Journal of the Nigerian Association of Mathematical Physics
Volume 12 (May, 2008), 285 — 296
© J. of NAMP

On the control of pure inertia plant using a hybrid of sequentialariation of extremals and
invariant costate imbedding algorithms

T. A. Adewale,?F. M. Aderibigbe
Department of Industrial Mathematics,
Adekunle Ajasin University,
Akungba-Akoko, Ondo State Nigeria.
2Department of Mathematical Sciences,
University of Ado-EKkiti,
Ado-EKkiti, Ekiti State, Nigeria

Abstract

This paper presents the control of pure inertia plant using
successive variation of extremals algorithm with invariant costate imbedding.
Numerical experimentation is provided by the problem of diding mass. The
problem is solved by taking advantage of the Hamiltonian formalism via the
construction of influence function matrices.
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1.0 Introduction
The optimal control of a pure inertia plant haseireed much attention in the literature [8]
especially a plant governed by the system.

=M (1.1)
WhereM is the controlled force applied,is the displacement. The early attention accottedsystem is
due, of course, to the simple nature of the plant.

The current interest in the control of spaceavatside the earth’s atmosphere now gives new and
practical meaning to this type of problem. Considgthe above reasons, the problem of pure inptéiat
will be considered here as an example involvingrds of variable inequality constraint. We stated]
that, although the method shows that Pontryagirdgimum principle does indeed quickly yield the form
of the expected solution as often stated, the cetmmolution is somewhat evasive. In the prevmazer
[1] we employed the invariant imbedding method.e Tiwvariant imbedding method converts a given two
point nonlinear boundary value problem to its eglént initial value problems [9].

In what follows we employ the successive or sedakwnariation of extremals algorithm with the
explicit knowledge of the initial costate vectoruf@ in [1]. We appreciate that there could be an
improvement in the initial costate vector determdiie equations (10) — (17) in [1] and we therefseé out
to use this in the variation of externals algoritlsm that if the terminal or the resulting finalstate

A(t,) = O obviously our guess of the initial costate vestas correct and we have solved the problem.
We started by considering the problem of minimizing
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ty
3= g(xu,t)dt (1.2)
to
Subject to the dynamical constraints
X=f(xut) (1.3)
where the states and costates are not constrajnadybboundaries, the final timgis fixed and the final
state X(t,)is free. To write the necessary conditions foriroplity, let us define the Hamiltonian

functional as usual [5-8]:

H =g(xut) + A (0 f(xut) (1.4)
so that the necessary conditions become
Xt) = ?3_2 = g(x,ut) (15)
T
oH ag of
=———=— —=(x,u,t) | A(t)——(x,u,t 1.6
A= ox {65(59)} A(t) ai](M) (1.6)
T
% ~00or| Bixut| A0+ X (xub =0 )
ou ou ou
X(to) = X% (1.8)
Alt;) =0 (1.9)

Solving equation (1.7) fou and substituting thigl in terms of X,A into equations (1.5) and
(1.6) yields the reduced differential equationshef form
&= g (X(1),A(1),1) (1.10)
K= g (x(1),A(t).1) (1.12)

Therefore, to solve our optimization problem wead#o solve equations (1.10) and (1.11) subject
to the split boundary conditions given by equati¢hs8) and (1.9). We recall that in the invariant
imbedding method considered previously we deterchthe initial costate vector explicitly so thatany
intermediated iteration the nonlinear differengéguations (1.10) and (1.11) were satisfied by tital

state and the final costate vector that will mate pair (X(t),u(t)) admissible at every iteration and by

some iterative technique due to Newton Raphsone iftention is to improve upo@(to) determined
previously and employed this in integrating the &tns (1.5) and (1.6)/ We shall pretend thatfihal
costate vectorA(t,;) is unknown and that it is a function of(t,) andt and useA(t,) determined

.
before, namelyA(t,) = (0, %j as initial guess to compute the tangent t to thienawn A(t,) versus

A(t,) relationship and use as the next guessAfir,) the extrapolated point where the tangent intessect

the A(t,) -axis, that is, wherel(t,) is zero. The equation of the tangent for theascadse, [by taking
two arbitrary points,(/]o(to), Ao(tf )), (/1 (to)/] (tf )) is
Alt)) = BA(to) +[A(t)) ~ BA(L,) | (L.12)

So, for the scalar case, the equation
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A (ty) = A (L) —B/;k((ttf))} A, (t,) (1.13)

holds. The equation for the multivariable casst@ate and n costate) equations can be written as

Aea(te) = Aclto) = [P A o)t )T At (1.14)
where, the matrix,
A (t) .
P, (A, (t ),t)=( ' j , i, [, =12A ,n (1.15)
e a/]J(to) Alto)

which is called the costate influence function mxalbrecause it indicates the influence of changethén
initial costate trajectory at time In equation (1.14) we need to knok® only at the terminal time.

Equation (1.15) applies to the case where thereaoistermination time weighting them in the cost
functional. If the termination time weighting teimincluded, that is, if the cost functional istbhé form,

&
J=h X(t))+ [g(x u (116)
to

then the initial costate vectot(t,) can be improved using the relation

Aealt) =2, (t) —{HZ—:Q(x(tf ))}R(A(to),tf J-R (o) 1, )}} [A(tf) —%(x(tf»} L.17)

where [[]J< implies that the enclosed terms are evaluatedherk-th trajectories an®, (A, (t,),t;) is then
n x n state influence function matrix defined by:

P (1)) = ( O

Ji,jle,K,n (1.18)

2
Where Fv (X(t;)) is the matrix whosé,_,,, element is

2p a°h(x(t
{a—z(x(tf »} SR .19
0x 2 0X,0X,,
2.0 Determination of the influence function matrix

From the foregoing we see that the most importteyt 81 the successive variation of extremals
method is the computation of the influence functiatrices,P, andP,. In what follows we describe an
easy way of computing these on a digital computer.

2.1 Numerical Experimentation
Consider the sliding mass system shown in thedidpelow [6, 7, 10]

e

X

m
u

|
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Figure 2.1 Sliding mass system

This system can be described by the second-ortferatitial equation

m&+ o sgn€=u (2.1)

1,%>0
sgn %= (2.2)
-1,%<0

where m is the mass of the sliding solid, ¢ thefaent of friction, u is the controlled force algd and x
is the displacement.
We shall taken = 1,c = 1. Hence we can reduce equation (2.1) to teet-@irder equations and

.
1
solve as in [4, 8]. The result obtained by appyiine invariant imbedding algorithm i4(t,) = (O, gj .

We shall use this as the initial guess in stegh@fibove algorithm We shall minimize the cost fiomal

J =J%(xf+x§+u2)dt (2.3)
equation (2.1) becomes
&+ ¥ sgnx =u (2.4)
Letting X, = % then X, = ¥ = & we have
X, = % then X, = ¥ = & we have

®=x,=1 (2.5)
% =-X,+m=f, (2.6)
as equivalent two first-order equations. Thaths, quantityx is taken to be a system error, therandx,
are the error and rate respectively. For the emditions we have:
t=t =0t =t, (unspecified)

X (t) =%, %(t,) =0 @7

X(t) = X5, X () =0
we shall need to determine the contrekequired to derive the error and error rate t@ xgnile minimizing
the performance index or cost functiodalf equation (2.3) which is obviously dependentl@amount of
controlu used. This example was previously solved by Bauf8§ using a hierarchical technique and
subsequently by Galy as cited in [9], Singh etyafbasilinerization technique. The problem nowuess
to that of minimizing the time required to transfee system between initial and final states. 3ysem
performance index given by equation (2.3) is thémmmzed subject to

%=X, , 2.8)
& =U-U;sgnx,
The Hamiltonian can be written as:
H =%(xf+x§+u2)+/11x2 +/]2(u—x§sgnx2) (2.9)

Then the conditions of optimality yield the two pbboundary value problem (bvp):
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& =X,

% = U - x2sgnx, (2.10)
R=x

A= x, = A +21,%,50nX,

Substitutingu = /12 renders the second of equations (2.10) into

£ = A, - xZsgnx, (2.12)

and the reduced Hamiltoniah is given by

whence we obtain,
A,0) =0
1
A (0)==
20( ) 3
Alty) = (Ao Aoo) @13)
1

in [1] which is the initial costate vector. We Bheext improve upon this usind,,(0) = 0, A,,(0) ==

as initial guess in the iterative scheme define@dpyation (1.17) to obtain:

Ak+1=4k(to>+{a nxtty »}PL At )- wk(to),tf)} {A(tf)%(x(tf»} .14

or iterative scheme defined by equation (1.14)di@io

_ -1

At = AW - [P (A, (o, T2 ) (2.15)
whereP, is as defined in (1.15). In order to integrate tesultingbvp using an R-K-4 type method we
convert the problem into a four-dimensional prohlem

3.0 Discussion of computational results
Equation (1.5) through (1.7) are nonlinear and oarire solved in analytical closed form we
therefore have to seek refuge in numerical andytioal approximation methods. From SVEICI, we

obtain convergence td(t,) = (403x107°,4.3x10°)" in seven terations. This is an improvement in

the value ofA which is expected to béO,O)T We next use this in the Evans and Sangui’s dlyor{11]

employed in integrating thbvp resulting from optimality conditions and represehty the recursive
relation defined by

2, = 7+ 2 (flck, +lks +fkk, + kK, (3.)
whereh = 0.001 orlCng:()(1,)(2,)(3,)(4),/11 =%,A, =X, and letZ, =X,i= 1234 1 =(f,f,, 1, f,)

and

1 1 1 h
= 10200 = f(1or 2ha s Dk o = 16+ Sha ik vk
k, = f(t, +h, z +2[- 3k +5k, +22;]) (3.2)

and for the problem under consideration we shké tae time ste@t = h = 10°and
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Zigs1 :Zik_'*'%h(\/kukiz +\/ki2ki3 +\/ki3ki4 +\/ki1ki4)

wherek;; = f; (tk’Zik)' ki, = fi[tk +%h’Zk +%hki1j,

1 h
kig = fi[tk +§hlZik +1_6[_ki1 +9ki2]j’

ko= [tk +h,z, +2_h4[_3kil +3Kk;, +2Z<i3]j'

where i = 1,234, k=01K ,n-1
X =2 X, =-2, X =403x10°, x, = 43x10"°
f=x, f, =x, - xsgnx,, f,=x, f, =X, = X, + 2X,X, SgnX,,
The results obtained are displayed in the Table Bi# iterations took 4 seconds to execute.

Table 3.1:The sliding mass problem: Component trajectories

Ti X(T) Ya(l) Z(1) w(l)
.001 2.001998 -1.995674 0 0.333
.002 2.003991 -1.99136¢9 1.999167 X*10|  0.3336696
.003 2.00598 -1.982803 4.000335 X*10|  0.3343371
.004 2.007965 1.987077 8.00865 X*10 0.3350025
.005 2.009946 -1.978544 1.001579 ¥10| 0.33698271
.006 2.011923 -1.974307 1.202491 ¥10|  0.3369864
.007 2.0113895 -1.970076 1.403601 ¥10| 0.3376437
.008 2.015863 -1.961671 1.604909 ¥10| 0.3382991
.009 2.017827 -1.9658664 1.80441 ¥*10 0.3389525
.010 2.019786 -1.957493 2.008114 #10 0.339604
.011 2.021742 -1.949783 2.40011 ¥*10 0.3402537
.012 2.023693 -1.945051 2.614392 10| 0.33409014
.013 2.02564 -1.940934 2.816875 ¥*10|  0.3415474
.014 2.027583 -1.936833 3.019553 10| 0.3421915
.015 2.029522 -1.9327472 3.222424 10|  0.3428339
.016 2.031466 -1.928676 3.425489 £10| 0.3434745
.017 2.033387 -1.924621 3.628748 10| 0.3441134
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.018 2.035314 -1.92058 3.832199 0.3447506

.019 2.037236 -1.916554 4.035843 10|  0.3453861

.020 2.039155 -1.912543 4.239678 10|  0.3460199

Table 3.2 gives the decrease of the norm of eantpooent trajectory between two successive iteration
The algorithm for system of non linear equationshefform

&=1t2.2,272)
& =1,(2,2,272)
&=1tz22,72,72)
8=1,022272)

&= 1(t,2), 2(t?) =2, f =(f, 1, ., f,) 8= (& 8. &, &)
2=2=(2,2,2,2,)

Table 3.2:Decrease of norm of component trajectories betvgeenessive iterates

X(T) Ya(l) w(l) Z(1)

|Z, - Zj| 3.97 x 16 1.86 x 10° 3.99 x 1¢ 4.48 x 10/

|Z,- 2z 3.96 x 1¢° 1.84 x 10° 4.01 x 1¢° 4.46 x 10

|Zs = Z) 3.94 x 16 1.83 x 1¢° 4.01 x 1¢° 4.43 x 10

|Z,— Z4 3.92 x 16 1.81 x 10° 4.02 x 1¢P 4.40 x 10/

|Zs — Zy| 3.90 x 1¢° 1.40 x 10° 4.01 x 1¢° 4.44 x 10

|Zs — Zi| 3.80 x 1¢° 1.38 x 10° 4.03 x 1¢° 2.5 x 10
|Z; = Z| 3.70 x 1¢° 1.36 x 10° 4.04 x 1¢° 43 x10°
|Zs— Z4| 3.60 x 1¢° 1.35 x 10° 4.05 x 1¢° 4.3 x10°
|Zo — Z 3.50 x 1¢° 1.34 x 10 4.06 x 1¢° 4.3 x10°
|Z10— Z| 3.40 x 16 1.33x 10° 4.05 x 1¢° 4.3 x10°

Z=(XY,W,Z)

Table 3.3:Minimization of the Cost Functional

lterative Step | Cost functional (J x 10"

1 3.714764

2 3.713646
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3 3.691509
4 3.668900
5 3.5221460
6 3.264780
7 3.186122
8 3.118502
9 1569398
10 1.496917

kyy = 1,(1 2 ‘“):f(t‘k) 2.2, zé” z),

ko= £t + hsz>+ SNk 2 w41 > Pk 2941 5Pk 2, hkn)

ko= f,(t0 +2 hz§“+ < (i, +9Kk), z;k’+ 5+ 9ks), zék>+ £ (ki +9Ke,), z‘k’+—(ku+9k12))
ko = HtY +h, 2% +—(—3k11 +5k,, + 22k13>, 29 +—(—3k11 +5k,, +22),

(k) +_( 3k11 + 5k12 + 23(13) Z(k) + ( 3k11 + 5k12 + 22k13))
k)

For the problem under consideratiofy, = Z2 = k1 = f( Zl Z2 ,Z3 ,Z4 )= Zg
o= 1143020+ hkij 204 i, =20+ Lt
ks = 4 +30, 20+ (g, 0k K ) = <k>+h<kﬂ+9k12)

7 1

1 1
= 200+ 120 -9z + )] = 20 + L2 9z + ] = 249+ L0 + 45h2t)
(<) 1thék) + ;-165 h2 (k) — 1+ g ™ h2) (k) — (1+ h+ hz)Zék)

ko= (9 +h, 20+ (3kﬂ+5k12+22k13)) 20+, (3z;k>+5(z;k>+ hz;“)

=0+ [3z§k>+5(z§k>+ hzék>+22<1+ h+3 hZ)zé“]

For the or|g|nal algorithm the |terat|on schemgiien by

20 = 29+ (i, + ik, ko)

First iteration,k = 0=
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h
2= 20+ D ik + ks + k)
Z (0): (340)(10_6 ’ 1 33)( 10—6, 4_05)(10_6 ’4 EBX]_O_G)T h = 10_3

z® = (340x10° + OOl(J KiiKop +/Kiokys +4/ k13k14)
001

001

k, =2z =133x10° k, =z + —(1.33x10°) = 133x106+—(133x10)

=1.33x10° + 0.0005>< 1.33x10°

=1.33x10° + 5x10* x 1.33x10°

=1.32x10° +50C x10° x1.32x10°
=(1.33+.005x 1.33)x10° = 1.330665x 10°

9

k.= (1+§ x 10° o 10°) (133x10°) = (1+.625x 10° + 2812x 10° ) (133x 10°)

= (L33x 10° +.625x1[33x10° +.2812x 133 x10°) x10° =1.33083162410°

=133x10°+ 00 -3 x1.33+10° +5x 133x10° + 005, 133x10°2 1+@+ 000009 133x10°
4 24 2 8 32

=133x10° +%[— 399x10° + 665+ x 10° +0.0033258x 10° +0.01814942% 10’6] =1.330111728x 10°

JKiky, =+/133 x10°x1.330665x10° =1.330332458 10°
JKokis =+/1.330665% 1.33083162 x10° =1.33074830% 10°

VKK, = \/1.330831624x 10° x 1.33011178 x10° =1.33047167187 x 10°
001

z® = 340x10° +—=(1.330332458 1.330748309 1.33047162 )x 10°

= 340x10° +1.33051746!?',<103 x10° =3.40133051% 10°

Original algorithm

VKK, = \/133 x 10°x1.330111728<10° =1.315479374 10°

z" = 340x10° +.00176901x 10° = 3.40176901x 10° = 340 x 10°
Modified algorithm

f,(t2,2,,2,2) =2, - Zsgnz,
26 = 200 4.1 (Jknkiz + Kk + k)

where

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 285 - 296
Control of pure inertia plant  T. A. Adewale andF. M. Aderibighe J of NAMP



=
<
=

I

(k) (k) (k) (k) S(k)y = (k) (k) (k)
(" 2", 2,7, 237,2,7) = 2,7 - 2,7 sgn z,),

k12

fz(t(k)’zi(k) * %hkn’ z, + %hkn’ 7" + %hkll' z, + %hkn’)
o, L w o 1 0 4 1
= (24 + Ehkn) - (Zz + Ehkn)sgn (Zz + Ehkll)

1 h h h
kg = fz(t(k) +Eh’ zi(k)’+E(k11 +9k,;,), Zék) +E(k11 +9k;,), Zz(tk) +E(k11 +9K,,) ]

(k) h

h
= ng) + E(kll + gklz) - (22 E

h
(k1 + 9Ky,)) sgn (z° 16 (kyy +9Kky,)
h h
k= f,t" +h,Z9 + ﬁ(_skll +5k,, +22k;5), Z0 + ﬂ(_g’kﬂ + 5Ky, +22K,5)
h h
Zék) * 24 (=3ky, +5ky, +22K,5), Zik) + 24 (=3Kky, +5ky, +22K,;))

=[z + 2L14 (=3Kyy + 5Ky, +22K;;5) - (Zék) + 2L14 (=3Kkyy +5ky, + 22k13)j sgn z{?
h
+ ﬂ (=3kyy + 5Ky, +22K,;)

h
Zél) = zéO) + E(\/kllklz + \/klzkls + \/k13k14)

k, =z -z sgn z{” = 43x10° - 133 x 10°) sgn (133 x 10°)

=439 x 107 - (1.33)?10%sgn (133 x 10°)

439 + x 10° -1.7689 x 10 sgn (.0000133) = 4.39 x 10°)* -1.7689 x 10™
439 x 10° -.0017689 x 10° = 4.3882311 x 107

k, =2z +% (0.001) (4.3882311x10°) - (1.33x 10°) sgn (L33 x 10°)

= 439 x 10° + (05)(.001) (4.388x 10°) - (1.7689x 107)
=43 x 10° +(.0009(4.388x 10°) - (1.7689x 107)
= [4.3+(.0005(4.389 -1.7689 x 10° -.2.533294x 10°

0= 247+ (i 9k = (27 +1 (6, + 9,)° 500 (27 41 (ki +9K,) et

4.0 Summary of the algorithm: The successive variation
of extremals with invariant costate imbedding algorithm (SVEIC))
The algorithm solves the problem:
ty
Minimize J = h(x(t)) + J‘g(g((t),g,(t),t)dt subject to the dynamical constraints

to

x(t) = f(x(t),u(t),t)
Form the Hamiltonial functional.
Step 1
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oH
For the reduced differential equations by solvihg Equationa— =0 for u(t)in terms of
u

X(t),A(t) and substituting in the state-costate equatiorabtain the equivalents of equations (1.5) and

(1.6) which contains only terms xt) andt.
Step 2

Use as initial guess the value of the costate vedgc(to) obtained from the application of the

invariant imbedding algorithm and set the iterationinterk = 0
Step 3

Using A(t,) = A, (t,) and X(t,) =X, as initial conditions, integrate the reduced statstate
equations and the influence function equations4(2uiith the initial conditions given by equatiorQjdof

[ref. 1] from to to t.  Store only the valuesd,(t;), X (t;) and the n x n matrices
Py (A (to), (1), B(A (). (L) .
Step 4

Check to see if the termination criterirﬂnk(tf) —Z_h(x(tf ))|[< y is satisfied where is a
B X

small prechosen positive constant. If it is, use final iteratesd;(to) to integrate the state and costate
equations and print out the optimal states androtsat Otherwise, find new values fod,(t,), i.e.

A1 (t;) using equation (1.17). Set k + 1 and return to step 3.

Now steps 1 and 2 are performed off-line by ther wshilst steps 3 and 4 are performed on a
digital computer.
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Figure 4.1: Information flowchart for SVEICI.

Initial data: t, = 0,t, =1, At = 0.001

Iteration:k = 0, initial guess, (t,) = [0 1JT obtained from inv, imbedding method
ZZ1\to ’
3

:

X(t,) = (2-2)",P, = | (identity matrix) P, = O, the zero matrix
v
store A, (t,)
v

Integrate the 12 equations fc0to 1
v

Compute and output cost functional vaJ.
v

Setk=k+1
v

Calculate and outp%/_‘(tf ) H

Yes
—»| Output results

No
Computed, ,, (t,) =
v
ComputeﬂkJrl (to) - [/1 (tf )] ;ldk (tf )
v
output P, , A(t; )
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5.0 Conclusion

The problem is taken to be that of minimizing three required to transfer the system between
initial and final states. The extremal control moaximizeH for the extremal solutions to minimize the
performance index. Although the improvement ingbkution is appreciably small, the introductiontioé
fifth term in theR-K-4 type integrator employed leads to an error tiwas not violate the constraint and
does not have anything to do with the boundary.
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