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Abstract 
 

Two kinds of dimensionless pressure derivatives, DD tp ∂∂ /  

and DDD tpt ∂∂ / , have been studied for a horizontal well in a bounded 

reservoir subject to bottom water drive mechanism. The influence of 
dimensionless well length and reservoir geometry was investigated. 
Possible flow periods for a given well completion were identified.  
Results show that dimensionless well length is a major determinant of 
the magnitude of both derivatives, especially at early flow times, and 
determines the number of flow periods obtainable. Well length 
modification can be used to produce the effects of a square reservoir 
with a rectangular reservoir and vice versa. Finally, large reservoirs 
are found to produce more clean oil than small reservoirs, given the 
same well completion and reservoir properties. 

 
 
 

1.0 Introduction 
In a bottom water drive reservoir, water encroaches into the wellbore directly from the bottom of 

the well, leading to water breakthrough. This can cause prolonged well shut down and expensive workover 
job on the wellbore.  

Dimensionless pressure derivatives of the type DDD tpt ∂∂ / were first introduced into the petroleum 

literature by Bourdet et al [12]. Dimensionless pressure derivative plots most commonly used for diagnosis 
today and for which soft wares are available to generate, have the forms DDD tpt ∂∂ /  or DD tp ln/ ∂∂  and 

DwDwD tpp ln/2/ ∂∂∂ . They expose both the wellbore and reservoir character more explicitly than the 

conventional test analysis techniques that were hitherto used in transient well test analysis. These 
derivatives are plotted on log-log axes against dimensionless time. Some of the plots show, depending on 
the nature of the plots, wellbore completion performance, damage index, presence or absence of 
boundaries, reservoir anisotropy, wellbore storage and skin factor.  

When these commercial softwares produce dimensionless derivatives plots, interpretation may be 
difficult if an understanding of the behaviour of the physical reservoir system is lacking. This paper is 
therefore aimed at studying the possible trends and characteristics most likely to be observed on derivative 
plots if the horizontal well is subject to bottom water drive mechanism. In particular, factors affecting clean 
oil production in both square and rectangular oil field patterns are investigated. Both wellbore and skin are 
however not considered, not because they are not important or impossible to do so but an ideal behaviour is 
assumed. 

Ozkan [3] studied a similar reservoir model but did not include the influence of field patterns on 
clean oil production and only laterally infinite reservoir pattern was discussed. This paper discusses the 
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influence of reservoir geometry and assumes that all the external boundaries, except the bottom of the 
reservoir, are sealed. The study will therefore provide a wide range of flexible options for well completion 
than can guarantee clean oil production.  
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i = positions along x or y or z axes, ft; DD Lh /1= ; ∆  = drop; p = pressure, psi;  

k = permeability, md; h = pay thickness, ft; t = time, hours; q = flow rate, STB/Day;  
µ  = oil viscosity, cp; B = oil formation volume factor, bbl/STB;  
ct = total fluid compressibility, 1/psi; L = well length, ft;  
erf = error function; τ = dimensionless dummy time variable;  
DPG = dimensionless pressure gradient p’

D;  
PDD = dimensionless pressure derivative, tD p’

D 
Subscripts 
x, y, z = x, y, or z, directions; 
D = dimensionless; 
 w = wellbore; e = external;  
 
2.0 The basis of pressure derivatives 
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Derivatives of the type in equation (2.2) were used in Refs. [4] to [6] in pressure transient test analysis. 
Dimensionless pressure gradients of the form in equation (2.2) can be used to delineate flow periods 
normally encountered in horizontal wells.  This procedure eliminates guessing and the use of rigid 
approximation expressions.  Changes in gradients would correspond to changes in flow periods and could 
therefore be used to easily estimate the integration intervals in equations of the type similar to equation 
(2.1). 
 
3.0 Reservoir and mathematical description 

An anisotropic reservoir with closed lateral boundaries is assumed. The reservoir contains a 
horizontal well and the reservoir energy for oil production is obtained from contiguous bottom water as 
shown in Figure 3.1. Origin of well axes is at center of the well; that is, at (xD , yD , zD, LD) = (0 , 0 , zwD, 
LD/2). 

Accordingly, the dimensionless pressure distribution expression for this reservoir model is written 
as follows using Green’s and source functions [3, 7, 8]: 
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Equation (3.1) shows all the possible reservoir boundaries that can be felt by pressure transients created in 
the horizontal well. However, not all of these boundaries can be felt in the same transient test period.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The number of boundaries that can be felt in the event of a well test depends on  
(1) reservoir anisotropy,  
(2) production/injection rate,  
(3) reservoir size, and  
(4) the horizontal well length. Possible flow periods, i.e., boundaries that may be 

felt, and their pressure distributions are discussed below. 
 
4.0 Solutions to equation (2.1) 

Using the superposition theorem, if uniform rate prevails, the dimensionless pressure drop at the 
expiry of infinite-acting radial flow period and the commencement of effect of any boundary (wellbore or 
reservoir), the solution to equation (2.1) may be written as: 
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z 

zwD 

hD 
Horizontal well 

LD/2 

No-flow at external x 
and y boundaries  

Upward water 
movement 

Figure 3.1: Bottom water drive reservoir model 
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4.1 Early radial flow period 
This is the first noticeable flow period at inception of transient flow in the well and is unaffected 

by reservoir or wellbore boundaries. During this period, flow gradients portray the reservoir as infinite. 
This period is terminated immediately a boundary of any kind is felt. The dimensionless pressure 
distribution during this period is 
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where α = 2 for xD < 1, and 0 for xD > 1 for an isotropic reservoir. 
4.2 Other flow periods 

Early linear, transition or steady-state may occur after the early radial flow. The possibility of 
linear flow period occurring does not exist if the bottom reservoir boundary is felt first. The bottom layer, 
which is modeled as a constant-pressure boundary, acts to curb reservoir pressure decline and bring about  

 
 
 
 

eventual steady-state. The onset of steady state may be delayed if  
(1) kh >> kv,  
(2) production rate is low,  
(3) the reservoir thickness is large, and  
(4) the well is located near the upper vertical boundary.  
If kh >> kv, flow transients are propagated rapidly along the x-axis and this dominates this period until the 
effects of the ends of the wellbore are felt. But, if the wellbore is sufficiently long in relation to the 
reservoir thickness and kv >> kh, the effect of the contiguous bottom water is eventually felt first and 
steady-state results.  However, it should be noted that delaying steady-state in the case considered here is 
tantamount to prolonging the early radial (infinite-acting, clean oil production) period. Therefore, for an 
anisotropic reservoir, the dimensionless pressure expression for the second flow period can be written as 
follows if the lower and upper reservoir boundaries (z-axis) are felt before the ends of the wellbore along 
the x-axis and the ends of the reservoir along the y-axis: 
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or, 



 
Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 225 - 236 
Gradient and pressure derivative characteristics of a horizontal well            E. S. Adewole  J of NAMP 
 

[ ]

.
2

)12(
sin

2

)12(
sin)

4

)12(
exp(

)coscossin)exp(
12

1
2

8

1
2

224/)

1
2

22

0

4/)()(

2

22

τππτπ
τ

πππτπ
π

π

τ
τ

α

τ

τ

d
h

zl

h

zl

h

le

x

xn

x

xn

x

n

x

n

n

x

k

k

x

d
e

Lkk

kk
p

l D

D

D

wD

D

yy

t

t n eD

D

eD

wD

eDeD

eD

yeD

t zzyy

Dzy
D

wDD

D

De

D wDDwDD

∑

∫ ∑

∫

∞

=

−−

∞

=

−+−−

−−−−•

•







−++

=

  (4.4) 

if the ends of the reservoir along the x-axis and the lower and upper reservoir boundaries are felt first before 
the ends of the reservoir along the y-axis; or, 
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if the external boundaries of the reservoir along the z-axis are felt first before the ends of the reservoir 
along the x-axis and y-axis. However, if the ends of the reservoir boundaries along both y- and z-axes are 
felt first before the ends of the wellbore, then 
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Equations (4.1) to (4.6) show that only two general flow periods are observable. These are either  
(1) early radial followed by linear periods or  
(2) early radial followed by steady-state periods.  

If any of the reservoir or wellbore boundaries is not felt before the lower boundary, then such boundary 
may never be felt again in the course of flow in the wellbore. The emergence of steady-state, as a result of 
influx and production of water is irreversible. Therefore, the period of clean oil production can be extended 
by carefully selecting production and wellbore completion options, so that no external boundary is felt.  It 
should be noted that equations (4.1) to (4.5) are intended to show the mandatory early radial period, which 
flourishes before the effect of any boundary and to assist in the computation of dimensionless pressure 
gradients throughout any flow period. Another major advantage of this presentation is that gradients so 
calculated can easily show departures or transitions between flow periods thus helping in the more correct 
flow period delineation. 

Dimensionless pressure gradients of equation (2.2) are uniform for the same flow period, and 
would change if another kind of flow period or another boundary is encountered. The changes represent 
fluid flux that is possible due to available swept area. Therefore, the period of oil production may manifest 
more than one type of dimensionless pressure gradient before the onset of steady-state. 
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5.0 Computation of dimensionless pressure gradients, p׳D 
According to equation (2.2) dimensionless pressure gradients for equations (4.1) to (4.6) are 

derived, respectively, as 
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Dimensionless wellbore pressure derivatives were computed for a horizontal well parameters: yD = 
ywD = 2 x 10-3, xD  = xwD = 0.732 (infinite conductivity condition), zD = 0.5hD, (central well location along 
the vertical axis), kx = ky = kz (isotropic reservoir case), hence, hD = 1/LD, different dimensionless well 
lengths, LD. Both square and rectangular geometries are considered and are selected through different 
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values of xeD and yeD, xeD  =  yeD gives a square geometry and otherwise gives a rectangular geometry. 
However, square and rectangular drainage geometries are considered using only equation (5.1), where all 
the lateral and vertical boundaries are assumed to have been felt.  Equations (5.3) to (5.5) are used to 
compute dimensionless pressure gradients for cases where at least one external boundary is infinite. Only 
water arrival pattern into the wellbore is critical to optimization of clean oil production. Elsewhere, that is, 
in the reservoir, water influx pattern is only critical when sweep and displacement efficiencies are needed. 
The different geometries considered would help to select suitable well spacing should the size of a field 
subject to bottom water drive warrant exploitation with one or more horizontal wells. Finally, infinite 
conductivity well is chosen to determine the propensity of the well to flow unaided (natural flow). Results 
obtained are shown in Tables 5.1 to 5.4 below. 

 

Table 5.1: Dimensionless pressure derivatives and gradients for rectangular geometry 
(a) (xeD,, yeD) = (1,4) 
 

p׳D(tDp׳D) Dimensionless 
Time, tD LD= 0.5 LD=1.0 LD=2.5 LD=10 
10-5 50000 (0.5) 25000 (0.25) 10000 (0.1) 2500 (0.025) 
10-4 5000  (0.5) 2500 (0.25) 1000 (0.1) 259 (0.0259) 
10-3 500 (0.5) 250 (0.25) 108 (0.1) 32 (0.032) 
10-2 51.4 (0.514) 30 (0.30) 17 (0.17) 3.3 (0.033) 

10-1 6.3 (0.63) 6.1 (0.61) 2.7 (0.27) 0.25 (0.025) 
1 1.2 (1.2) 0.61 (0.61) 0.1 (0.1) 0 (0) 
10 0.1 (1.0) 0 (0) 0 (0) 0 (0) 

 

(b) (xeD,, yeD) = (1,2) 
 

p׳D(tDp׳D) Dimensionless 
Time, tD LD= 0.5 LD=1.0 LD=2.5 LD=10 
10-5 50000(0.5) 25000(0.25) 10000(0.1) 2500(0.025) 
10-4 5000(0.5) 2500(0.25) 1000(0.1) 250(0.025) 
10-3 500(0.5) 250(0.25) 116(0.116) 40(0.04) 
10-2 51(0.51) 34(0.34) 24(0.24) 4.1(0.041) 
10-1 6(0.6) 10(1.0) 4.3(0.43) 0.25(0.025) 
1 0.83 (0.83) 0.8(0.8) 0.1(0.1) 0(0) 
10 0.1(1.0) 0(0) 0(0) 0(0) 

 
(c) (xeD,, yeD) = (2,1) 
 

p׳D(tDp׳D) Dimensionless 
Time, tD LD= 0.5 LD=1.0 LD=2.5 LD=10 
10-5 50000(0.5) 25000(0.25) 10000(0.1) 2523(0.02523) 
10-4 5000(0.5) 2500(0.25) 1000(0.1) 272(0.0272) 
10-3 500(0.5) 261(0.261) 119(0.119) 43(0.043) 
10-2 53(0.53) 36(0.36) 26(0.26) 4.5(0.045) 
10-1 7.7(0.77) 10(1.0) 4.5(0.45) 0.25(0.025) 
1 1.1(1.1) 0.6(0.6) 0.1(0.1) 0(0) 
10 0(0) 0(0) 0(0) 0(0) 

 
 
 

(d) (xeD,, yeD) = (2,4) 
 

p׳D(tDp׳D) Dimensionless 
Time, tD LD= 0.5 LD=1.0 LD=2.5 LD=10 
10-5 50000(0.5) 25000(0.25) 10000(0.1) 2500(0.025) 
10-4 5000(0.5) 2500(0.25) 1000(0.1) 256(0.0256) 
10-3 501(0.501) 253(0.253) 105(0.105) 30(0.030) 
10-2 51(0.51) 28(0.28) 14.2(0.142) 3.0(0.030) 
10-1 5.6(0.56) 4.7(0.47) 2.0(0.20) 0.25(0.025 
1 0.56(0.56) 0.45(0.45) 0.1(0.1) 0(0) 
10 0(0) 0(0) 0(0) 0(0) 
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(e) (xeD,, yeD) = (4,2) 
 

p׳D(tDp׳D) Dimensionless 
Time, tD LD= 0.5 LD=1.0 LD=2.5 LD=10 
10-5 50000(0.5) 25000(0.25) 10000(0.1) 2500(0.025) 
10-4 5000(0.5) 2500(0.25) 1000(0.1) 260(0.026) 
10-3 511(0.511) 255(0.255) 109(0.109) 33(0.033) 
10-2 61(0.61) 30(0.30) 17.8(0.178) 6.0(0.06) 
10-1 15(1.5) 6.5(0.65) 3.0(0.3) 0.25(0.025) 
1 4.1(4.1) 0.57(0.57) 0.1(0.1) 0(0) 
10 0.1(1.0) 0(0) 0(0) 0(0) 

 
Table 5.2: Dimensionless pressure derivatives and gradients for square geometry 

 

(a) (xeD,, yeD) = (1,1) 
 

p׳D(tDp׳D) Dimensionless 
Time, tD LD= 0.5 LD=1.0 LD=2.5 LD=10 
10-5 50000(0.5) 25000(0.25) 10000(0.1) 2538(0.02538) 
10-4 5000(0.5) 2500(0.25) 1000(0.1) 286.8(0.02868) 
10-3 505.5(0.5) 268.8(0.2688) 131(0.131) 54.4(0.0544) 
10-2 55.4(0.554) 43(0.43) 37(0.37) 8.1(0.081) 
10-1 9.4(0.94) 14.6(1.46) 6.9(0.69) 0.25(0.025) 
1 1.7(1.7) 0.9(0.9) 0.1(0.1) 0(0) 
10 0.1(1.0) 0(0) 0(0) 0(0) 

 

(b) (xeD,, yeD) = (2,2) 
 

p׳D(tDp׳D) Dimensionless 
Time, tD LD= 0.5 LD=1.0 LD=2.5 LD=10 
10-5 50000(0.5) 25000(0.25) 10000(0.1) 2500(0.025) 
10-4 5000(0.5) 2500(0.25) 1000(0.1) 261(0.0261) 
10-3 500(0.5) 256(0.256) 110(0.110) 34(0.034) 
10-2 51.7(0.517) 30.5(0.305) 18.3(0.183) 3.5(0.035) 
10-1 6.5(0.65) 6.7(0.67) 3.0(0.30) 0.3(0.03) 
1 1.0(1.0) 0.6(0.6) 0.1(0.1) 0(0) 
10 0.1(1.0) 0(0) 0(0) 0(0) 

 

Table 5.3: Dimensionless pressure derivatives and gradients when xeD is not felt  
and yeD boundaries are sealed 

(a) (xeD,, yeD)= (1,4) 
 

p׳D(tDp׳D) Dimensionless 
Time, tD LD= 0.5 LD=1.0 LD=2.5 LD=10 
10-5 50000(0.5) 25000(0.25) 10000(0.1) 2500(0.025) 
10-4 5000(0.5) 2500(0.25) 1000(0.1) 251(0.0251) 
10-3 500(0.5) 250(0.25) 100(0.1) 25(0.025) 
10-2 50(0.5) 25(0.25) 10.5(0.105) 2.5(0.025) 
10-1 5.5(0.55) 2.7(0.27) 1.0(0.1) 0.3(0.03) 
1 0.62(0.62) 0.3(0.30) 0.1(0.1) 0(0) 
10 0.1(1.0) 0(0) 0(0) 0(0) 

 
 
 

(b) (xeD,, yeD) = (1,2) 
 

p׳D(tDp׳D) Dimensionless 
Time, tD LD= 0.5 LD=1.0 LD=2.5 LD=10 
10-5 50000(0.5)  25000(0.25) 10000(0.1) 2500(0.025) 
10-4 5000(0.5) 2500(0.25) 1000(0.1) 251(0.0251) 
10-3 500(0.5) 250(0.25) 100(0.1) 25(0.025) 
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10-2 50(0.5) 25.4(0.254) 10(0.1) 2.5(0.025) 
10-1 6.0(0.6) 2.6(0.26) 1(0.1) 0.3(0.03.) 
1 0.7(0.7) 0.3(0.3) 0.1(0.1) 0(0) 
10 0.1(1.0) 0(0) 0(0) 0(0) 

 
(c) (xeD,, yeD) = (2,1) 
 

p׳D(tDp׳D) Dimensionless 
Time, tD LD= 0.5 LD=1.0 LD=2.5 LD=10 
10-5 50000(0.5) 25000(0.25) 10000(0.1) 2500(0.025) 
10-4 5000(0.5) 2500(0.25) 1000(0.1) 250(0.025) 
10-3 502(0.502) 250(0.25) 100(0.1) 25(0.025) 
10-2 52.1(0.521) 25(0.25) 10(0.1) 2.5(0.025) 
10-1 6.1(0.61) 2.6(0.26) 1.0(0.1) 0.3(0.03) 
1 0.8(0.8) 0.3(0.3) 0.1(0.1) 0(0) 
10 0.1(1.0) 0(0) 0(0) 0(0) 

 
Table 5.4: Dimensionless pressure Derivatives and Gradients when yeD is not felt  

and xeD boundaries are sealed 
 

(a) (xeD,, yeD) = (1,4) 
 

p׳D(tDp׳D) Dimensionless 
Time, tD LD= 0.5 LD=1.0 LD=2.5 LD=10 
10-5 50164(0.5) 25560(0.26) 10953(0.11) 3618(0.036) 
10-4 5052(0.5) 2677(0.27) 1301(0.13) 596(0.060) 
10-3 516(0.52) 306(0.31) 194(0.19) 112(0.11) 
10-2 55(0.55) 42(0.42) 36(0.36) 5.5(0.055) 
10-1 6.5(0.65) 3.1(0.31) 3.0(0.30) 0.3(0.03) 
1 0.8(0.8) 0.9(0.9) 0.1(0.1) 0(0) 
10 0.2(2.0) 0.2(2.0) 0(0) 0(0) 

 
(b) (xeD,, yeD) = (2,1) 

 

p׳D(tDp׳D) Dimensionless 
Time, tD LD= 0.5 LD=1.0 LD=2.5 LD=10 
10-5 50099(0.5) 25339(0.25) 10576(0.1) 3176(0.032) 
10-4 5031(0.5) 2607(0.26) 1182(0.12) 459(0.046) 
10-3 510(0.51) 284(0.284) 157(0.16) 78(0.078) 
10-2 53(0.53) 35.4(0.354) 26(0.26) 4.5(0.045) 
10-1 6.0(0.6) 5.0(0.5) 2.0(0.20) 0.30(0.03) 
1 0.6(0.6) 0.40(0.40) 0.1(0.1) 0(0) 
10 0.1(1.0) 0(0) 0(0) 0(0) 

 

(c) (xeD,, yeD) = (4,2) 
 

p׳D(tDp׳D) Dimensionless 
Time, tD LD= 0.5 LD=1.0 LD=2.5 LD=10 

10-5 50093(0.5) 2819(0.28) 10543(0.1) 3137(0.031) 
10-4 5029(0.50) 361(0.36) 1171(0.12) 447(0.045) 
10-3 509(0.51) 57(0.57) 154(0.15) 75(0.075) 
10-2 53(0.53) 12.3(0.12) 25(0.25) 4.2(0.042) 
10-1 6.0(0.6) 2.7(0.27) 2.7(0.27) 0.3(0.03) 
1 0.9(0.9) 0.1(0.1) 5.5(5.5) 0(0) 
10 0.1(1.0) 0(0) 0.4(4.0) 0(0) 

 
 
 

6.0 Results and discussion 
6.1 Early Time  
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p’D ≈ 1/(4 tD LD) for cases represented by equations (5.1) and (5.3) LD and tD govern dimensionless 
gradients. But in equations (5.5) and (5.4), at tD ≥ 10-6, the reservoir geometry and well length affect flow 
gradients. 
6.2 Late Time 

First and final steady-state is attained faster the larger the LD. Larger LD yield lower p’D. However, 
some maximum points are observed across the ranges of dimensionless lengths chosen. For an isotropic 
reservoir case xeD = 2.0 means full well penetration of the reservoir along the x-axis, but for values of  xeD  
> 2.0, there is partial penetration. Partial penetration gives rise to limited reservoir exposure to fluid flow. 
This accounts for the larger dimensionless pressure gradients observed for all cases of  xeD > 2.0 for the 
same LD. 

For all the cases of reservoir geometries considered, dimensionless flow gradients decrease with 
increasing dimensionless well length. When all the reservoir boundaries are felt (late time flow), 
dimensionless wellbore pressure gradients are inversely proportional to the product of lateral extents; i.e., 
(xeDyeD) for the same LD. This means that for the same tD , small reservoirs produce the effects of larger 
dimensionless pressure drop than larger reservoirs. The implication of this is that, given the same 
sensitivity of an aquifer body and well completion, small reservoirs would experience earlier water 
production than large reservoir. The effects of early water production by small reservoirs may be mitigated 
by well length extension. Meanwhile, geometries of the same dimensionless area but different widths, e.g. 
(xeD ,yeD ) = (1,4) and (xeD ,yeD ) = (2,2), have different dimensionless pressure gradients when their 
extremities are eventually felt at late flow dimensionless times. This behaviour shows that the effect of 
square reservoir geometry can be produced by a rectangular geometry, and vice versa, by simply modifying 
the wellbore length (either by further drilling, stimulation or plug back). This is the only option available to 
an operator because the reservoir area cannot be modified. This guideline can be used to select drainage 
areas, and therefore well spacing, in a field containing a network of horizontal wells, all subject to bottom 
water drive energy.  

Results in Table 5.4 and Table 5.3, show that for the same reservoir geometry, larger 
dimensionless pressure gradients are obtained if the xeD boundaries are felt first than the yeD  boundaries 
before steady-state effects. If the yeD  boundaries are felt first, gradients are actually the same for early times 
(tD  ≤ 10-6) for all LD as for most geometries. But, if the xeD boundaries are felt first, the gradients are larger 
for the tD  ≤ 10-6 for all LD. However, if the reservoir is sufficiently large such that none of the lateral 
extremities is felt during the period of clean oil production, results in Table 5.4 show that sufficiently high 
gradients, comparable to those in Figure 6.1 are obtained. These results clearly show that, if the reservoir 
experiences infinitely far away lateral boundaries, it has tremendously high propensity to produce clean oil. 

 
7.0 Computation of dimensionless pressure derivative, tDp’ D 

Dimensionless pressure derivative expressions for equations (4.1) to (5.5), derived according to 
equation (2.3) are  
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The same parameters used for computing gradients were used to compute all the values of  tD∂ 
pD/∂ tD. The results are shown in Tables 5.1 to 5.4. At early times, dimensionless pressure derivatives are 
governed chiefly by dimensionless well length, and is approximately given as 1/(4LD) for an anisotropic 
reservoir. In all the cases considered, single maximum points were observed at tD approximately equal to 
1/LD and independent of reservoir geometry. For LD = 2.5, however, there is sudden collapse of derivative 
immediately after tD = 1/ (4LD) for some reservoir geometries. For all cases, onset of steady-state is 
characterized by rise in dimensionless pressure derivative for tD > 1/ (4LD). These dimensionless times 
would correspond to the last change in ∂ pD/∂ tD plot since the encroaching water is incompressible. 

At late dimensionless times only, when the lateral boundaries are felt, square reservoirs yield 
dimensionless pressure derivatives that are inversely proportional to the product xeD yeD. But, during the 
same dimensionless times derivatives for rectangular geometries behave differently. In this case, increases 
in yeD produce decreasing derivatives for fixed xeD  and LD . Furthermore, increases in xeD  for fixed yeD  and 
LD  either produce increasing or decreasing dimensionless pressure derivatives depending on well 
penetration along the x-axis. For fully penetrating wells, lower values of derivatives are obtained for late 
dimensionless times, while larger values are obtained for cases of partial penetration.  The same behaviour 
was observed for dimensionless pressure gradients. 

When no lateral boundary is felt, pressure gradients are as high as when either or both lateral 
boundaries is/are felt. This mean that the best well completion, which could also give high productivity, is 
achieved if no lateral reservoir boundary is felt during flow. Such completion could be stimulated for 
further clean oil production if well penetration, especially along the x-axis is implemented. The 
dimensionless pressure derivatives, on the other hand, show in Figure 7.1  that, if both xeD  and yeD 
boundaries are not felt, that is, still infinitely far, derivatives are greater than those obtained if the yeD  

values are felt and xeD  infinite by the quantity: 
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Figure 7.1: Derivatives for reservoir flow unaffected by external extents 
for all dimensionless flow times and reservoir geometries. However, those completions with all infinite 
lateral boundaries are lower by the quantity: 

DwDD tyy

DeD

wD

eD

D

n eDeD

DeD

yeD

D

t

e

x

xn

x

xn

x

n

x

tn

n

x

k

k

x

t 4/)(

1
22

2 2

]coscossin)exp(
12

1[
−−∞

=

•−+ ∑
ππππ

π
π

 (7.7) 

for all dimensionless times and for all reservoir geometries; that is, about half of equation (7.7) 
 
8.0 Conclusion 

Well completion type is very crucial to ultimate oil recovery from any given reservoir system, 
even with a horizontal well. Water influx or eventual production from any kind of well completion is 
inimical to the economics of oil and gas production. Pressure derivatives and gradients are capable of 
exposing the true character of an entire reservoir system. At any stage in the life of a well, these 
characteristics can be used to decide on the best production method that can guarantee more economic 
production. To adequately take advantage of the characteristics presented by a reservoir system, a basic 
understanding is imperative. This is the major reason why this study is necessary for a horizontal well 
under the influence of bottom water.  

In this paper, pressure derivatives and gradients of a bottom water drive reservoir drained with a 
horizontal were calculated and factors affecting clean oil production were investigated. The following 
major conclusions were drawn from this study: 
(1) p’

D and tD p’
D are both inversely proportional to LD and the product (xeDyeD), at early and late flow 

times, respectively. 
(2) Large reservoirs have the tendency to produce clean oil longer than small reservoirs of the same 
well completion and reservoir properties. 
(3) Both p’

D and tD p’
D exhibit single maximum points on log-log plots against tD  at tD = 1/(4LD). 

(4) At water breakthrough, tD p’
D collapses to zero; water fillup (onset of steady state) follows the 

maximum point. 
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(5) Well length modification can produce the effects of a square reservoir for a rectangular reservoir 
and vice versa. 
(6) Depending on flow rate, reservoir anisotropy, aquifer responsiveness, more than two flow periods 
may be achievable for a particular well completion.  
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