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Abstract

In this work, a finite element/eigen value method is formulated to
solve the finite element models of time-dependent temperature field problems
in non-homogenous materials such as functionally graded materials. The
method formulates an eigen value problem from the original finite element
model and proceeds to calculate the eigenvectors associated with the various
eigen values from which the solution can be obtained thereby avoiding the
use of time discretization that require lengthy calculations. The results
obtained are exponential functions of time which when compared with the
exact solution eventually tended to the steady state solution.
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1.0 Introduction

Recent experimental advances in material scienge slaown that a large percentage of materials
in service are composites especially in high termjoee and high heating rate service environmegisgd
the necessity to study the thermal behavior of amsites in the form of functionally graded materials
A functionally graded material is basically a condtion of two material phases that has a gradual
transition from one material at one surface to la@omaterial at the opposite surface. Functiorgiaded
materials vary from homogenous ones in that thedperties vary spatially which makes the thermal
analysis of functionally graded materials considgramore complex than in the corresponding
homogenous case. However since most of the furadtiograded materials show a one dimensional heat
non-homogeneity the temperature field can easilgtdained by the composite laminated plate modeafo
simple one dimensional heat conduction as has thees by various experts and design analysts.

Wang and Tian [1] gave a plausible solution to sfant temperature field problems by means of thiefi
element/finite difference method. Finite elemerdlgsis is well treated in many standard texts 2e@)]]

In this paper, the finite element method in additio an eigenvalue method is employed to solve
the system of time dependent equations that destirébtransient temperature distribution in a fiometlly
graded material, initially addressed by Wang arahTsee [1] and the references therein

In the finite element-eigenvalue method, we dgvel® governing equation which is parabolic in
nature; the variational form of the equation is aietd over each element followed by spatial
approximation of the position-dependent variabléshe problem, the end result is a set of ordinary
differential equations in time (semi-discrete mgdElnite element algebraic equations are then ldpee
from the semi discrete finite element model by folating the corresponding eigenvalue problem from
which the eigenvalues and eigenvectors are obtaifbd solution can now be obtained by applying
fundamental eigenvalue/eigenvector solving schenmathematics.
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The solutions obtained by the finite element/eigéme method are as accurate as those given by
the finite element/finite difference method. Thevaatage of the finite element/eigenvalue methothas
very few computations are needed to arrive at thady state solution with high accuracy while timétd
element/finite difference method requires a largenber of computations due to time discretization in
order to achieve the appropriate accuracy whichtdirthe use of the method to the availability of a
computational software. Thus this work produceslyigaccurate solutions with fewer computations and
less time.

2.0 Formulation of the governing equations
Assuming the solid under investigation occupiepace within a coordinate systexmwhich is
surrounded by spac® Fourier's Law of heat conduction states that likat flux vector of the solid is

given as q= —KAZ—I (2.1)

wherek = K, = thermal conductivity tensor. For an anisotropilidso
Kij = Kji (2.2)
By the balance (conservation of energy) withingbkd.
Rate of heat energy added to the elements = Rate of heat energy lost from the element
That is

Energy into element + energy generated within the element = change in internal energy + energy out of
the element

—KA% +Q6dx:pCA%dx{KAﬂ +£(KA%jdx} or QAdXZpCAa—TdX+2(KA£jdX

oX ox OX 0X 0X

: 0 oT oT

l.e. - - = - 2.3
OX[K 6x)+Q pCAax (&)

This is the governing equation where material prige ©,C andK are considered to be
complex function of spatial coordinate, and thegderature is a function of spatial coordinate aneti

ie. T =T(xt) (2.4)

This equation can be solved for prescribed boundadyinitial conditions as follows
Initial condition:
This specifies the temperature distribution at traso

T(x,0)=T,(x,0) (2.5)

Boundary condition:
Essential boundary condition: specify temperafues boundaries
Natural boundary conditions: specify heat flgx

3.0 Finite element formulation.
In order to obtain the variational form of the heguation assume that the medium undergoes a

virtual temperature chang@T i.e. JT now serves as the weight function in the variatidarm

g (,0T oT
-—| K—|+poc—-Q0Tav=0 3.1
ﬂ 6x( 6xj pe ot Q} Y G4

The above integral yields
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00T . 0T

jpc—aTdv+j —K—d jK oTdv - J'QéTdv 0 (3.2)
ax
Let J-K 5Tdv+j QJTdv = Q (3.3)
O
The model now takes the formJ- pca—TéTdv @Kﬁd -Q=0 (3.4)
s ot Q gt ox

Let the space around the solid be divided intondefinumber of elements interconnected at the
nodes of the elements. The temperature must thergressed in terms of the values at the node thus

T(xt)=[N,]{T} (3.5)

where [ Ng] is the shape function matrix which is a complexction ofx. The temperature gradient at

any point within the regiof is given as
T

[oT]= %X. =[B,]{T} (3.6)

where [Bg] =[| ][Ng] (3.7)

Where[l ] is a differential operator matrix. Introducinggtinto the finite element model above yields:

i} (i ={ ) e

where [M] :.[Qpc[Ng]T [N,]dQ (3.9)
[K] :jQ[BB]T[K][BB]dQ (3.10)

[K] = Matrix of thermal conductivities of the medium. uEhthe finite element model generates a system

of parabolic differential equations in time.

The integrals involved in the determination of [Bd [K] can be evaluated using the numerical
integration scheme such as Gauss-Legendre integratherefore the problem has been reduced from a
partial differential equation in to variable x amdo a matrix of ordinary differential equations ialn we
now solve using the eigenvalue-eigenvector solutiethod.

4.0 Eigenvalue problem formulation

. ]
This method involves the decomposition of the sofubf the mode[M]{T} +[ K]{T} ={4 into

{Ty={7},+{1}, (4.1)

is the homogeneous solution satisfying

miff} +IkKT, =(0 w2

And {T} o is the particular solution satisfying

Where{T}

h
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mifi] <l ={o) w3
4.1 Homogenous solution i

Let matrices [M] and [K] be matrices of constarlnsrsthat[M ][T] +[K]{T}h =0 is a set
h

of linear constants —coefficient ordinary diffefi@hequations. To solve this, we assume

[T], =V exp(-At) (4.4)
Substituting this in equation 4.4 yield (K -AM )I/ eXp(—At) =0 (4.5)
from which (K-AM)v =0 (4.6)
or detK-AM v=20 @7

From which the eigenvalues are obtained. Backtsgutisn of the eigenvalues into equation 4.1 resin
the eigenvectork/lT ,VZT AN ,VjT from which the homogenous solution can be wrigten

[T], = cvy exd— At) + c,v, exp- At) +A +c,v, expl-At) (4.8)

4.2 Particular solution

mIff} (<17, =[] @)

In which case the vectod} is made to cater for the initial conditions oktBystem. We assume that the
particular solution is a constant, i.e.

{T},=0 (4.10)
It therefore follows that {T} =0 (4.11)
p
and [K]{T} ; =[(%] (4.12)
L [o
or {T}p :[K] 1[Q] (4.13)

The general solution can now be written as
[T], = cvy exd— At) + c,v, exp- At) +A +c,v, exp(-At) +{T}

The constants,C,,/\ .C]-T can be determined by considering the initial cbadiof the system which

) (4.14)

leads to a set of linear algebraic equations inrimndbrm which can be solved using simple matrix
operations.

5.0 Approximation of position—dependent material properties

Due to the non homogeneity of the material propsriside the functionally graded material, the
material properties p,c, ani][ are complex functions of the spatial coordinatethis results in some
difficulties in developing the integrals in equattso(3.9) and (3.10). To resolve this, the matgniaperties
are specified at the nodes of the elements sdhbgiroperties can be approximated as
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(%) =[N, }{} (5.1)

c(x)=[N,){c} (5.2)

() =[N, 1{ o9
And so that substituting these approximation irfoations (3.3) and (3.4)

[M]= [ INsJ{ 0} [N ){c} [N,] [N,]de (5.

[K]=],[B][NJ{K}[B,]d (5.5)

These integrals can then be solved with relatiwe dgy the use of numerical integration schemes
such as Gauss-Legendre integration scheme usiegéndre points.

6.0 Numerical examples.
The following examples are used to illustrate thethad presented in this work:

6.1. Example 6.1

One-dimensional heat conduction in a functionally-gaded material strip.

Determine the temperature history of a one dimemdidunctionally graded material strip of
length L at points 0.25L, 0.5L and 0.75L. The fiumcally graded material strip is made of PSZ/Ti-6AL
4V composition system; their properties are:

K, =18.1 /mk , p,, = 442&g m® ¢, = 808.3 KgK
K, =2.036V /mk ,p, = 560@8g m’ ,c, = 615.5 kgK

The volume fraction of iIF6AL-4V in the functionally graded material is vedi from 100% on the top
surface (x =0) to .0% on the bottom surfac(ex: L) of the strip i.e. it contains pure PSZ on its bottom

function of position x as:

F
Feow = Fo exp{ﬂ(iﬂ wheres = In[—pJ (6.1)
L F
wheref is the density, specific heat capacity or coefficient of the thleconductivity of the components of
the functionally graded material.
Consider a case where the temperaturg at0 is suddenly raised i@, which is maintained
thereafter. The temp at=L is kept at zero. The time interval is taken as [0 Pvhere

2

tozﬁ (6.2)
Ky,

(adopted from [1])

6.1.1 Exact solution
-0 oT oT
— | K= 1|+p0c=—=0 6.3
ax( axj Pt ©3

T
for steady temperature fielek— =0

ot

2
_g(Kﬂj:oOr_d_Kd_T_Kd Ko
dx dx dx dx dx
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d’T dK dT

or +——=0 (6.4)
dx*>  dx dx
ﬂxj dK g ( ﬂxj
But K = K, expl — | and— =—K, ex
Ti p( L dx L Ti P
£x)d d°T , BK, dT _
dx? L dx
2
dT ,B ar _ 6.5)
dx? L dx
The characteristic equation Ml > +€ M=0
M=0 orM :—g (6.6)
the general solution becomes
_B _B
T(X)=pe’"+Qet ie. TK)=p+Qet (6.7)
Applying the initial boundary conditions
At x=L, T=0
0=p+Qe” p=—Qe”
At x=0,T=T,,
T,=p+Q or T,=-Qe”+Q
T, = Q1-€7)
-T e-ﬂ
or =—29% — and p=—2 6.8
% 1-€7) P e? ©o
The particular solution therefore is
_Bx _pBx
—_Te? L _a B n
T()_Te_ Te ‘" _ e_+e_
-e” 1eﬁ °l @-e”) @1-e7)
5 —hx ~Bx
_—|1-1-e"+e’ | _ -l+et
R e
_Bx
l-et
TX)=T,|1-—— 6.9
(=T 17—y (6.9)
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1- ex;{—ﬂl_xj K
Therefore T(X)=T,|1-————=| wheref= In(—p] (6.10)
° 1-exp(-p) .

At x=0.25L; T(X) = 0.908,
At x=0.5L; T(X) =0.749,
At x=0.75L; T(x) =0.474,
This result is displayed in Table 6.1:

Table 6.1 Exact solution

x/ L 025 [ 05 | 0.75
T(x)/T, | 0908 | 0.747| 0.475

6.1.2. 5-Node fnite eement-egenvalue slution: (Mesh of TwbD Quadratic elements)
The finite element model is

[M]{f}+[K]{T} =0 (6.11)(6.11)
where [M]=["[NJ{ 8 [N, (e [N] [N, ] aix (6.12)
and [K]=[*B,] {N,]{K}[B;] ox 6.13)

O LS

[B ] = (__3+£j(f_§j(__l+£j (6.15)
¢ h h?)lh h2)Lh R
6.1.2.1 Element 1:

In order to obtain [M] and [K] using Gauss-LegesdB-point integration scheme, the variable
in [Ng] and[ Eb] is given as follows

_ L/ L
i:a+b+—b ax:é+—2x:£(x+l) (6.16)
2 2 2 2 4
_ L
also X =b—2adx=édx:£4dx (6.17)

Introducing these new variable inEng] and[ E;] yields :
N, | =[x x-1 1-x%) x x+1 6.18)
P :
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4x—-2 -8 &+ 2
and [Bg]z[( XL T ﬂ (6.19)

This change effectively converts the limit of intation from 0 and L/2 to —1 and 1 respectively

Hence
4420

[M*]= jll{x(%lj (1- xz)x(%lﬂ 4689.361 »

4975.13
808.3

2530 253 75009 620

705.4

(1— xz) {x[x—;:[} (1— xz) x(%lﬂx%dx

x+1
X _
2
This gives:
237649.451 119088.37 - 59016.8¢
119088.37 944252.124 116979.2( (6.21)
-59016.896 116979.215 237649.
also
4x—-2
L 18.1
[K]=] & x(x—_lj(l—xz)x(ilj 10.48 (4“_ 27 & &+ a <tax  (6.22)
1L 2 2 6.071 L L L 2
4x+ 2 ’
L

68.590 -77.074 8.485
—77.074 122.258 — 44.99 (6.23)
8.485 -44.999 36.51

[l

[K*]=
6.1.2.2 Element2

For element 2, upon simplification, we have:
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[233441.371 116981.467- 57972.5

[M?]=1L|116981.467 927542.776 114908.5 (6.24)

| -57972.513 114908.584 230338.7

[23.009 -25.856 2.846

and [KZ]=% -25.856  40.949 - 15.09 (6.25)
| 2.846 -15.094 12.24

Since the finite element model[iM ][T] + [ K]{T} =0.

Then for a mesh of two quadratic elements

KL K, K 0 0]T) [my M, wmi o off® [}
Kp Kp Ki 0 O[T [My M3 My 0 o|% |Q
K;-l K;Z Ké3+K12.1 KiZ K?.S T3 + MJ\:Sl M132 M 21Ly| leM 2:I.ZI\/I 213-§L = QS (626)
0 0 K& K KL[|IT| |0 o wmi Mm% ME||® |g
o o Kk Kkp ki Lo o omiom: mi[® |
That is
68.59 -77.076 8.485 0 0 |[T,
=77.076 122.258 - 44.999 0 0 ||T,
% 8.485 -44999 59523 - 25.856 2.84QT,;+
0 0 —-25.856 40.949 - 15.094T,
| O 0 2.846 - 15.094 12.248(T; 6.27)
[237649.451 119088.370- 59016.89 0 0 | Q
119088370 944252.124 116979.215 0 0 Q,
L| -59016.89 116979.215 467927.09 116891.467 57972: =1GQ,
0 0 116891.467 927542.776 114908.5 Q,
i 0 0 —-57972.513 114908.584 230338.6 Q,
The condensed equations become:
122.258 - 44.999 0 |[T, 944252.124 116979.215 0 TS;‘
iz -44.999 59.523 - 25.856T, +| 116979.215 467927.090 11698 2@ =
. 0 -25.856 40.949 (T, 0 116981.467 927542. 7&
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77.076T,
iz —-8.485I, (6.28)
0
since T, =T,. The solution to the above the above is divided the homogenous solution and particular
solution

T=T,+T, (6.29)
T, (t) = vexp(—At) . This gives( K-AM )vexp(—/}t )= 0.
From Which(K -AM )V: 0 or

detK -AM|=C (6.30)
in order to simplify the computation, let = 2]
122.258- 944252.124 — 44.999 116979.215 0
-44.999- 116979.216  59.523 467927109 - 25:856 9816 |= 0
0 -25.856- 116981 40.949 927542.476

133341.036 10055243978.768  13653171349661F — 384212170660759360= (6.31)

Solving the cubic equation yields the eigenvalueflows:

A, =2.5974¢ 10" A, = 1.6999 IBandA,= 7.86%9 P
sinced = L2/, it follows therefore that;
_25974x 10" | 1.6990x 10° ., _ 7.861% 10°
/]1 - 2 /12 - 2 /]3 - 2
L L L
These are the eigenvalues associated with thei@olfrom which the eigenvectors are obtained using
equation (4.6):

_2.5974 10
For /11——2
L
-123.002 - 75173 0 (v
~75.173 -62.016 - 56.24k v, (= (6.32)
0 -56.241 — 199.97]l|v,
v =[1 -1.636 0.46}.
_1.6990x 10°
or A, _T

106.210 - 46.987 0 ||v
-46.987 57.571 - 27.844v,
0 -27.844 25.185|v,

(6.33)

v; =[1 2.260 2.49B.
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_ 7.861% 10°

For A, B
48.022 -54.196 0 A
-54.196 22.735 - 27.844v, ;= (6.34)
0 —-35.053 25.185 | v,

v; =[1 0.886 -0.97].
The homogenous solution is written as
T, =cv,exp(-At) +cv, exd-A4) +cy, exf-A1) (6.35)

In order to obtain the particular solution, the bdary conditions are now considered

122.258 - 44.999 0 944252.124 116979.215 0 1,076
—44.999 59523 - 25. p+L2 116979.215 467927.09 11698467 51848 (6.36)
0 2585 4094 0 116981.467 927542{776

Let the particular solution be a constantTTge.= d,so that'ﬁg =0
It becomes obvious that

122.258 - 44.999 0 77.07%
~44.999 59.523 - 25.85fT, ={- 8.485
0 -25.856  40.949 0
122.258 - 44.999 o |'[ 77.07p
T,=|-44.999 59.523 - 25.856 |- 8.485 (6.37)
0 ~25.856  40.949 0
0.904T,
T, =10.74Tr,
0.47T,

In order to obtain the values of, @, ¢c; we must satisfy the initial conditioﬂ'(O) =0. The general
solution can be written as

T =cviexp(-At)+cy, ex{-Af)+cy, exf-At)+T, (6.38)
sinceT(0)=0. Then,
1 1 1 (¢ 0.909,
-1.636 2.26 0.886/{c, =4 0.747 (6.39)
0.467 2.498 - 0.971|c, 0.47}
c 1 1 1 7" (0.907,
c,t=|-1.636 2.26 0.886 x{ 0.747 (6.40)
c, 0.467 2.498 - 0.97 0.4T}

¢, =-0.19T, ¢,=-0.310,and c,=— 0.40&,
The solution can finally be expressed as:

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 207 - 224
Transient temperature field in functionally graded materials J. A. Akpobi and C. O. Edobor J of NAMP



TZT(t) =0.905- 0.191exp-At)- 0.310eXpA,t)— 0.404€xplt)
0
TB’T(t) =0.747+ 0.312exp-At)- 0.701lexpAt)- 0.358¢xplt) (6.41)
0
T“T(t) =0.471- 0.089exp-At)- 0.774eXpAt)+ 0.392¢xplt)
0
where A, A,,A; are the eigenvalues of the problem
_25974x 10" | _1.6990« 10° _7.861% 10°
A= o A, = - and A, =

will be seen from the solution that fis— oo
T,(t)=0.909, ,T,(t) = 0.74T, T,(t)= 0.47}

The numerical values of this result are as displayelow in Table 6.2. The variation of temperatwith
time at the positions of interest £ 0.29., x = 0.8_ andx = 0.74.) along the functionally graded material
strip is shown in Figures 6.1, 6.2 and 6.3.

Table 6.2 Transient temperatures in a FGM strip with fiwelas.

X T()% steady values
0
A B C D E F G H exact
0.25 0.386 0.592 0.728 0.788 0.823 0.847 0.905 80.90
0.5 0.013 0.172 0.372 0.48f¢ 0.563 0.6016 0.747 0.f49
0.75 -0.00994| 0.00005 0.098 0.192 0.2p9 0.326 0.401474

A=%,B=%):0.05,
C:%O:O.L D=%:0.2,
E=%J:o.3, F=%):0.4-
G=%:0_5,H=%):oo

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 207 - 224
Transient temperature field in functionally graded materials J. A. Akpobi and C. O. Edobor J of NAMP



15

0.9 4

0.8 4

0.7

0.6 4

0.5 4

0.4 4

0.3

0.2 4

0.1

0

T T T T T T 1
0 50000 100000 150000 200000 250000 300000 350000

—@— FINITE ELEMENT-EIGENVALUE SOLUTION —8—— FINITE ELEMENT-FINITE DIFFERENCE SOLUTION
——8—— STEADY-STATE SOLUTION

Figure 6.1 Transient temperatures at position 0.25L along the FGM strip with 5-nodes
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Figure 6.2: Transient temperatures at position 0.9_ along the FGM strip using 5-nodes
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Figure 6.3 Transient temperatures at position x=0.75L alivegF-GM strip with 5-nodes

6.1.3 9 Nodes finite element- eigenvalue solutioklésh of Four 1-D Quadratic elements)
6.1.3.1 Element 1
Again using the model, after simplification, wavie:

118956.721 59544.529 - 29639.9
[M*]=1L| 59544.529 474235.976 599015.1§ (6.42)
-29639.928 59015.182 118162.7Q:

. 151.216 - 170.546 19.330
[Kl]:-— -170.546 300.463 - 129.91 (6.43)

19.330 -129.917 110.586

6.1.3.2 Element 2:
Element 2 is simplified to:

117899.573 59015.361 - 29376.53;
[Mz]:l_ 59015.361 470022.35 58490.76b6 (6.44)
-2937.532 58490.765 117112.67|¢

and
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87.572 -98.767 11.195
% -98.767 174.010 - 75.24 (6.45)
11.195 -75.242 64.047

[k?]

6.1.3.3 Element 3:
Element 3 is simplified to:

116851.736 58490.86 - 29115.4
[M3] L| 58490.86 465844.878 57970.92 (6.46)
-29115.446 57970.922 116071.82"

. 50.72 -57.204 6.484
[K3]:f -57.204 100.781 - 43.57 (6.47)
6.484 -43.571 37.093

6.1.3.4 Element 4:
Element 4 is simplified to:

115813.226 57971.027 - 28856.68
[M“]:L 57971.027 461704.725 57455.71 (6.48)
-28856.686 57455.717 115040.28:

. 29.371 -33.126 3.755
[K“]:f -33.126 58.359 - 25.23 (6.49)
3.755 -25.233 21.478

The finite element model becomes:

Ky K K 0 0
Ky Ky Ki 0 0
Ka Ki KiK3 K K
0 0 K K Kj
Ky K& Ki+KE Kl Ki
0 0 K3 KS K3, 0 0

o © o o
© o O o o

A A A 4444 4.
+

o O O O o
O O O o o

0 0 K Kj KK Ki Ki
0o 0o 0 0 K.y K& K&
0 0 0 0 Ky K& Kb
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ML ML ML 0 0 0 0 0 olf®% (Q
ML M;, ML 0 0 0 0 0 Of®% |o
M;l M;Z M:Z:3+M ]2.1 M §2 M i3 O 0 0 O -#;L O
0 o0 MZ M3 M2 0 0 0 Oo|®& |o
0 0 ML ML Mi+Mi ML ML o o [{Bi=j0p O
0 o0 0 0 K:i M, M 0 O’ |o
0 0 0 0 Ky M3 ME+Mj Mi ML® |0
0 0 0 0 0 0 M, MI ML |0
0 0 0 0 0 0 Mis ML ML(B (Q
The condensed equations are taking note that T,
KL, KL o0 0 0 0 0 ol(T,
Ke KaKi KL K 0 0 0 0T,
0 K2 K3, K2 0 0 0o 0T,
110 Ky KL KAKE KL, K%, 0 0T,
L| 0 0 0 KS, KJ K3 0 0T,
0 0 0 K K KL+Ky Kj Kiyl|T
0 0 0 0 0 K  Ki KL|IT,
ML ML 0 0 0 0 0 ol® [-KiT,
Mslz M23+M121 Mfz M is 0 0 0 -I% _K3l,1To
0 M2 ML M2 0 0 0 o0& 0
L 0 M321 M322 M§3+Mfl Miz M313 0 0 -I&sz 0 (6.51)
0 0 0 M3 ME M3, 0o o’ 0
0 0 0 M5 ME ME+M{ ML ML |0
0 0 0 0 0 MI ML ML|I|® 0
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[ 300.463 - 129.917 0 0 0 0 0 (T,
-129.917 198.158 - 98.767 11.195 0 0 0T,
0 -98.767 174.010 - 75.242 0 0 0 ||T,
1 0 11.195 -75.242 114.767- 57.204 6.484 O|1T ¢+
- 0 0 0 -57.204 100.781- 43.577 0 ||T;
0 0 0 6.484 - 43577 66.464- 33.126,
0 0 0 0 0 -33.126 58.358|T,
[474235.976  59015.182 0 0 0 0 0 &
59015.182 236062.274 59015.361 29376.532 0 0 o||&
0 59015.361 470022.35 58409.765 0 0 0||l&
L o -29376.532 58490.765 233964.415 58490.860  29115.446 O’y =
0 0 0 58470.86 465844.878 57970.922 0 |l®&
0 0 0  -29115.446 57970.922231885.005 57971.02 %
) 0 0 0 0 57971.027 461704.7P5%
170.548,
-19.330,
0 6.52
% . (6.52)
0
0
0

The solution is divided into the homogenous sotutiad the particular solutioh =T, +T

from Which(K -AM )V=O or det|K —/IM|= C.

Solving this equation yields the eigenvalues withiok the eigenvectors are set up. Since the finite-
eigenvalue approach of solving transient tempeedfietd problems has been effectively describedvapo

it is of interest only to show that as the numbeelements is increased, the solution obtained avoul
ultimately tend to the exact solution.

That is,

Ko Ky O
kJI:}Z kjé3 + k il k iZ
0k Ky
0 ki ky
o 0 O
o 0 O
0 0 o0

[<I{7}, ={}

0 0 0 0
k2, 0 0 0
k2, 0 0 0

Katky ki, ki, 0
G, K, Ky 0
kgl @2 k:;;3+ kil kiZ

0 0 K, Go

T, =vexp(-At) or (K-AM)vexp(-At)=0

A4 444444
1

'@1
'k;1
0

o O O ©o

(6.53)

(6.54)

(6.55)

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 207 - 224
Transient temperature field in functionally graded materials J. A. Akpobi and C. O. Edobor J of NAMP



[ 300.463 -129.917 0 0 0 0 0|[T, 170.546 T
-129.917 198.158 -98.767 11.195 0 0 0T, -19.330 |
0 -98.767 174.010 -75.242 0 0 0||T, 0 (6.56)
0 11.195 -75.242 114.767 -57.204 6.484 Q4T = 0
0 0 0 -57.204 100.781 -43.577 0T, 0
0 0 0 6.484 -43.577 66.464 -33.1p@, 0
. O 0 0 0 0 -33.126  58.359| T, 0
Solving the equations above gives rise to
T, 0.96017 T
T, 0.90789 T
T, 0.83912 |
_ (6.57)
T,+=40.74884 T
T, 0.63011 |
T, 0.47424 T
T, 0.26919 T
Thus the particular solution yields.
0.96017 |
0.90789 |
0.83912 |
T,=10.74884 7} (6.38)
0.63011 |
0.47424 7
0.26919 |
The nodes of interest are nodes 3, 5 and 7. Thiggar solution at these nodes of interest is:
0.908 T,
T,=10.749 T (6.59)
0.474 T
The general solution can thus be written as:
T =T, +cv,exp(-At)+c,v, ex§-A$)+L L +c,v ex(a—/u) (6.60)
Therefore,
%20.908+cl\(g exf-At)+c, y T exp-At)+LL +c,yT e>(|&/l§) (6.61)
0
% =0.749+ ¢V, T, exy{=At)+c, vV, T exfp-A4)+L L +c, ¥, T ex()—/l F) (6.62)
0

%z 0.474+c, V', Ty ex{=At)+c, V', T, exf-A§)+L L +c, ¥, T exé)—)l}) (6.63)

0
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It can easily be seen from the above solutionakdt — oo ;

T - 0.908: Lk - 0.749 T - 0.474

T T
0 0 0
It follows therefore that the steady state soluabnodes 3, 5 and 7 are:
T,=0.908 T, T3=0.749 Tand ,=0.474

These correspond to the steady state solutiomesé thodes.
6.2. Example 2: Two-dimensional heat conduction in a FGMsquare plate
Consider the conduction heat transfer in a non-lgameous (functionally graded materials)

2 2
square plate of dimensions = (0,2.) by y = (0,2), conductivity k = k(x,y) :k{l{i(j {Zj }
L L

densityp, specific heat capacity c. The plate is subjetted sudden internal heat generation gf The
edges of the plate are maintained at a temperafufe= 0. Determine the steady temperature distidiou
(T at the centre of the plate using the finite elstig@genvalue method (adopted from [1])

The temperature distribution at the centre of ttaep solved with the finite element/eigenvalue
method using a mesh of 2 x 2 rectangular elemenggyen as:

T.=0.169- 0.129 ex()— 4.515— 0.029 e((ﬁ 19.7)94 0.01|®(e%15.427[)
it follows therefore that as—bow, T—0.169, this fact is shown in Figure 6.4.

0.18

0.14

0.12

0.04

0.02

[o]

0 0.5 1 1.5 2 25 3
TIME

Figure 6.4 Transient temperature at the center of a non-lgemeous square plate under a sudden internal heat
generation.

7.0 Discussion of results

A careful examination of the conclusions made ittisa 6.1.3, 6.2, Tables 1, 2 and Figures. 1, 2,
3, 4 shows that the method was able to solve tk&esy of time dependent differential equations that
describe the transient temperature distributiom fanctionally graded material with very high acy.
The efficiency of the method is clearly seen asrthmber of finite elements is increased. It waseoled
that the solution tended fast to the exact solutitven the number of elements was increased toXfdnr
guadratic elements (9 nodes). The results geneaateexponential functions of time.

8.0 Conclusion
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Due to the non-homogeneity of the properties otfiomally graded materials, it is often difficult
to obtain the exact solutions of their thermal aggiility equations, hence the need to develop aenigad
method to obtain solutions that are as accurapmssible. In this work, a finite element-eigenvatuethod
was discussed, analyzed and used to solve themmaluctivity problem associated with a functionally
graded material (non-homogeneous material). Thargpscheme developed is simple. It finds its basis
fundamental eigenvalue/eigenvector problem-solgdgeme in mathematics and it does not involve time
discretization which, in complex cases like thisud have been very difficult to solve unless vitie use
of a software.
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