
Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 285 - 296 
Control of pure inertia plant    T. A. Adewale and F. M. Aderibigbe     J of NAMP 
 

Journal of the Nigerian Association of Mathematical Physics 
Volume 12 (May, 2008), 285 – 296 

© J. of NAMP 
 
 

On the control of pure inertia plant using a hybrid of sequential variation of extremals and 
invariant costate imbedding algorithms. 

 
 

1T. A. Adewale, 2F. M. Aderibigbe 
1Department of Industrial Mathematics,  

Adekunle Ajasin University, 
Akungba-Akoko, Ondo State Nigeria. 

2Department of Mathematical Sciences, 
University of Ado-Ekiti, 

Ado-Ekiti, Ekiti State, Nigeria 
 
 

Abstract 
 

 This paper presents the control of pure inertia plant using 
successive variation of extremals algorithm with invariant costate imbedding.  
Numerical experimentation is provided by the problem of sliding mass.  The 
problem is solved by taking advantage of the Hamiltonian formalism via the 
construction of influence function matrices. 
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1.0 Introduction 
 The optimal control of a pure inertia plant has received much attention in the literature [8] 
especially a plant governed by the system. 

     MX =&&      (1.1) 
Where M is the controlled force applied, X is the displacement.  The early attention accorded this system is 
due, of course, to the simple nature of the plant. 
 The current interest in the control of spacecraft outside the earth’s atmosphere now gives new and 
practical meaning to this type of problem.  Considering the above reasons, the problem of pure inertia plant 
will be considered here as an example involving controls of variable inequality constraint.  We stated in [1] 
that, although the method shows that Pontryagin’s maximum principle does indeed quickly yield the form 
of the expected solution as often stated, the complete solution is somewhat evasive.  In the previous paper 
[1] we employed the invariant imbedding method.  The invariant imbedding method converts a given two 
point nonlinear boundary value problem to its equivalent initial value problems [9].  

In what follows we employ the successive or sequential variation of extremals algorithm with the 
explicit knowledge of the initial costate vector found in [1].  We appreciate that there could be an 
improvement in the initial costate vector determined in equations (10) – (17) in [1] and we therefore set out 
to use this in the variation of externals algorithm so that if  the terminal or the resulting final costate 

0)( =ftλ  obviously our guess of the initial costate vector was correct and we have solved the problem.   

We started by considering the problem of minimizing. 
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Subject to the dynamical constraints 
   ),,( tuxfx =&        (1.3) 

where the states and costates are not constrained by any boundaries, the final time tf is fixed and the final 
state )( ftx is free.  To write the necessary conditions for optimality, let us define the Hamiltonian 

functional as usual [5-8]: 

   ),,()(),,( tuxfttuxgH Tλ+=     (1.4) 

so that the necessary conditions become 
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   00)( xtx =        (1.8) 
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 Solving equation (1.7) for u  and substituting this u  in terms of λ,x  into equations (1.5) and 

(1.6) yields the reduced differential equations of the form 
   )),(),((

1
tttxx λφ=&       (1.10) 

   )),(),((
2

tttx λφλ =&       (1.11) 

 Therefore, to solve our optimization problem we need to solve equations (1.10) and (1.11) subject 
to the split boundary conditions given by equations (1.8) and (1.9).  We recall that in the invariant 
imbedding method considered previously we determined the initial costate vector explicitly so that in any 
intermediated iteration the nonlinear differential equations (1.10) and (1.11) were satisfied by the initial 

state and the final costate vector that will make the pair ))(),(( tutx admissible at every iteration and by 

some iterative technique due to Newton Raphson.  The intention is to improve upon )( 0tλ  determined 

previously and employed this in integrating the equations (1.5) and (1.6)/  We shall pretend that the final 

costate vector )( ftλ  is unknown and that it is a function of )( 0tλ  and t and use )( 0tλ  determined 

before, namely 
T

t 






=
3

1
,0)( 0λ  as initial guess to compute the tangent t to the unknown )( ftλ  versus 

)( 0tλ  relationship and use as the next guess for )( 0tλ  the extrapolated point where the tangent intersects 

the )( ftλ -axis, that is, where )( ftλ  is zero.  The equation of the tangent for the scalar case, [by taking 

two arbitrary points, ( ) ( )( ) ( ) ( )( )ff tttt λλλλ 0000 ,,  is 

    )()()()( 000 tttt ff βλλβλλ −+=     (1.12) 

So, for the scalar case, the equation 
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holds.  The equation for the multivariable case (n-state and n costate) equations can be written as  
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which is called the costate influence function matrix because it indicates the influence of changes in the 

initial costate trajectory at time t.  In equation (1.14) we need to know λP  only at the terminal time tf.  

Equation (1.15) applies to the case where there is no termination time weighting them in the cost 
functional.  If the termination time weighting term is included, that is, if the cost functional is of the form, 
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then the initial costate vector )( 0tλ  can be improved using the relation 
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where [ ]k⋅  implies that the enclosed terms are evaluated on the k-th trajectories and )),(( 0 fkx ttP λ  is then 

n x n state influence function matrix defined by: 
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2.0 Determination of the influence function matrix 
 From the foregoing we see that the most important step in the successive variation of extremals 
method is the computation of the influence function matrices, Px and Pλ.  In what follows we describe an 
easy way of computing these on a digital computer. 
2.1 Numerical Experimentation 
 Consider the sliding mass system shown in the figure below [6, 7, 10] 
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Figure 2.1: Sliding mass system 

 
This system can be described by the second-order differential equation  

  uxxcxm =+ &&&& sgn2        (2.1) 
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where m is the mass of the sliding solid, c the coefficient of friction, u is the controlled force applied and x 
is the displacement. 
 We shall take m = 1, c = 1.  Hence we can reduce equation (2.1) to two first-order equations and 

solve as in [4, 8].  The result obtained by applying the invariant imbedding algorithm is 

T

t 






=
3

1
,0)( 0λ .  

We shall use this as the initial guess in steps of the above algorithm We shall minimize the cost functional  
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equation (2.1) becomes 

    uxxx =+ sgn2&&&      (2.4) 

Letting ,1 xx &=  then xxx &&&== 12  we have  

xx &=1  then xxx &&&== 12  we have  

    121 fxx ==&       (2.5) 

    222 fmxx =+−=&      (2.6) 

as equivalent two first-order equations.  That is, the quantity x is taken to be a system error, then x1 and x2 
are the error and rate respectively.  For the end conditions we have: 
   ftttt === ,01  (unspecified) 

   0)(,)( 11111 0
== txxtx       (2.7) 

   0)(,)( 12212 0
== txxtx   

we shall need to determine the control u required to derive the error and error rate to zero while minimizing 
the performance index or cost functional J of equation (2.3) which is obviously dependent on the amount of 
control u used.  This example was previously solved by Bauman [3], using a hierarchical technique and 
subsequently by Galy as cited in [9], Singh et al by quasilinerization technique.  The problem now reduces 
to that of minimizing the time required to transfer the system between initial and final states.  The system 
performance index given by equation (2.3) is then minimized subject to 
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The Hamiltonian can be written as: 
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Then the conditions of optimality yield the two point boundary value problem (bvp): 
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Substituting 2λ=u  renders the second of equations (2.10) into  

   2
2
222 sgnxxx −= λ&&       (2.11) 

 
 
 
 
and the reduced Hamiltonian H* is given by  
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in [1] which is the initial costate vector.  We shall next improve upon this using 0)0(10 =λ , 
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as initial guess in the iterative scheme defined by equation (1.17) to obtain: 
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or iterative scheme defined by equation (1.14) to obtain 
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where Pλλλλ is as defined in (1.15).  In order to integrate the resulting bvp using an R-K-4 type method we 
convert the problem into a four-dimensional problem. 
 
3.0 Discussion of computational results 
 Equation (1.5) through (1.7) are nonlinear and cannot be solved in analytical closed form we 
therefore have to seek refuge in numerical and analytical approximation methods.  From SVEICI, we 

obtain convergence to Tt )10 x 3.4,10x03.4()( 96
0

−−=λ  in seven iterations. This is an improvement in 

the value of λ  which is expected to be ( )T0,0   We next use this in the Evans and Sangui’s algorithm [11] 

employed in integrating the bvp resulting from optimality conditions and represented by the recursive 
relation defined by 
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and for the problem under consideration we shall take the time step 310−==∂ ht and 
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The results obtained are displayed in the Table 3.3.  The iterations took 4 seconds to execute.   
 

Table 3.1: The sliding mass problem: Component trajectories 

 

Tk X(T) Y1(I) Z(I) W(I) 

.001 2.001998 -1.995676 0 0.333 

.002 2.003991 -1.991369 1.999167 x 10-3 0.3336696 

.003 2.00598 -1.982803 4.000335 x 10-3 0.3343371 

.004 2.007965 1.987077 8.00865 x 10-2 0.3350025 

.005 2.009946 -1.978544 1.001579 x 10-2 0.33698271 

.006 2.011923 -1.974302 1.202491 x 10-2 0.3369864 

.007 2.0113895 -1.970076 1.403601 x 10-2 0.3376437 

.008 2.015863 -1.961671 1.604909 x 10-2 0.3382991 

.009 2.017827 -1.965866 1.80441 x 10-2 0.3389525 

.010 2.019786 -1.957493 2.008114 x 10-2 0.339604 

.011 2.021742 -1.949783 2.40011 x 10-2 0.3402537 

.012 2.023693 -1.945051 2.614392 x 10-2 0.33409014 

.013 2.02564 -1.940934 2.816875 x 10-2 0.3415474 

.014 2.027583 -1.936833 3.019553 x 10-2 0.3421915 

.015 2.029522 -1.932742 3.222424 x 10-2 0.3428339 

.016 2.031466 -1.928676 3.425489 x 10-2 0.3434745 

.017 2.033387 -1.924621 3.628748 x 10-2 0.3441134 
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.018 2.035314 -1.92058 3.832199  0.3447506 

.019 2.037236 -1.916554 4.035843 x 10-2 0.3453861 

.020 2.039155 -1.912543 4.239678 x 10-2 0.3460199 
 
Table 3.2 gives the decrease of the norm of each component trajectory between two successive iterations.  
The algorithm for system of non linear equations of the form  

  ),,,,( 432111 zzzztfz =&  

  ),,,,( 432122 zzzztfz =&  

  ),,,,( 432133 zzzztfz =&  

  ),,,,( 432144 zzzztfz =&
 

 
 
 
 

i.e.  ( ) ( )TT zzzzzfffffztzztfz 43214321
)0()0( ,,,,,,,,)(),,( &&&&&& ====

 
     ( )Tzzzzzz 4321 ,,,==  

Table 3.2: Decrease of norm of component trajectories between successive iterates 

 

 X(T) Y1(I) W(I) Z(I) 

|Z1 – Z0| 3.97 x 10-6 1.86 x 10-5 3.99 x 10-6 4.48 x 10-7 

|Z2 – Z1| 3.96 x 10-6 1.84 x 10-5 4.01 x 10-6 4.46 x 10-7 

|Z3 – Z2| 3.94 x 10-6 1.83 x 10-5 4.01 x 10-6 4.43 x 10-7 

|Z4 – Z3| 3.92 x 10-6 1.81 x 10-5 4.02 x 10-6 4.40 x 10-7 

|Z5 – Z4| 3.90 x 10-6 1.40 x 10-5 4.01 x 10-6 4.44 x 10-7 

|Z6 – Z5| 3.80 x 10-6 1.38 x 10-5 4.03 x 10-6 2.5 x 10-7 

|Z7 – Z6| 3.70 x 10-6 1.36 x 10-5 4.04 x 10-6 4.3 x 10-8 

|Z8 – Z7| 3.60 x 10-6 1.35 x 10-5 4.05 x 10-6 4.3 x 10-9 

|Z9 – Z8| 3.50 x 10-6 1.34 x 10-5 4.06 x 10-6

 

4.3 x 10-9 

|Z10 – Z9| 3.40 x 10-6 1.33 x 10-5 4.05 x 10-6 4.3 x 10-9 

Z = ( X, Y, W, Z,)T 
 

Table 3.3: Minimization of the Cost Functional 

 

Iterative Step Cost functional (J x 10-11) 

1 3.714764 

2 3.713646 
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3 3.691509 

4 3.668900 

5 3.5221460 

6 3.264780 

7 3.186122 

8 3.118502 

9 1569398 

10 1.496917 
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For the original algorithm the iteration scheme is given by 
( ) ( ) ( )14131312121131

1
1 kkkkkkzz hkk +++=+  

First iteration, ⇒= 0k  



Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 285 - 296 
Control of pure inertia plant    T. A. Adewale and F. M. Aderibigbe     J of NAMP 
 

( )

( )
)10  1.33 (

2

001.
10  1.33 )10  1.33 (

2

001.
,10  33.1

3
001.

10  40.3(

10)1034,10  05.4,10  1.33  ,10  40.3(

3

6-6-6-)0(
212

6-)0(
211

141313121211
6-)0(

1

366-6-6-)0(

141313121211
)0(

1
)1(

1

×+×=×+=×==

+++×=

=×⋅×××=

+++=

−−

zkzk

kkkkkkz

hz

kkkkkk
h

zz

T

 

6-6-6-

6-4-6-

-6-6

10  1.33  10 x 50010  1.33 

10 1.33   10  510  1.33 

10  1.33   0005.010  1.33 

××+×=
×××+×=

××+×=

 

-6-6 10 x0665 33.110 x 1.33)   .0051.33 ( =×+=  

6-6-6-9-6-

6-6-3-6-6-3-
13

10330831624.110)1033.1x2812.10331625.10x33.1(

)1033.1()10281210625.1()1033.1()10
32
9

10x
8
5

1(

×=××+×⋅×+=

××+×+=××++=k
 

 
 
 

( 






 ×






 ++××+××+÷−+×= )1033.1 
32

000009.

8

005.
1221033.1    

2

005.
1033.1    5101.33  x  3

24

001.
1033.1 6-6-6-6-6-

14k  

[ ] 6-6-6-6-6-6- 10 330111728.110 018149429.010 0033258.010  65.610 x 99.3
24

001.
1033.1 ×=×+×+×±+−+×=  

6-6-
1312

-6-6-6
1211

10 330748309.11041.33083162 330665.1

10 330332458.110330665.110 x33.1

×=××=

×=××=

kk

kk
 

)
6-6-3-6-

6-6-)1(
1

-6-6-6
1413

10 401330517.31010330517465.10140.3

10 733047162.1330748309.1330332458.1(
3

001.
1040.3

10 273304716716.11081.33011172 10330831624.1

×=××+×=

×+++×=

×=×××=

z

kk

 

Original algorithm 

6-6-6-6-)1(
1

-6-6-6
1411

1040.31040176901.31000176901.1040.3

10 315479374.110330111728.110 33.1

×≈×=×+×=

×=×××=

z

kk
 

Modified algorithm 

( )141313121211
)(

2
)1(

2

2
2
2443212

3

sgn),,,,(

kkkkkk
h

zz

zzzzzzztf

kk +++=

−=

+
 

where 



Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 285 - 296 
Control of pure inertia plant    T. A. Adewale and F. M. Aderibigbe     J of NAMP 
 

)
2
1

(sgn)
2
1

()
2
1

(

,
2
1

,
2
1

,
2
1

,
2
1

,

),sgn),,,,(

11
)(

211
)(

211
)(

4

11
)(

411
)(

311
)(

211
)(

1
)(

212

)(
2

)(
2

)(
4

)(
4

)(
3

)(
2

)(
1

)(
211

hkzhkzhkz

hkzhkzhkzhkztfk

zzzzzzztfk

kkk

kkkkk

kkkkkkkk

++−+=








 ++++=

−==
 

)2253(
24

sgn)2253(
24

)2253(
24

[

))2253(
24

),2253(
24

)2253(
24

),2253(
24

,(

)9(
16

(sgn))9(
16

()9(
16

)9(
16

,)9(
16

,)9(
16

,,
2

1

131211

)(
2131211

)(
2131211

)(
4

131211
)(

4131211
)(

3

131211
)(

2131211
)(

1
)(

214

1211
)(

21211
)(

21211
)(

4

1211
)(

41211
)(

21211
)(

1
)(

213

kkk
h

zkkk
h

zkkk
h

z

kkk
h

zkkk
h

z

kkk
h

zkkk
h

zhtfk

kk
h

zkk
h

zkk
h

z

kk
h

zkk
h

zkk
h

zhtfk

kkk

kk

kkk

kkk

kkkk

++−+








 ++−+−++−+=

++−+++−+

++−+++−++=

++−++=








 +++++++=

 

( )

9-9-9-

12-29-9-9-

6-1229-

6-6-9-)0(
2

)0(
2

)0(
411

141313121211
)0(

2
)1(

2

10x  3882311.410x  0017689.10x  39.4

10x  7689.1)10x  39.4)0000133(.sgn10x  7689.110x  39.4

)10x  33.1(sgn10)33.1(10x  39.4

)10x  33.1(sgn)10x  33.1(10 x 3.4sgn

3
2

=−=
−=−±=

−=

−=−=

+++=

−

zzzk

kkkkkk
h

zz

 

 
 
 

ctekk
h

zkk
h

zkk
h

zk

zk

..))9(
16

(sgn))9(
16

()9(
16

10x  533294.2.10x  ]7689.1)388.4)(0005(.3.4[

)10x  7689.1()10x  388.4)(0005(.10x  3.4

)10x  7689.1()10x  388.4()001(.)5.0(10x  39.4

)10x  33.1(sgn)10x  33.1()10 x 3882311.4()001.0(
2

1

1111
)0(

2
2

1111
)0(

21111
)0(

413

9-9-

9-9-9-

9-9-9-

6-6-9-)0(
412

++++−++=

−−+=

−+=
−+=

−+=

 

 
4.0 Summary of the algorithm: The successive variation  

of extremals with invariant costate imbedding algorithm (SVEICI) 
The algorithm solves the problem: 

Minimize dtttutxgtxhJ
ft

t

)),(,),(())((
0

∫+=  subject to the dynamical constraints  

  )),(),(()( ttutxftx =  

Form the Hamiltonial functional. 
Step 1 
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For the reduced differential equations by solving the equation 0=
∂
∂

u

H
 for )(tu in terms of 

)(),( ttx λ  and substituting in the state-costate equations to obtain the equivalents of equations (1.5) and 

(1.6) which contains only terms in x(t) and t. 
Step 2 

Use as initial guess the value of the costate vector )( 00 tλ  obtained from the application of the 

invariant imbedding algorithm and set the iteration counter k = 0  
Step 3 

Using )()( 00 tt kλλ =  and 00)( xtx =  as initial conditions, integrate the reduced state-costate 

equations and the influence function equations (2.14) with the initial conditions given by equation (49) of 

[ref. 1] from t0   to tf.  Store only the values )(),( fkfk txtλ  and the n x n matrices 

)(),((),(),(( 00 fkxfk ttPttP λλλ . 

Step 4 

Check to see if the termination criterion γλ <
∂
∂− ))(()( ffk tx

x

h
t  is satisfied where γ is a 

small prechosen positive constant.  If it is, use the final iterates )( 0
*
0 tλ  to integrate the state and costate 

equations and print out the optimal states and controls.  Otherwise, find new values for )( 00 tλ , i.e. 

)( 01 tk +λ  using equation (1.17).  Set k = k + 1 and return to step 3. 

 Now steps 1 and 2 are performed off-line by the user whilst steps 3 and 4 are performed on a 
digital computer. 
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Figure 4.1: Information flowchart for SVEICI. 
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5.0 Conclusion 
 The problem is taken to be that of minimizing the time required to transfer the system between 
initial and final states.  The extremal control must maximize H for the extremal solutions to minimize the 
performance index.  Although the improvement in the solution is appreciably small, the introduction of the 
fifth term in the R-K-4 type integrator employed leads to an error that does not violate the constraint and 
does not have anything to do with the boundary. 
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