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Abstract

Application of optimization theory to engineering provides a design
tool of quite extra ordinary power: it offers the prospect of solutions to
problems for which no normal design methods exists. In dealing essentially
with circuit specification in frequency domain, the design problem includes
deciding the size or order of filter required and computing optimum values
for the components. In this presentation, Chebyshev response which is
known to give fast cut-off frequency for a given template and involves no
finite frequency transfer function is formulated to determine optimum
components by applying a conjugate direction method proposed by the author
in minimizing the objective function. Thisis a didactic presentation of what
to do in the presence of this problem. No. claim of originality in the theory of
electronics and electrical engineering is made. Sensitivity analysis is
undertaken.
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1.0 Introduction

A filter means an electronic circuit that allowsrtain frequencies to pass while stopping others.
On the basis of magnitude response, filters caodldssified as Low-Pass, High-Pass and Band Rejpect (
notch) filters. All use operational amplifiers astive elements and resistors and capacitors asvpas
elements.

The following definitions are pertinent. A filtéhat transmits all frequencies below a specified
value substantially attenuating frequencies abbigevialue in high-Pass filter. When a filter tramiis only
those current having a frequency lying within sfiedilimit it is called a Band-Pass filter. Our ehasis
shall be on low-Pass filters, shunted by the inolisctvhile the high frequencies are transmitteduhothe
capacitors. It was not until 1900 that a succédsw-Pass filter was constructed by Pupin. A hiRgiss
filter was built by Campbell in 1906. A Low-Pasliéefr can be constructed by interchanging the pmsst
of the inductors and capacitors [12], [17]. Oursteoncern is the application of optimization taghes
to the design of filters. The range of disciplitesvhich optimization has been applied goes wayohd
the confines of electronics, even beyond those ngfineering. Lawrence Dixon (1976) provides an
interesting insight into this breadth, with applioas from a wide cross — section of engineerind an
scientific fields. Specification for linear frecquey — selective networks are often very demandind)the
mathematical complexities of designing a suitatdemork are frequently very great. There are, iddee
many situations in which no analytic design methadsavailable, and
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numerical techniques then provide the only coungenoto the designer. Hence the earliest published
instance of the use of optimization in electrommalved the design of filters.

For greatest design generality and practicality,would like each capacitor inductor to have its
own particular loss factor, that is, the ratio efistance (conductance) to inductance (capacitatiog

inductor loss factor, d=R/L (1.2)

and similarly capacitor loss factor. D.=G./c (1.2)

From these definitions, we observe that ideabses less components haReandG, equal to zero
and hence the loss factors are zero. It is iniegedo note that the design of filters with contplg
arbitrary loss factors is one of the situationsvibich no exact design method exists [3], [7], [1@B, 14].
The published results showed that computer optiioizaallowed design solutions to be produced,
although runtime were rather long. Some authoed usteepest descent algorithm which (performed
poorly) to obtain optimum component values. Lasdod Warren [14] considered the same problem, but
applied the more powerful DFP quasi-Newton alganitivith predictably better results. In this worleth
authors employed a conjugate direction quasi-Newm@thod proposed by them. This development of
interest in applying optimization during the 196@arrespond to the growing availability of compgtin
power and the subsequent years have witnesseddysitcrease in the performance over cost ratio of
digital computers. The position now is that conapiaely low cost desktop machinery is availableedffg
entirely adequate computational power and memapgcity to allow the method described in this paper
be used routinely in design, [4, 6, 7, 10].

The classical problem of filter design consists in:

(a) Obtaining a realizable network function H(s)osl corresponding amplitude and phase function
[Hi(w)| and ardH,(w), satisfy the given templates. This is referredd approximation.
(b) Synthesizing a network by performing a sequexfamathematical operations ¢h(S), leading to

a network, which thus satisfies the original speatfons.
This is referred to as synthesis.

Interested readers will find useful introducti@nfitter theory in [8]. Much of the difficulty othe
approximation/synthesis cycle has been eased bprtiguction of design tables and graphs relating ga
and phase specifications to standard filter fumstigButterworth, Chebyshev, Bessel, Elliptic, etmd
giving component values for standard active and passive filter structure which realize these masi
filter functions.

First, let us recall some basic knowledge abolteréi. Filters are networks whose gain or
attenuation and associated phase vary with frequeritis frequency dependency can be exploited in
order to separate wanted and unwanted componerdass@hnal on the basis of frequency. The way in
which a filter function varies with frequency islled frequency response. This can be represented
mathematically by means of filter's transfer fuocti(TF) or H.H. yields, the amount of amplification
attenuation, the phase shift experienced by the sagmal. In general both magnitude and phasensss
are frequency dependent.

Filters may be classified into analog or digitatilgpassive or active. Analog filters are desigteed
process analog signals while the digital filters designed to process digital signal dependindhertyipe
of elements used in their constructions. Passited use resistors, inductors and capacitors camhot
produce power gain while active filters use thesednjunction with some form of amplifying circuisd
can therefore produce power gain. For exampletasi — capacitors or RC filters are commonly used
audio or low frequency operations.

2.0  Mathematical requirements of low-pass filter design
While circuit structures may differ markedly fronmed style of filter realization to another, the
underlying problem of filter design in all casesatves
Q) Deciding what size of filter is required, thatli®w many components
(i) Computing optimum values for the components.
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The first point {) relate to the approximation problem for we mwstide how many transfer function poles
there should be (whether zeros are required) amdlenthey should be positioned. This shall be

taken in isolation, that is, without any considenatof the proposed final filter format. We shtlerefore
choose a realizable network functida(w) or Hy(S), on which to base our computation of

component values. A study of literature on appr@tion theory convinces us that a Chebyshev functio
should be taken because no finite frequency trarfsfection (T.F) zeros is involved, only a constant
appears in the T.F. Numerator (all practical traninctions turn out to be rational functions as:
_N(S)

H(S) = D(S) 2.1)
where N(S) and D(S) are suitable polynomial in S with real coefficis and the order of N(S) never
exceeds that of D(S). the order is of specialifgmce and it is called order of filter (firstaer, second
order, etc). The zeros df(S andD(S) are called, respectively, the zeros and the polé$(S). To find
H(S we employ Ohm’s Law, the voltage and current aditviformulae and the super position principle.
The topology of the circuit is fixed once the fillerder is determine. We need to know the allowass
band ripple level, and the gains and frequencieth®fcritical stop band points. The amplitude cese
function associated with a Low-Pass nth-order Chheby filter is given, for normalized frequency such

1
that the edge of the pass band occurs at: |H1(W)| = A (2.2)
b+ E2C2 (W)]?
_ cosficos'w), w<1
whereE = ripple factor C, = 2 (2.3)
cosh(ncosh™w), w>1
1

C,( =10,. Forw=1 [H(jw)|=——
n n }l+ E2

Having determined a suitable realizable networlkcfiom N(S), the design process now proceeds to stage

(i), the computation of as set of nominal compdnesues such that the filter will realize the Sfiec

transfer function coefficients. Optimization scheefor electronic circuit design is depicted beldvigre
2.1).

Figure 2.1: Optimization Scheme for electronic Circuit Design
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To observe the next step we choose a suitablgredjective, circuit analysis procedure and
optimization method. These are heavily inter-edaand dependent on what resources, particuladyiti
analysis, are applicable to a given design probl@im.choose a circuit analysis method, a simplarstee
analysis scheme [3, 6, 14, 16] can be conside@den an initial set of component values storeddotor
X, the analysis procedure returns a vector whosmegzies are the S-plane voltage transfer function
coefficients. Given this fast and very efficienafysis capability, we formulate a suitable desipjeotive
as a sum of squared residuals. We employ theebiliproperty of network function to writé(S) in the
form:

+
D,(S) + XD, (S)
where N,,N,D,, D, are functions of the other network element butXotBode (1945) (cited in [17,

18]) was the first to point out that numerator a&hominator polynomials of any network functid(S)
are at most linear functions of a chosen elemxent.et us denote a general T.F. coefficienCagwhich
can be either a numerator or denominator coeffiieve may thus write:

C =a,X,+p (2.5)
where X; is the jth variable, and¥;; ,,8” are functions of the other variable, but 2t The partial
_ . o oc, _ 0
derivative ofC; with respect toX is given as: —=—(a; X, + ;) —a, (2.6)
aX]- ax I | |

j
a; can be determined by a simple perturbation apprbace because of the linear form of the expression
for the network function coefficient. Incrementidgy to a new perturbed valué(; by a convenient

amount usually unit, we obtain: X; =X, +1 2.7)

And this gives rise to new coefficient valu€§* where

C,-C =a,X, +p (2.8)
Cj -G :aij(xj ++1)+:8|j (2.9)
The required derivative can be found simply by sdiing equation (2.5) from equation (2.9): or
or C/ -C =g (2.11)

Ijij
The above procedure implies that we can make uggagerty of the coefficient of a network
function to develop a special — purpose derivaéivaluation procedure. Therefore, in order to find
required complete set of coefficient partial detiie with respect to given variabl¥, we re-analyze the
network with X;, set equal toX; + 1 and then subtract the original (unperturbed) fawent from the
corresponding new (perturbed) set, as in equatohl]. this provides a s fast efficient and aballe

accurate strategy for computing derivatives. Thsigh function¢(X) can be formulated to be sum of
n

squared residuals of the form: AX) = Z:(aS| - a(x))? (2.12)
i=0

ag(X) are the n+1 specified denominator coefficients; (X) are then+1 realized corresponding

coefficients by the current set of component valaedn is the filter order. Since the aim is to minimize
¢(X) using any suitable minimization algorithm we présthe following conjugate direction quasi-
Newton algorithm.
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3.0 A guasi-Newton method algorithm
The algorithm minimizes the functi0|{¢(X)|X£|R”} where ¢ is assumed to be twice

continuously differentiable and can be summarizgthk following steps [2].
3.1 Algorithm
Step Q

Select an initial guesX, 0 0", computelJ¢(X) initial gradient vector,
DZ(U(XO) =H,= (h}o)) = Hessian matrix atX,, i, ] =1,2,K ,n

Set B, = aH, =aH, since H, is symmetric
1
where @ = ————- and H Hg”oo = maxZ‘h}O)‘ = max column sum
[Halel Hal "

H Hg”loo = m_aXZ‘hj(O)‘ = max row sum [1]
I "
j

Step 1:

If convergence criterion is achieved then stope els
Step 2:

Compute a quasi-Newton direction (Vector).

S =-BO#x,)

B, =B+ B4R
R.,=1-H_B _,k=12K n-1
Step 3
Set X,y = X + BcSc = X — BBLAX,)
where By is chosen to be(X, + [,S,) [1, 2] such that@(X,_,) < ¢(X,) and by algorithm
(2.11) in [2].

Step 4
Compute the next inverse Hessian approximation

Be. = B(R +B,, k= 012K n-1

R =1-H(%)BH, = H (X))
Step 5:

Setk = k+ 1 and go to step 2.

We shall next select a template for a lower-pasalasing filter intended for a particular
communication system and determine a suitablyz&hlié filter specification.
3.1 Computation Result

In this section let us suppose that we want tagdean RC-active Low-Pass filter based on the
extend Sallen and key structure to realize the®tba filter is to be designed for a cut-off frequg of
3.5KHz: that is the allowable pass band ripple lleupper should (0dB) and lower 05dB) and the gain
(0.5dB-20dB, 60dB) and normalized frequency of tnitical stop band point (1, 2, 3). The voltage
simplifications is to be regarded as an ideal yadtaontrolled source gain (amplitude response?. oiVe
shall need to determine the specific function doifiit for the numerically designed filter (see utig 3.1).
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Figure 3.1: RC-active low-pass filter

I

The first step in solving the design problem isiédermine the filter order. Thus since

[ w: Wzl:/ .
[+ (]2
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Figure 3.1 Information flow chart for quasi-Newton algorithm

Select X, [J IR" set k=0
Compute: JgA(X,,).
O°¢(X,) = Ho = (1))
setB,=aH,—-aH;

a =1 [HollolH,

v v

set§ = -B 0g(X,) print | Ogf, X, F
B =B ¥ BaRes

R =1-HB

R, k=012K Yes

.

DetermineB by minimizing

AX, + FS,) by aunidirectional

search with respect &

Test for convergence is

v | Ogf < tol
set Xy,y = X, + 55, | IR[e <1
Xy =X, B OAX,)

l No A 4

Compute the next inverse Hessian Stop
approximation set =k + 1

A
2

20log w(lL+ £?) 2 = 05dB

1

— —10logw(l+ [?) 2 =-05dB
—=1+£2=10"%=1.1220
— £2=11220-1

— £2=0.1220

= £=0.3493

We must compute so as to obtain attenuation oébttan -20dB at normalized frequengy 2 and better
than -60dB atv = 3. Forw = 2 we have

L+ 22wz = 2008
— —10logw{1+0.1220C, (2)] = -20
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orl+ O.lZZ({cos h(ncosh‘12)]2 =10

= [cosh(n cosh‘lz]2 = M
0.122(
= _ 8114
0.122(

= [n cog(n cosh‘lz)] = 28484

= ncosh™2 = ncosh™28.484

=n(1.370 =4.0422

=nlL370 =31

Since we must have integral order= 4 will be required to ensure that the speciftratis

satisfied at this point. Repeating the above datmn forw = 3 with minimum attenuation = 60Db, we
obtainn = 4.9 and we round this up to 5. Hence to satisiyh specification constraints simultaneously, we
must haven = 5. This is the required size of our networkccérding to Weinberg's table [18], the s-plane
T.F for a %' — order 0.5dB ripple Chebyshev filter is given as

_ 1
HlS_as5+as4+33+asz+ S
5 4 2 al +a0

where

a, =5.889839 a, = 65530328
a, =10.827916 a, = 7.3191919
a, = 55889839 a, = 1.0

It is easy to compute the amplitude response hingdhat the steady-state sinusoidal response
H(jw) is found by setting= jw in the above. It iH(w)|. The design objective can then be formulated as
sum of square discrepancies between realized adfisg amplitude responses. Suppose that we aave

small level specific performance featureg, i =12K ,n and we require the corresponding realized
values,a; to be matched to them. We formulate the sum oésegp design objective as:

#x) = i[asi -a,(%)]

wheren is the filter orderay = specific values found by evaluating(jw)| for each of the frequencies a
i are the corresponding realized values, which tmed in vectorX. The results are tabulated and are
shown in Table 1. The design was completed in 4udtseconds (CPU time) using Pentium 133). The

stopping criterion is tha#Dﬂ|S10_12.

4.0  Sensitivity analysis

It seems highly probable that any design probleithbw subjected to substantial specification
errors. Consequently sensitivity analysis of tfeats of specification errors upon the efficienafythe
optimization models would be highly desirable. €ider a system having some performance feature
¢(X) which is a function of the set system paramet&rs, The performance functiog(X) could be an
amplitude or phase response in the case of a fnegueselective circuit, a dc operating point ia ttase of
transistor amplifier configuration, or indeed, asther performance measure of interest to the desigA
very important question is the extent to which pleeformance is likely to be affected by a changéhin
value of the system parameters. We therefore spktie sensitivity of the functiopto the parameters,
say,x. Here we shall denote this symbolically3fand define it in differential form as
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s = %0¢(x%) (4.1)
AX;)0x
The reader would recall that use is made of a itirsystem procedure which returns values of the
performance measure of interest given the curetnifsdesign variables. This implies, necessattilst

a numerical value of the design objectigéX) can be set up for any current vector, but thatesponding

exact values of the gradient vectarg(X) are not available. The practical significancéhef measure of
performance can be brought out by considering telschange approximation.

Ag
g = XA =_/‘ﬂ (4.2)
B

From which we can see that the sensitivity analigsteerefore concerned with analyzing the behaofa
local solution when the problem functions are péwd slightly. This perturbation might be due e i
exactness with which certain parameter values énptioblems are calculated or because the optiraizati
model was parameterized and one is interesteckirsatution for a variety of values of the parame{&y
12]. What is expressed in equation (4.1) — (4s2ermed first — order sensitivity. There has beame
work in second-order sensitivity analysis whichided an expression for the second derivative with
respect to the perturbation term. The essencesditivity analysis in nonlinear programming is the
application of the implicit function theorem to tKarush-Kuhn-Tucker (KKT) necessary conditions for
the paramterized problem [15]. The active Low-Hidi&s under consideration is of order 5 and coisgs

5 capacitors and 5 resistors. Let us supposeithatdesired to minimize amplitude response (gain)
Sensitivity to the passive components at the ndmedl bandagec = lrad/s while maintaining all
components nonnegative. The filter realized"aobder all-pole voltage transfer function H(S), tat
equation (3.1) holds with, the realized value of the ith coefficient. Thkefi satisfies a8 order transfer
function specification H(S) where,

Hy(S) = L

a S’ +a,S*'+aS’+a,S°+aS+a,
With a; the specified value of the coefficient and, ingtices, simply a user defined number. It is furthe

required that the summed value of the capacitoulshoot exceed a specified value C. The aim of the
problem is to formulate this specification as aman/inequality — constrained minimization proble
The sensitivity of the gain functioh(jw)| to the ith component at frequenayis according to equation
(4.1) and (4.2).

(4.3)

Hw) — Xi0 |H(jw)]|

| : (4.4)
| H(jw)[0X;
We shall formulate this as sum of square objective
n 2
@X) = Z{S”“W)} (4.5)
i=1

We shall need to minimize(X) . The constraints imposed by the specificationfarmulated as the six
equality condition relating to the voltage trandfarnction coefficients.
Cn:aso ~ &1 CEZ =aga;K ’CEG =g a5 (4.6)
and the 11 inequality conditions
ST N OTED SHOTEI M CYED HOTED SHOPES MOTEDNOTES NOTED

5
Ciio = X andCyy;, =C, = Z X -
=
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where the capacitors value are stored as theefgstents ok and the resistor as the remaining 5 elements.
Recall that the filter order is 5. We have thusmaulated our very practical filter design probles the
optimization problem:

Maximize ¢(X)
Subjectto:C; =1K 6, C; <0, j = 12K =11

with C;; andC,; given as above.
An alternative of the objective is provided 4¥(X) defined below and derived from equation

(4.1) taking¢(X) as @AX) = i(a— X)? (4.7)
That is p(x) = i[‘aqa()()q}(x)ad = i[SZf(X‘)] (4.8)

X = (X, %, %K X2n)T where the X , are the capacitors and resistors to be determined

Table 4.1:Optimal Component Values

Iteration | G Ry C R, (O Rs Cy R4 GCs
1 5.0038| 1.2071 0.5231L 42.827 11.2y8 1.1074 1.58%4.689| 40.81| 0.5
2 5.7811| 1.2484 0.4992 47.927 13.8921 1.2649 1.913.486| 40.919 0.6
3 5.9112| 1.3471 0.5681 51.892 15.181 1.2972 1.8176.894| 44.783 0.6
4 6.8271| 1.3961 0.5892 50.984 18.1Y8 1.3986 1.33121.898| 45.891 0.4
5 7.869 | 1.3012 05891 53.639 17.698 1.4686 1.3689.788 | 47.791 0.7
6 7.874 | 1.2876 0.6178 57.5530 17.589 1.4861 1.3p®©.639| 47.69| 0.8
7 8.994 | 1.2494 0.81683 60.989 16589 1.4791 1.4910.748| 50.583] 0.8
8 8.562 | 1.4049 0.8531 62.697 18.67 1.3791 1.6910.6780 50.987| 0.9
9 8.714 | 1.427 0.8861 64.989 19.438 1.2678 1.7692.818| 52.04| 0.9
10 9.786 | 1.462Q0 0.878D 65.942 19.647 1.3021 1.78482.93 | 52.116| 0.7
11 9.760| 1.798Q0 0.8678 65.872 18.764 1.3421 1.88B.826| 52.860 0.9
12 11.857| 1.8698 0.9467 75.213 20.76 1.5834 1.5p85.764| 56.590 1.Q

Key

C; = capacitorsR = Resistors, Passband = 0, Stopband = 0.5, G&0, Frequency = 2, Gain = 60,
Frequency = 3, Order =5

Sensitivity to Specification Errors

NANISUSS
=
o

1 2 3 4 5 o 7 8 9 10
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Figure 4.1: Normalcomponent values

5.0 Discussion of results and perspectives

Thus far, the example and design case studiesawe tonsidered may be viewed as involving
deterministic circuit design, we have been conadmiéh the computation of set of circuit component
values with an implied understanding that theseeswill be accurately realized when the circuibusit,
so that optimum circuit performance will resulh the case of design of high-precision normal \&laad
this is done but the procedure is time consumirthcastly and this will call for other circuit

design methods. Also, the sensitivity data obthiaee essential as they allow the designer to make
important practical decision on component tolerag@nd provide a basis for comparing alternativeud
realization of a given specification. A circuitfefing low sensitivity to component variation witther
things of being equal, be more reliable in longrterse and less susceptible to the temperaturetioarian
component values. The example considered demtestthe potential merits of using a coefficient
matching phase design strategy namely the avatiabil fast analysis procedures and the very ditrac
facility of exact derivative computation using tmeulti-linearity property of the network function
coefficients. The design objective function isoaéscomparatively simple function of the designaales.

In order to deal with dangers of local minima tiptimization runs were initialized by the componealue
sets obtained by Massara [13] on the basis thambaified solution should not be very far from this
starting point. This proved a very effective stgpt.  Finally, since the optimizing model is based
zeroing the Taylor series, taking more terms bylegipg methods of higher orders than two would diel
better component values. This will be combinedhwtoosing elliptic function response in the nesger.

6.0 Conclusion

When the nominal circuit designed has been comgland a final full analysis carried out, the
designer should have all possible information altle@tbehavior of his circuit. However circuit & ffrom
complete. A design may appear to be perfectlytatde on the basis of nominal behavior and seityiti
yet be quite useless in practice. Indeed, mankfi@publish RC active circuit filter realizatiorsa(len and
key filter and Bessel filter inclusive) belong tbist category. Design will be completed only when
tolerances have been assigned, and a full randaolation carried out to assess yield, productiosts;o
and behaviours as components vary together. Mdkeabove have not been considered here.
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