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Abstract 
 
 

 Application of optimization theory to engineering provides a design 
tool of quite extra ordinary power: it offers the prospect of solutions to 
problems for which no normal design methods exists.  In dealing essentially 
with circuit specification in frequency domain, the design problem includes 
deciding the size or order of filter required and computing optimum values 
for the components.  In this presentation, Chebyshev response which is 
known to give fast cut-off frequency for a given template and involves no 
finite frequency transfer function is formulated to determine optimum 
components by applying a conjugate direction method proposed by the author 
in minimizing the objective function.  This is a didactic presentation of what 
to do in the presence of this problem.  No. claim of originality in the theory of 
electronics and electrical engineering is made.  Sensitivity analysis is 
undertaken. 
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1.0 Introduction 
 A filter means an electronic circuit that allows certain frequencies to pass while stopping others.  
On the basis of magnitude response, filters can be classified as Low-Pass, High-Pass and Band Reject (or 
notch) filters.  All use operational amplifiers as active elements and resistors and capacitors as passive 
elements. 
 The following definitions are pertinent.  A filter that transmits all frequencies below a specified 
value substantially attenuating frequencies above this value in high-Pass filter.  When a filter transmits only 
those current having a frequency lying within specified limit it is called a Band-Pass filter.  Our emphasis 
shall be on low-Pass filters, shunted by the inductors while the high frequencies are transmitted through the 
capacitors.  It was not until 1900 that a successful Low-Pass filter was constructed by Pupin.  A high-Pass 
filter was built by Campbell in 1906.  A Low-Pass filter can be constructed by interchanging the positions 
of the inductors and capacitors [12], [17].  Our most concern is the application of optimization techniques 
to the design of filters.  The range of disciplines to which optimization has been applied goes way beyond 
the confines of electronics, even beyond those of engineering.  Lawrence Dixon (1976) provides an 
interesting insight into this breadth, with applications from a wide cross – section of engineering and 
scientific fields.  Specification for linear frequency – selective networks are often very demanding and the 
mathematical complexities of designing a suitable network are frequently very great.  There are, indeed, 
many situations in which no analytic design methods are available, and  
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numerical techniques then provide the only course open to the designer.  Hence the earliest published 
instance of the use of optimization in electronics involved the design of filters. 
 For greatest design generality and practicality, we would like each capacitor inductor to have its 
own particular loss factor, that is, the ratio of resistance (conductance) to inductance (capacitance), thus 

inductor loss factor,   LRd /11 =      (1.1) 

and similarly capacitor loss factor.  cGD cc /=      (1.2) 

 From these definitions, we observe that ideal or loss less components have RL and Gc equal to zero 
and hence the loss factors are zero.  It is interesting to note that the design of filters with completely 
arbitrary loss factors is one of the situations for which no exact design method exists [3], [7], [10], [13, 14].  
The published results showed that computer optimization allowed design solutions to be produced, 
although runtime were rather long.  Some authors used steepest descent algorithm which (performed 
poorly) to obtain optimum component values.  Lasdon and Warren [14] considered the same problem, but 
applied the more powerful DFP quasi-Newton algorithm with predictably better results.  In this work the 
authors employed a conjugate direction quasi-Newton method proposed by them.  This development of 
interest in applying optimization during the 1960’s correspond to the growing availability of computing 
power and the subsequent years have witnessed a steady increase in the performance over cost ratio of 
digital computers.  The position now is that comparatively low cost desktop machinery is available offering 
entirely adequate computational power and memory capacity to allow the method described in this paper to 
be used routinely in design, [4, 6, 7, 10]. 
The classical problem of filter design consists in: 
(a) Obtaining a realizable network function H(s) whose corresponding amplitude and phase function 
|H1(w)| and arg H1(w), satisfy the given templates.  This is referred to as approximation. 
(b) Synthesizing a network by performing a sequence of mathematical operations on H1(S), leading to 
a network, which thus satisfies the original specifications.  
This is referred to as synthesis. 
 Interested readers will find useful introduction to filter theory in [8].  Much of the difficulty of the 
approximation/synthesis cycle has been eased by the production of design tables and graphs relating gain 
and phase specifications to standard filter functions (Butterworth, Chebyshev, Bessel, Elliptic, etc), and 
giving component values for standard active and / or passive filter structure which realize these various 
filter functions. 
 First, let us recall some basic knowledge about filters.  Filters are networks whose gain or 
attenuation and associated phase vary with frequency.  This frequency dependency can be exploited in 
order to separate wanted and unwanted components of a signal on the basis of frequency.  The way in 
which a filter function varies with frequency is called frequency response.  This can be represented 
mathematically by means of filter’s transfer function (TF) or H.H. yields, the amount of amplification or 
attenuation, the phase shift experienced by the same signal.  In general both magnitude and phase responses 
are frequency dependent. 
 Filters may be classified into analog or digital and passive or active.  Analog filters are designed to 
process analog signals while the digital filters are designed to process digital signal depending on the type 
of elements used in their constructions.  Passive filters use resistors, inductors and capacitors and cannot 
produce power gain while active filters use these in conjunction with some form of amplifying circuits and 
can therefore produce power gain.  For example resistors – capacitors or RC filters are commonly used in 
audio or low frequency operations. 
 
2.0 Mathematical requirements of low-pass filter design 
 While circuit structures may differ markedly from one style of filter realization to another, the 
underlying problem of filter design in all cases involves 
(i) Deciding what size of filter is required, that is, how many components  
(ii) Computing optimum values for the components. 



Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 297 - 306 
Low –pass electronic filter using Chebyshew Polynomial       F. M. Aderibigbe and T. A. Adewale   J of NAMP 
 

The first point (i) relate to the approximation problem for we must decide how many transfer function poles 
there should be (whether zeros are required) and where they should be positioned.  This shall be  
taken in isolation, that is, without any consideration of the proposed final filter format.  We shall therefore 
choose a realizable network function H1(w) or H1(S), on which to base our computation of  
 
 
 
 
component values.  A study of literature on approximation theory convinces us that a Chebyshev function 
should be taken because no finite frequency transfer function (T.F) zeros is involved, only a constant 
appears in the T.F.  Numerator (all practical transfer functions turn out to be rational functions as: 

     )(
)()( SD

SNSH =     (2.1) 

where N(S) and D(S) are suitable polynomial in S with real coefficients and the order of N(S) never 
exceeds that of D(S).  the order is of special significance and it is called order of filter (first order, second 
order, etc). The zeros of N(S) and D(S) are called, respectively, the zeros and the poles of H(S).  To find 
H(S) we employ Ohm’s Law, the voltage and current divider formulae and the super position principle.  
The topology of the circuit is fixed once the filter order is determine.  We need to know the allowed pass 
band ripple level, and the gains and frequencies of the critical stop band points.  The amplitude response 
function associated with a Low-Pass nth-order Chebyshev filter is given, for normalized frequency such 

that the edge of the pass band occurs at:  
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Having determined a suitable realizable network function N(S), the design process now proceeds to stage 
(ii), the computation of as set of nominal component values such that the filter will realize the specific 
transfer function coefficients.  Optimization scheme for electronic circuit design is depicted below (Figure 
2.1). 
 

Figure 2.1: Optimization Scheme for electronic Circuit Design 
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 To observe the next step we choose a suitable design objective, circuit analysis procedure and 
optimization method.  These are heavily inter-related and dependent on what resources, particularly circuit 
analysis, are applicable to a given design problem.  To choose a circuit analysis method, a simple recursive 
analysis scheme [3, 6, 14, 16] can be considered.  Given an initial set of component values stored in vector 
X, the analysis procedure returns a vector whose elements are the S-plane voltage transfer function 
coefficients. Given this fast and very efficient analysis capability, we formulate a suitable design objective 
as a sum of squared residuals.  We employ the bilinear property of network function to write H(S) in the 
form: 
 
 
 

    
)()(

)()(
)(

21

21

SXDSD

SXNSN
SH

+
+

=  

where 2121 ,, DDNN  are functions of the other network element but not X.  Bode (1945) (cited in [17, 

18]) was the first to point out that numerator and denominator polynomials of any network function H(S) 
are at most linear functions of a chosen element X.  Let us denote a general T.F. coefficient as Ci (which 
can be either a numerator or denominator coefficient), we may thus write: 

     ijjiji XC βα +=     (2.5) 

where Xj is the jth variable, and ijij βα ,  are functions of the other variable, but not Xj.  The partial 

derivative of Ci with respect to Xj is given as: ijijjij
jj

i X
xx

c αβα −+
∂
∂=

∂
∂

)(   (2.6) 

ijα  can be determined by a simple perturbation approach here because of the linear form of the expression 

for the network function coefficient.  Incrementing Xj to a new perturbed value *
jX  by a convenient 

amount usually unit, we obtain:  1* += jj XX     (2.7) 

And this gives rise to new coefficient values *jC  where 

   ijjijij XCC βα +=−*       (2.8) 

   ijjijij XCC βα +++=− )1(*      (2.9) 

The required derivative can be found simply by subtracting equation (2.5) from equation (2.9): or 

  )()1( 1
*

ijijijjijij NXCC βαβα +−++=−     (2.10) 

or     
ijijij CC α=−*      (2.11) 

The above procedure implies that we can make use of property of the coefficient of a network 
function to develop a special – purpose derivative evaluation procedure.  Therefore, in order to find the 
required complete set of coefficient partial derivative with respect to given variable, Xj, we re-analyze the 
network with Xj, set equal to Xj + 1 and then subtract the original (unperturbed) coefficient from the 
corresponding new (perturbed) set, as in equation (2.11).  this provides a s fast efficient and above all 
accurate strategy for computing derivatives.  The design function )(xφ  can be formulated to be sum of 

squared residuals of the form:   ∑
=

−=
n

i
si xaax

0

2))(()(φ   (2.12) 

)(xasi are the 1+n  specified denominator coefficients, )(xari  are the 1+n  realized corresponding 

coefficients by the current set of component values and n is the filter order.  Since the aim is to minimize 
)(xφ  using any suitable minimization algorithm we present the following conjugate direction quasi-

Newton algorithm. 
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3.0 A quasi-Newton method algorithm 
 The algorithm minimizes the function { }nIRxx εφ |)(  where φ  is assumed to be twice 

continuously differentiable and can be summarized by the following steps [2]. 
3.1 Algorithm 
Step 0:  

Select an initial guess nX ℜ∈0 , compute )(xφ∇  initial gradient vector,   

  ===∇ )()( )0(
00

2
ijhHXφ Hessian matrix at njiX ,,2,1,,0 Κ=  

Set   000 HHB T αα ==  since 0H  is symmetric 
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Step 1: 
If convergence criterion is achieved then stop, else 

Step 2: 
Compute a quasi-Newton direction (Vector). 

)( kkk xBS φ∇−=  

111 −−− += kkkk RBBB  

1,2,1,1 111 −=−= −−− nkBHR kkk Κ  

Step 3: 

Set )(1 kkkkkkkk xBxsxx φββ ∇−=+=−  

where βk is chosen to be )( 0 kk sx βφ + [1, 2] such that )()( 1 kk xx φφ <−  and by algorithm 

(2.11) in [2]. 
Step 4: 

Compute the next inverse Hessian approximation 

1,2,1,0,1 −=+=+ nkBRBB kjkkk Κ  

)()(1 000 xHHBxHR kk =−=  

Step 5: 
Set k = k+ 1 and go to step 2. 
We shall next select a template for a lower-pass antialiasing filter intended for a particular 

communication system and determine a suitably realizable filter specification. 
3.1 Computation Result 
 In this section let us suppose that we want to design an RC-active Low-Pass filter based on the 
extend Sallen and key structure to realize the 0.5dB the filter is to be designed for a cut-off frequency of 
3.5KHz: that is the allowable pass band ripple level, upper should (0dB) and lower 05dB) and the gain 
(0.5dB-20dB, 60dB) and normalized frequency of the critical stop band point (1, 2, 3).  The voltage 
simplifications is to be regarded as an ideal voltage controlled source gain (amplitude response), of 2.  We 
shall need to determine the specific function coefficient for the numerically designed filter (see Figure 3.1). 
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Figure 3.1: RC-active low-pass filter 
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Figure 3.1: Information flow chart for quasi-Newton algorithm 
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 Since we must have integral order, n = 4 will be required to ensure that the specification is 
satisfied at this point.  Repeating the above calculation for w = 3 with minimum attenuation = 60Db, we 
obtain n = 4.9 and we round this up to 5.  Hence to satisfy both specification constraints simultaneously, we 
must have n = 5.  This is the required size of our network.  According to Weinberg’s table [18], the s-plane 
T.F for a 5th – order 0.5dB ripple Chebyshev filter is given as 
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SH

+++++
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where  

   5530328.6,889839.5 45 == aa  

   ,3191919.7,827916.10 23 == aa  

   0.1,5889839.5 01 == aa  

 It is easy to compute the amplitude response by noting that the steady-state sinusoidal response 
H(jw) is found by setting s = jw in the above.  It is |H(jw)|.  The design objective can then be formulated as 
sum of square discrepancies between realized and specified amplitude responses.  Suppose that we have a 

small level specific performance features niasi ,2,1, Κ=  and we require the corresponding realized 

values, ari to be matched to them.  We formulate the sum of squares design objective as: 

    [ ]
2

01

)()( ∑
=

−=
n

risi xaaxφ  

where n is the filter order, asi = specific values found by evaluating  |H(jw)| for each of the frequencies w, a-

ri are the corresponding realized values, which are stored in vector x .  The results are tabulated and are 

shown in Table 1.  The design was completed in just 4.3 seconds (CPU time) using Pentium 133).  The 

stopping criterion is that 1210−≤∇φ . 

 
4.0 Sensitivity analysis 
 It seems highly probable that any design problem will be subjected to substantial specification 
errors.  Consequently sensitivity analysis of the effects of specification errors upon the efficiency of the 
optimization models would be highly desirable.  Consider a system having some performance feature 

)(xφ  which is a function of the set system parameters, x .  The performance function )(xφ  could be an 

amplitude or phase response in the case of a frequency – selective circuit, a dc operating point in the case of 
transistor amplifier configuration, or indeed, any other performance measure of interest to the designer.  A 
very important question is the extent to which the performance is likely to be affected by a change in the 
value of the system parameters.  We therefore speak of the sensitivity of the function φ to the parameters, 
say, x.  Here we shall denote this symbolically as Sφ and define it in differential form as 
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The reader would recall that use is made of a circuit system procedure which returns values of the 
performance measure of interest given the current set of design variables.  This implies, necessarily, that  
 
 
 

a numerical value of the design objective )(xφ  can be set up for any current vector, but that corresponding 

exact values of the gradient vector )(Xφ∇  are not available.  The practical significance of the measure of 

performance can be brought out by considering the small-change approximation. 
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From which we can see that the sensitivity analysis is therefore concerned with analyzing the behavior of a 
local solution when the problem functions are perturbed slightly.  This perturbation might be due to in-
exactness with which certain parameter values in the problems are calculated or because the optimization 
model was parameterized and one is interested in the solution for a variety of values of the parameters [9, 
12].  What is expressed in equation (4.1) – (4.2) is termed first – order sensitivity.  There has been some 
work in second-order sensitivity analysis which derived an expression for the second derivative with 
respect to the perturbation term.  The essence of sensitivity analysis in nonlinear programming is the 
application of the implicit function theorem to the Karush-Kuhn-Tucker (KKT) necessary conditions for 
the paramterized problem [15].  The active Low-Pass filter under consideration is of order 5 and comprises 
5 capacitors and 5 resistors.  Let us suppose that it is desired to minimize amplitude response (gain). 
Sensitivity to the passive components at the normalized bandage 1=ω rad/s while maintaining all 
components nonnegative.  The filter realized a 5th order all-pole voltage transfer function H(S), so that 
equation (3.1) holds with a0 the realized value of the ith coefficient.  The filter satisfies a 5th order transfer 
function specification H(S) where,  
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With xia  the specified value of the coefficient and, in practices, simply a user defined number.  It is further 

required that the summed value of the capacitor should not exceed a specified value C.  The aim of the 
problem is to formulate this specification as an equation/inequality – constrained minimization problem.  
The sensitivity of the gain function |H(jw)| to the ith component at frequency w is according to equation 
(4.1) and (4.2). 
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We shall formulate this as sum of square objective 
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We shall need to minimize )(xφ .  The constraints imposed by the specification are formulated as the six 

equality condition relating to the voltage transfer function coefficients. 
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where the capacitors value are stored as the first elements of x and the resistor as the remaining 5 elements.  
Recall that the filter order is 5.  We have thus reformulated our very practical filter design problem as the 
optimization problem: 
Maximize )(xφ  

Subject to: 6,1Κ=ijC , 11,2,1,0 ==≤ ΚjCij  

 
 
 
 
 
with Cij and CIJ given as above. 
 An alternative of the objective is provided by )(xp  defined below and derived from equation 

(4.1) taking )(xφ  as   ∑
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T
nxxxxx ),,( 2321 Κ=  where the siX , are the capacitors and resistors to be determined. 

 
Table 4.1: Optimal Component Values 

 
Iteration C1 R1 C2 R2 C3 R3 C4 R4 C5  

1 5.0038 1.2071 0.5231 42.827 11.278 1.1074 1.5894 50.689 40.81 0.5 
2 5.7811 1.2484 0.4992 47.927 13.8921 1.2649 1.91 63.486 40.919 0.6 
3 5.9112 1.3471 0.5681 51.892 15.181 1.2972 1.8111 76.894 44.783 0.6 
4 6.8271 1.3961 0.5892 50.984 18.178 1.3986 1.33121 77.898 45.891 0.8 
5 7.869 1.3012 0.5891 53.639 17.698 1.4686 1.3689 80.789 47.791 0.7 
6 7.874 1.2876 0.6173 57.5530 17.589 1.4861 1.3986 80.639 47.69 0.8 
7 8.994 1.2494 0.8163 60.989 16.589 1.4791 1.4910 80.749 50.583 0.8 
8 8.562 1.4049 0.8531 62.697 18.67 1.3791 1.6910 80.674 50.987 0.9 
9 8.714 1.4276 0.8861 64.989 19.438 1.2678 1.7691 82.816 52.04 0.9 
10 9.786 1.4620 0.8789 65.942 19.647 1.3021 1.7847 82.93 52.116 0.7 
11 9.760 1.7980 0.8678 65.872 18.764 1.3421 1.8647 83.826 52.860 0.9 
12 11.857 1.8698 0.9467 75.213 20.76 1.5834 1.5658 85.764 56.590 1.0 

 
Key 
Ci = capacitors, Ri = Resistors, Passband = 0, Stopband = 0.5, Gain = 20, Frequency = 2, Gain = 60, 
Frequency = 3, Order = 5 
Sensitivity to Specification Errors 
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Figure 4.1: Normal component values 

 
5.0 Discussion of results and perspectives 
 Thus far, the example and design case studies we have considered may be viewed as involving 
deterministic circuit design, we have been concerned with the computation of set of circuit component 
values with an implied understanding that these values will be accurately realized when the circuit is built, 
so that optimum circuit performance will result.  In the case of design of high-precision normal values, and 
this is done but the procedure is time consuming and costly and this will call for other circuit  
 
 
 
 
design methods.  Also, the sensitivity data obtained are essential as they allow the designer to make 
important practical decision on component tolerancing and provide a basis for comparing alternative circuit 
realization of a given specification.  A circuit offering low sensitivity to component variation will, other 
things of being equal, be more reliable in long-term use and less susceptible to the temperature variation on 
component values.  The example considered demonstrates the potential merits of using a coefficient 
matching phase design strategy namely the availability of fast analysis procedures and the very attractive 
facility of exact derivative computation using the multi-linearity property of the network function 
coefficients.  The design objective function is also a comparatively simple function of the design variables.  
In order to deal with dangers of local minima the optimization runs were initialized by the component value 
sets obtained by Massara [13] on the basis that the modified solution should not be very far from this 
starting point.  This proved a very effective strategy.  Finally, since the optimizing model is based on 
zeroing the Taylor series, taking more terms by employing methods of higher orders than two would yield 
better component values.  This will be combined with choosing elliptic function response in the next paper. 
 
6.0 Conclusion 
 When the nominal circuit designed has been completed and a final full analysis carried out, the 
designer should have all possible information about the behavior of his circuit.  However circuit is far from 
complete.  A design may appear to be perfectly acceptable on the basis of nominal behavior and sensitivity 
yet be quite useless in practice.  Indeed, many of the publish RC active circuit filter realizations (sallen and 
key filter and Bessel filter inclusive) belong to this category.  Design will be completed only when 
tolerances have been assigned, and a full random simulation carried out to assess yield, production costs, 
and behaviours as components vary together.  Most of the above have not been considered here. 
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