N i hGia, B
n+l

n+/
This resultant LMM are stiffly stable fok —](1)10 and unstable fok =11 and to be unstable for

k>11. Further new LMM, hybrid LMM and other interestingseful methods are derived by other
choices of sH, F, but the interest is on the A-stable and stiffgtable ones, these are the desirable
methods for stiff initial value problems of (1.0Dne is pleased to remark that there have been ssate
the search of such methods in lkhile and Okuong®@ Otunta at el Okuonghae [23].

40 Directionsfor investigation for new continuous methods

This section highlights and points to directiorfsirovestigation that may lead to more useful
methods with stronger stability characteristics.
41 The multi-derivative and hybrid LM M

Hybrid methods are known for attainable higher ordad smaller error constants than the
conventional LMM and more fundamentally, they pde/a means of bypassing the Dahlquist order barrier

theorem. Hybrid methods are given from the foreg(aie

k-1
Y()= 2 a3, +Za A0V, (4.

j=0

S| S v ) n_rlﬂ}[‘](X)f ) ,v(xuw )}
whre_rle - .

ZGEll(x n+,+zhr[z/s ()¢ (XLJ,,Y(XLJ,))];0<Vq<lq=o(1)k-1
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s m -1
Za ()n+j+21hf[20ﬁ}’z](x) (xLJ,,Y(xLJ,))]:qu<1q:0(1)mr—1
r= j=

4.2 The multi-derivative predictor-corrector LMM
Predictor-Corrector methods (PC) are given by

k-1 s m -2
YII(x)= ¥ ald (v, +th[2ﬁ};1(x) Dl ,Y(xLJJ))]
r=1 j=0

=0

S -2
YF(x)= Za[ 1V, +Zh*(niﬂ}9(X)f("l)(XLﬂj ,Y“’](xﬂj))} (4.2
r=1 j=0

This composite method is well suitable for nonfdtifPs (1.1) in ODEs. When the corrector is itedate
convergence, the stability of this composite metisctrictly that of the corrector.
43 Multi-derivative parallel multi-block GMLM

This class of methods has the general form

v (x)= ZA[]( N +zh[z ()1 Dy (] ))J w3

0

AES] ( ) laES!; h (X)Jg h=1(1)I E ( ) lﬂj[sg]) h ( )]g,h:1(l)l
Y* (X) = (Yn+l’ ’Yn+1’Y( )) , Yn*—j+| = (Yn—j '---’Yn—|+|—1)T; (4.4)

F(r_ )(Y* (Xn—j+l )): (f (Xr[1 ]J+1’Y(Xr[1 ]1+1)) ’f (Xr[1]J+I ’Y(Xr[1 ]J+| ))T

The simplest is one block methods. Parallel bloethmds offer the potential of obtaining A-stabkflg-
stable and L-stable methods. They are capable pfementation on a parallel computer with multi-
processor capabilities and thus computational spgeds expected from this family of methods. See
Burrage [36].
44 Multi-derivative cyclic LMM

This class of methods has the general form

Y (x)= A[S](X)Y2n+,+Zh’(ZBE’](X)f L (YZ[;L)J' s21 (4.5)

=0

where

where

A[S] X |_a' Eséh X)Jg’hzl(ly B[S] lﬂj[sglh ]gh =1(1)|
Y*( ) (Y2n+l' Y2n+1’Y(X)) , Yn*—j’rl =(Y2n—j""’Y2n—|+'—1)T; (4.6)

F (r_ )(Y* (Xn—j+| )) = (f (X[Zn] J+1’Y(X£rn]—j+1))""’ f (X[Zn] j+ ’Y(Xgn] jH ))T

Cyclic LMM like Parallel block methods offer the teatial of obtaining A-stable, stiffly-stable and L
stable methods. They are capable also of implertientan a parallel computer with multi-processonsl a
thus computational speed up is expected from thisilj of methods. More so, they offer a means of
bypassing the Dahlquist order limitation. It is it®own a useful tool for stabilizing zero-unstahlM.
Parallel Block methods can also be used to aclifése
45 The multi-derivative linear multi-step RKM

This is the multi-derivative multi-step RKM
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k-1 S m, -1
Y (x)=> all(x n+j+Zh'(Zﬂ,”() [“]]:521 @

with the definition Kr[”]] = Kr[”] (X v ) then the stages are given as

n+j

(4.8)
Kl = g0 [“ Statin,, + S (zﬂ“() a (xLJ,KM)D

the X[ ']

~+ are the collocation points. They have the potenfi&-stability.

5.0 Extension to second order ODES:

Extension of the foregoing methods to the numéschution of second order IVPs
" _

y" = f(xy). ¥(a)=yo. ¥ (@) = Yoo (5.1)

in ODEs is possible. In fact, a class of continubMeV for second order ODEs is given as

Y(x)= Za (¥, +b? Zﬂ() b Y ()

51 SymmetricLMM
P-stable LMM are symmetric, that '(ﬂ{j = ak_j ;,Bj = ,Bk_j , which are recommended methods

for oscillatory second order ODEs (5.1) with artigivalue. Symmetric continuous LMM requires that
k =1, andm~—1 are even integers. Symmetric implicit LMM are giugnsetting

m=1+1 k=1,x¥,,j=0() (5.2)
1 % % x K X
M M M M M a0,0 K aOI -1 hzﬁO,O hzﬁo,l
£=|l Xua I Xl H= a, Kay, MR, WB, b
0 0 2 6, K 2(2-1)x7 M M M
O O M M O M aI+LO a|+],l—l hzﬁﬂ,o hzﬁﬂ,l
2 6x, K 2(2-1)¢?2

-stable methods are limited = 2, a particular example is the P-stable method

1 1 1
Yosz = 2Yna1 T Yo = hz(z fot E fon + Z f”j (5-3)

with K =2, of order p = 2for oscillatory problem of (5.1), see Fatunla [1B6figher orders P-stable

LMM are obtained by hybrid of methods. Further esien is to the RKNM.
52 The Stormer-Cowell LMM
The well known Stormer-Cowell class of LMM is

m=1+1, k=2x4  j=0(1) (5.4)

n+j?
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1 % Xy X, K Xt
M M M M M o, Kag 4 hzﬂo,o hzﬂo,l
F= 1 X2 X§+I—2 X2+|_2 Xgil—z H = aip K a4 hZIBLO hlel,l T
0 0 2 63, K 22-1x22| M M M
0 O M M O M Ay Oyg 4 +10 h’3 1
2 6x, K 2(2-1)x37?

hey however, suffer from orbital instability; seaitér et al [31]
5.3 Parallel multi-block methods
Block method for (5.1) is,

k-1 m-1

Y ()=3 AP0y, +h2 Y BEF O (3 )
j=0 j=0

The blOCkSYn*J,j, (-2 (Y (x[Z] )) are defined as accordingly; see (4.3) and Burjagke

n+]

5.4 Extension to linear multi-step RKNM

This is simply,
k-1 m-1
Y() =2 a (v, + "2, A

j=0
k-1

Y'(x)=> ald(x)v.,, + hzz LA (5.5)
j=0

in the sense of the GLM with the definitidﬁr["'} = Kr[”] (Xn+j) then the stages are given as
<[ = 1 (v ()

k-1

K\[/nJ] = f[xﬂj,zagz]( )Yn+J +hzz,3j[2]( )Kr[nj]], J =J(1)m—1 (5.5a)
j=0 i=0

The [r] are the collocation points. They have potential Rebtability needed to integrate highly

+1
oscillatory IVPs in ODEs in (5.1). This class haseasy extension to the more general problem

y' =y, y') v(@)= Yo Y (@)= Yoo (5.6)
A continuous RKNM for this is

m-1
R YR WL ORI o
]:

j=

(5.7)
Y'(x) = iagﬂ (X)Y/ e + hz LXK
i=0
with J
KU = ¢ (v (@) v/ (x)) j =1(1)m- (5.8)

Ki?j]=f[x{ Za[zl X n+,+hZﬁ[2]( AR+ 7S A (KT, Za[z]( XY, +hZ/f[2]( )K[”]J

6.0 The numerlcal appllcatlons, discussion and conclusuon.
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Consider the class of backward differentiationety{DT) second derivative continues linear
multi-step methods (CLMM) (3.9);

yn+kza ( )yn+1 - A:Lk( )fn+k + hz/12k( )fn/+k’ak 7 O (6-1)

of section (3), a subject of investigation in Okgbae [32], where nOV\y/ (Xn+j ) = fn+j , h= X — X,
t=(x-x.,)/h a/()=1 {a, (t)}':;é, A (t) and A, are the coefficients so that the
numerical methods in (6.1) are exact why(x) is an arbitrary polynomial of degrde+ 1. The order of
this CLMM is K + | and the stability polynomial is

NRz0=R + 30, (R - OR 2. (R )

The method in (6.1) is stable fd¢ <10 and instability sets in whelk =11. A practical problem of
interest is a stiff nonlinear chemical kinetics fem: Higham et al [20, p.158]

y, =-004y, +10'y,y,

1
y;, =400y, +10*y,y, —10"y3, y(0)=| 0 (6.2)
0
y; =3x10"y3,
with x being the rangx [ O(O 001)3. For kK =3 (6.1) is the second derivative CLMM
22 397 _4x T 64 72’ _64° 13
”“'_{ 85 85 170 17ij _(1 85 85 85 ss‘j
_(§i+332_8ﬂ3 19 j _ (‘gg+§ﬁﬂ_za3 6t* j
85 85 170 85 85 85 85 85
(6.3)

_ (141w 14 ant "
"l's5 170 85 170

this case whenk =3 gives this method of order four and zero = statde all values of t in

Q= {t t0 (— 0 —1.416) 0 (0.4,00)}. Settingt = 2 in (6.3) gives the equivalent discrete form of the
SDBCLMM (6.1) to be.

Y —iy +£y —£8y = 6_6f h218
n+3 85 n 85 n+l 85 n+2 85 n+3 85

The root locus plot of the stability polynomial this is in figugre 6.1, showing that it is stiffgtable. The
numerical results from the method in (6.4) is coredawith that from Enright [14=3] of the same order
and of the state-of-the art MATLAB Ode 15s codee Tésult is shown for the solution compon%t(x)
tend to zero as increase its magnitude, the graphs of the numlesimlution of this component from the
second derivative methods in (6.4) coincide with thethod of Enright [14] fok =3 and shows that the

methods out perform the state-of-the-art MATLAB dbigs code on this stiff problem. Furthermore, the
numerical applications of these methods to problefwgactical applications have

n+3s pP= 4: Bdtsdclmm (64)
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Figure 6.1: Root locus plot fok = 3.

already be presented in Ikhile and Okuonghae [@8nta et al [28] and more results are to be foiand
Okuonghae [32].

Conclusively, the search for higher accuracyal#é and efficient numerical methods for IVPs in
ODEs necessitates the need to incorporate morgtenaiformation of derivatives of the underlining
ODEs into the design of methods. This presentdtighlights a strategy of interpolation and collécat

for deriving multi-derivative GMLM for the numeritaolution of ordinary deferential equations. The
proposed approach uses continuous polynomial iok&tipn and collocation of the solution of the it
value problem. The purpose is to show that thistkmEamade into a veritable tool in the design ofcafht,
high order and highly stable GLM compared to theanseof Taylor series expansion, integration, and
differentiation method amongst others of derivingmputational methods. More methods are easily
obtained from a perturbation of the continuousrpéants. The areas of extensions considered ar@by
means exhaustive and there is therefore no liritet other directions of further extensions.
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¥ 10'5 Numerical Solutions k=3
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Figure 6.2: The plot of numerical solution from (6.4) of tbemponenty, (X) of the problem fok = 3.
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