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Abstract 

 
In this work, a finite element/eigen value method is formulated to 

solve the finite element models of time-dependent temperature field problems 
in non-homogenous materials such as functionally graded materials. The 
method formulates an eigen value problem from the original finite element 
model and proceeds to calculate the eigenvectors associated with the various 
eigen values from which the solution can be obtained thereby avoiding the 
use of time discretization that require lengthy calculations. The results 
obtained are exponential functions of time which when compared with the 
exact solution eventually tended to the steady state solution. 
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1.0 Introduction 

Recent experimental advances in material science have shown that a large percentage of materials 
in service are composites especially in high temperature and high heating rate service environments, hence 
the necessity to study the thermal behavior of composites in the form of functionally graded materials. 
A functionally graded material is basically a combination of two material phases that has a gradual 
transition from one material at one surface to another material at the opposite surface. Functionally graded 
materials vary from homogenous ones in that their properties vary spatially which makes the thermal 
analysis of functionally graded materials considerably more complex than in the corresponding 
homogenous case. However since most of the functionally graded materials show a one dimensional heat 
non-homogeneity the temperature field can easily be obtained by the composite laminated plate model for a 
simple one dimensional heat conduction as has been done by various experts and design analysts. 
Wang and Tian [1] gave a plausible solution to transient temperature field problems by means of the finite 
element/finite difference method. Finite element analysis is well treated in many standard texts see [2-6]. 

In this paper, the finite element method in addition to an eigenvalue method is employed to solve 
the system of time dependent equations that describe the transient temperature distribution in a functionally 
graded material, initially addressed by Wang and Tian, see [1] and the references therein 
 In the finite element-eigenvalue method, we develop the governing equation which is parabolic in 
nature; the variational form of the equation is obtained over each element followed by spatial 
approximation of the position-dependent variables of the problem, the end result is a set of ordinary 
differential equations in time (semi-discrete model). Finite element algebraic equations are then developed 
from the semi discrete finite element model by formulating the corresponding eigenvalue problem from 
which the eigenvalues and eigenvectors are obtained. The solution can now be obtained by applying 
fundamental eigenvalue/eigenvector solving scheme in mathematics.  
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 The solutions obtained by the finite element/eigenvalue method are as accurate as those given by 
the finite element/finite difference method. The advantage of the finite element/eigenvalue method is that 
very few computations are needed to arrive at the steady state solution with high accuracy while the finite 
element/finite difference method requires a large number of computations due to time discretization in 
order to achieve the appropriate accuracy which limits the use of the method to the availability of a 
computational software. Thus this work produces highly accurate solutions with fewer computations and 
less time. 
 
2.0 Formulation of the governing equations 

Assuming the solid under investigation occupies a space within a coordinate system x which is 
surrounded by space S, Fourier’s Law of heat conduction states that the heat flux vector of the solid is 

given as     
T

q KA
x

∂= −
∂

     (2.1) 

where 
ijK K= = thermal conductivity tensor.  For an anisotropic solid  

  ij jiK K=    (2.2) 

By the balance (conservation of energy) within the solid.  
Rate of heat energy added to the elements = Rate of heat energy lost from the element 

That is 
Energy into element + energy generated within the element = change in internal energy + energy out of 
the element 

T T T T
KA QAdx cA dx KA KA dx

x x x x x
ρ∂ ∂  ∂ ∂ ∂  − + = − +   ∂ ∂ ∂ ∂ ∂  

 or 
T T

QAdx cA dx KA dx
x x x

ρ ∂ ∂ ∂ = +  ∂ ∂ ∂ 
 

i.e.     T T
K Q cA

x x x
ρ∂ ∂ ∂  + = ∂ ∂ ∂ 

     (2.3) 

This is the governing equation where material properties ,  and c Kρ are considered to be 

complex function of spatial coordinate, and the temperature is a function of spatial coordinate and time. 

i.e.     ( ),T T x t=      (2.4) 

This equation can be solved for prescribed boundary and initial conditions as follows 
Initial condition: 

This specifies the temperature distribution at time zero  

 ( ) ( )0,0 ,0T x T x=  (2.5) 

Boundary condition: 
Essential boundary condition: specify temperature T at boundaries 
Natural boundary conditions: specify heat flux Q 
 
3.0 Finite element formulation. 

In order to obtain the variational form of the heat equation assume that the medium undergoes a 
virtual temperature change Tδ  i.e. Tδ  now serves as the weight function in the variational form 

 0
T T

K c Q Tdv
x x t

ρ δ
Ω

 ∂ ∂ ∂  − + − =  ∂ ∂ ∂  
∫  (3.1) 

The above integral yields 
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 0
T T T T

c Tdv K dv K Tdv Q Tdv
t x x x

σρ σ δ δ
Ω Ω Ω Ω

∂ ∂ ∂ ∂+ − − =
∂ ∂ ∂ ∂∫ ∫ ∫ ∫  (3.2) 

Let    
s

T
K Tdv Q Tdv Q

x
δ δ

∧

Ω

∂ + =
∂∫ ∫      (3.3) 

 
 
 
 
 

The model now takes the form 0
s

T T t
c Tdv K dv Q

t t x

δρ δ
∧

Ω

∂ ∂ ∂+ − =
∂ ∂ ∂∫ ∫  (3.4) 

Let the space around the solid be divided into a finite number of elements interconnected at the 
nodes of the elements. The temperature must then be expressed in terms of the values at the node thus 

 ( ) [ ]{ },T x t N Tθ=   (3.5) 

where [ ]Nθ  is the shape function matrix which is a complex function of x.  The temperature gradient at 

any point within the region Ω is given as 

 [ ] [ ]{ }
T

j

TT B Tx θ
•

 
∂ ∂ = =∂  

 (3.6) 

where     [ ] [ ][ ]B Nθ θ= l      (3.7) 

where [ ]l is a differential operator matrix.  Introducing this into the finite element model above yields:  

 [ ]{ } [ ]{ } { }M T K T Q
• ∧

+ =  (3.8) 

where     [ ] [ ] [ ]T
M c N N dθ θρ

Ω
= Ω∫     (3.9) 

 [ ] [ ] [ ][ ]T
K B K B dθ θΩ

= Ω∫  (3.10) 

[ ]K = Matrix of thermal conductivities of the medium.  Thus the finite element model generates a system 

of parabolic differential equations in time. 
The integrals involved in the determination of [M] and [K] can be evaluated using the numerical 

integration scheme such as Gauss-Legendre integration. Therefore the problem has been reduced from a 
partial differential equation in to variable x and T to a matrix of ordinary differential equations which we 
now solve using the eigenvalue-eigenvector solution method. 
 
4.0 Eigenvalue problem formulation 

This method involves the decomposition of the solution of the model [ ]{ } [ ]{ } { }M T K T Q
• ∧

+ =  into

 { } { } { }
h p

T T T= +      (4.1) 

where { }h
T  is the homogeneous solution satisfying 

 [ ]{ } [ ]{ } { }0
h

h

M T K T
•

+ =  (4.2) 

And { }
p

T   is the particular solution satisfying 
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 [ ]{ } [ ]{ } { }p
p

M T K T Q
• ∧

+ =  (4.3) 

4.1 Homogenous solution 

Let matrices [M] and [K] be matrices of constants such that [ ]{ } [ ]{ } 0
h

h

M T K T
•

+ =  is a set 

of linear constants –coefficient ordinary differential equations.  To solve this, we assume  

 [ ] ( )exp
h

T V tλ= −   (4.4) 

 
 
 
 
 

Substituting this in equation 4.4 yield ( ) ( )exp 0K M tλ ν λ− − =    (4.5) 

from which   ( ) 0K Mλ ν− =      (4.6) 

or     det ( ) 0K M vλ− =      (4.7) 

From which the eigenvalues are obtained.  Back substitution of the eigenvalues into equation 4.1 results in 

the eigenvectors T
j

TT VVV ,,, 21 Λ  from which the homogenous solution can be written as  

 [ ] ( ) ( ) ( )tvctvctvcT jjh 1122111 expexpexp λλλ −++−+−= Λ  (4.8) 
4.2 Particular solution 

 [ ]{ } [ ]{ } { }p
p

M T K T Q
• ∧

+ =  (4.9) 

In which case the vector {Q} is made to cater for the initial conditions of the system.  We assume that the 
particular solution is a constant, i.e.   

 { }
p

T δ=   (4.10) 

It therefore follows that   { } 0
p

T
•

=       (4.11) 

and    [ ]{ } { }p
K T Q

∧
=      (4.12) 

or      { } [ ] { }1

p
T K Q

∧−=      (4.13) 

The general solution can now be written as  

 [ ] ( ) ( ) ( ) { }pjjh TtvctvctvcT +−++−+−= 1122111 expexpexp λλλ Λ  (4.14) 

The constants T
jccc .,, 21 Λ  can be determined by considering the initial condition of the system which 

leads to a set of linear algebraic equations in matrix form which can be solved using simple matrix 
operations. 
 
5.0 Approximation of position–dependent material properties 

Due to the non homogeneity of the material properties inside the functionally graded material, the 
material properties p,c, and [K] are complex functions of the spatial coordinates x this results in some 
difficulties in developing the integrals in equations (3.9) and (3.10). To resolve this, the material properties 
are specified at the nodes of the elements so that the properties can be approximated as 
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 ( ) [ ]{ }x Nθρ ρ=    (5.1) 

 ( ) [ ]{ }c x N cθ=    (5.2) 

 ( ) [ ]{ }k x N kθ=   (5.3) 

And so that substituting these approximation into equations (3.3) and (3.4) 

 [ ] [ ]{ } [ ]{ } [ ] [ ]. .
T

M N N c N N dθ θ θ θρ
Ω

= Ω∫  (5.4) 

 [ ] [ ][ ]{ }[ ]K B N K B dθ θ θΩ
= Ω∫  (5.5) 

These integrals can then be solved with relative ease by the use of numerical integration schemes 
such as Gauss-Legendre integration scheme using 3 Legendre points. 
 
6.0 Numerical examples. 

The following examples are used to illustrate the method presented in this work: 
 
 
 

 
6.1. Example 6.1 

One-dimensional heat conduction in a functionally-graded material strip. 
Determine the temperature history of a one dimensional functionally graded material strip of 

length L at points 0.25L, 0.5L and 0.75L. The functionally graded material strip is made of PSZ/Ti-6AL-
4V composition system; their properties are: 

3

3

18.1 / , 4420 / , 808.3 /

2.036 / , 5600 / , 615.6 /
Ti Ti Ti

p p p

K w mk kg m c J kgK

K W mk kg m c J kgK

ρ
ρ

= = =

= = =
 

The volume fraction of Ti-6AL-4V in the functionally graded material is varied from 100% on the top 
surface ( 0)x =  to .0% on the bottom surface ( )x L=  of the strip i.e. it contains pure PSZ on its bottom 

surface and pure Ti-6AL-4V on the top surface. The material properties are expressed as an exponential 
function of position x as:  

 exp  where p
FGM Ti

Ti

Fx
F F In

L F
β β

   = =    
    

 (6.1) 

where f is the density, specific heat capacity or coefficient of the thermal conductivity of the components of 
the functionally graded material. 
 Consider a case where the temperature at x = 0 is suddenly raised to T0, which is maintained 
thereafter. The temp at x = L is kept at zero. The time interval is taken as [0, 0.5t0] where  

  
2

0
Ti Ti

Ti

C L
t

K

ρ=  (6.2) 

(adopted from [1]) 
6.1.1 Exact solution 

 0
T T

K c
x x t

ρ−∂ ∂ ∂  + = ∂ ∂ ∂ 
 (6.3) 

for steady temperature field, 0
T

t

∂ =
∂

 

0
d dy

K
dx dx
 − = 
 

 or 
2

2
0

dK dT d K
K

dx dx dx
− − =  
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or     
2

2
0

d T dK dT
K

dx dx dx
+ =      (6.4) 

But expTi

x
K K

L

β =  
 

 and expTi

dK x
K

dx L L

β β =  
 

 

2

2
exp 0Ti

Ti

Kx d T dT
K

L dx L dx

ββ  + = 
 

 

 
2

2
0

d T dT

dx L dx

β+ =   (6.5) 

The characteristic equation is 2 0M M
L

β+ =  

 0  or  M M
L

β= = −   (6.6) 

the general solution becomes 

 0( )    i.e.  ( )L LT x e Qe T x Qe
β β

ρ ρ
− −

= + = +  (6.7) 

 
 
 
 
Applying the initial boundary conditions 
At ,  0 x L T= =  

0   Qe Qeβ βρ ρ− −= + = −  

At 00,   x T T= = , 

0 0    T Q or T Qe Qβρ −= + = − +  

0 0 (1 )T Q e β−= −  

or     0 0
0   and   

(1 ) 1

T T e
Q

e e

β

β βρ
−

− −

−= =
− −

   (6.8) 

The particular solution therefore is  

0 0
0( )

1 1 (1 ) (1 )

x x

L LT e T e e e
T x T

e e e e

β β
β β

β β β β

− −− −

− − − −

 
− − = + = +

 − − − −
  

 

0

1 1
( )

1

x

Le e
T x T

e

β
β

β

−
−

−

 
− − + =

 −
  

0

1
1

1

x

Le
T

e

β

β

−

−

 
− + = +

 −
  

 

 0

1
( ) 1

(1 )

x

Le
T x T

e

β

β

−

−

 
− = −

 −
  

  (6.9) 
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Therefore  ( )0

1 exp
( ) 1   where 

1 exp
p

Ti

x
KL

T x T In
K

β

β
β

  − −      = − =  − −   
  

   (6.10) 

At x = 0.25L; 0( ) 0.908T x T=  

At x = 0.5L; 0( ) 0.749T x T=  

At x = 0.75L; 0( ) 0.474T x T=  

This result is displayed in Table 6.1: 
 

Table 6.1: Exact solution 
 

/x L  0.25 0.5 0.75 

0( ) /T x T  0.908 0.747 0.475 

 
6.1.2. 5-Node fnite eement-egenvalue slution: (Mesh of Two 1-D Quadratic elements) 
 The finite element model is  

 [ ]{ } [ ]{ } 0M T K T
•

+ =  (6.11)(6.11) 

where  [ ] [ ]{ } [ ]{ } [ ] [ ]1

. .
b T

a
M N N c N N dxθ θ θ θρ= ∫   (6.12) 

and  [ ] [ ] [ ]{ }[ ]1

.
Tb

a
K B N K B dxθ θ θ= ∫     (6.13) 

 
 
 
 

 [ ] 2 4 2
1 1 1 1

x x x x x x
N

h h h h h hθ
 −       = − − − −       
       

 (6.14) 

 [ ] 2 22

3 4 4 8 1 4x x x
B

h h h h hh
θ

 − −    = + − +     
     

 (6.15) 

6.1.2.1 Element 1: 
 In order to obtain [M] and [K] using Gauss-Legendre, 3-point integration scheme, the variable x  

in [ ] [ ] and BNθ θ is given as follows 

 2 2 ( 1)
2 2 2 2 4

L La b b a L
x x x x

+ −= + = + = +  (6.16) 

also  2
2 2 4

Lb a L
dx dx dx dx

−= = =     (6.17) 

Introducing these new variable into [ ] [ ]    and BNθ θ yields : 

 [ ] ( )21 1
1

2 2

x x
N x x xθ

 − +    = −    
    

 6.18) 
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and  [ ] 4 2 8 4 2x x x
B

L L Lθ
 − − +  =   
  

    (6.19) 

This change effectively converts the limit of integration from 0 and L/2 to –1 and 1 respectively 
Hence 

 

( )

( )

( ) ( )

11 2

1

2

2 2

4420
1 1

1 4689.361
2 2

4975.138

808.3
1 1

1 755.099
2 2

705.4

1

2
1 1

1 1
2 2

1

2

x x
M x x x

x x
x x x

x
x

x x
x x x x

x
x

−

 
 − +        = − •             

 

 
 − +      − •     
      

 

 −  
  
   − +    − −   

   
+  

    

∫

4

L
dx

  ×  
 

 (6.20) 

This gives:  

 1

237649.451 119088.37 59016.896

119088.37 944252.124 116979.215

59016.896 116979.215 237649.451

M L

− 
   =   
 − 

 (6.21) 

also 
 
 
 
 
 
 
 

( )11 2

1

4 2

18.1
8 1 1 4 2 8 4 2

1 10.482
2 2 2

6.0714 2

x

L
x x x x x x L

K x x x dx
L L L L

x

L

−

− 
 

  
   − − + − − +          = − ×                        

 + 
 
 

∫  (6.22) 

 1

68.590 77.074 8.485
1

77.074 122.258 44.999

8.485 44.999 36.512

K
L

− 
   = − −   
 − 

 (6.23) 

6.1.2.2 Element 2 
For element 2, upon simplification, we have: 
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 2

233441.371 116981.467 57972.573

116981.467 927542.776 114908.584

57972.513 114908.584 230338.732

M L

− 
   =   
 − 

 (6.24) 

and  2

23.009 25.856 2.846
1

25.856 40.949 15.094

2.846 15.094 12.248

K
L

− 
   = − −   
 − 

   (6.25) 

Since the finite element model is [ ]{ } [ ]{ } 0M T K T
•

+ = . 

Then for a mesh of two quadratic elements 

1 1 1 1 1 1
111 12 13 11 12 13

1 1 1 1 1 1
221 22 23 21 22 23

1 1 1 2 2 2 1 1 2 2 2 2
331 32 33 11 12 13 31 32 33 11 12 13

2 2 2 2 2 2
421 22 23 21 22 23

2 2 2 2
531 32 33 31 3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

TK K K M M M

TK K K M M M

TK K K K K K M M M M M M

TK K K M M M

TK K K M M

  
  
     ++  
  
  
    

1
1

212

3 3

4 4
2 2
2 33 5

51

ˆ

ˆ

ˆ

ˆ

ˆ

QT
QT

T Q

T Q
M T Q

                =   
    
    
        

&

&

&

&

&

 (6.26) 

That is 

 

1

2

3

4

5

68.59 77.076 8.485 0 0

77.076 122.258 44.999 0 0
1

8.485 44.999 59.523 25.856 2.846

0 0 25.856 40.949 15.094

0 0 2.846 15.094 12.248

237649.451 119088.370 59016.89 0 0

119088.

T

T

T
L

T

T

L

−   
  − −     

  +− −  
   − −   
 −     

− 11

22

33

44

55

370 944252.124 116979.215 0 0

59016.89 116979.215 467927.09 116891.467 57972.513

0 0 116891.467 927542.776 114908.584

0 0 57972.513 114908.584 230338.632

QT

QT

QT

QT

QT

   
   
    

  =− −   
   
   
 −     

&

&

&

&

&




  


 
 
  

(6.27) 

 
 
 
 
 
The condensed equations become: 

2 2

3 32

4 4

122.258 44.999 0 944252.124 116979.215 0
1

44.999 59.523 25.856 116979.215 467927.090 116981.467

0 25.856 40.949 0 116981.467 927542.776

T T

T T
L

T T

 −    
     − − + =      

      −     

&

&

&
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0

02

77.076
1

8.485

0

T

T
L

 
 − 
 
 

      (6.28) 

since 1 0T T= .  The solution to the above the above is divided into the homogenous solution and particular 

solution 

 h pT T T= +   (6.29) 

( ) ( )exphT t v tλ= − .  This gives ( ) exp( ) 0K M v tλ λ− − = . 

From which ( ) 0K M vλ− =  or  

 det 0K Mλ− =   (6.30) 

in order to simplify the computation, let 2Lλ λ=  

122.258 944252.124 44.999 116979.215 0

44.999 116979.215 59.523 467927.09 25.856 116981 0

0 25.856 116981 40.949 927542.776

λ λ
λ λ λ

λ λ

− − −
− − − − − =

− − −
 

2 3133341.030 10055243978.353 136531713496475.661 384212170660759369 0λ λ λ− + − =  (6.31) 
Solving the cubic equation yields the eigenvalues as follows: 

4 5 5
1 2 32.5974 10 , 1.6990 10 7.8619 10andλ λ λ− − −= × = × = ×  

since 2Lλ λ= , it follows therefore that; 
4

1 2

2.5974 10

L
λ

−×=  
5

2 2

1.6990 10

L
λ

−×=  
5

3 2

7.8619 10

L
λ

−×=  

These are the eigenvalues associated with the solution from which the eigenvectors are obtained using 
equation (4.6): 

For 
4

1 2

2.5974 10

L
λ

−×=  

 

1

2

3

123.002 75.173 0 0

75.173 62.016 56.241 0

0 56.241 199.971 0

v

v

v

− −     
    − − − =    
    − −     

  (6.32) 

[ ]1 1 1.636 0.467Tv = − . 

For 
5

2 2

1.6990 10

L
λ

−×=  

 

1

2

3

106.210 46.987 0 0

46.987 57.571 27.844 0

0 27.844 25.185 0

v

v

v

−     
    − − =    
    −     

  (6.33) 

[ ]2 1 2.260 2.498Tv = . 
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For 
5

3 2

7.8619 10

L
λ

−×=  

 

1

2

3

48.022 54.196 0 0

54.196 22.735 27.844 0

0 35.053 25.185 0

v

v

v

−     
    − − =    
    −     

  (6.34) 

[ ]3 1 0.886 0.971Tv = − . 

The homogenous solution is written as 

 ( ) ( ) ( )1 1 1 2 2 2 3 3 3exp exp exphT c v t c v t c v tλ λ λ= − + − + −  (6.35) 

In order to obtain the particular solution, the boundary conditions are now considered 

0
2

0

122.258 44.999 0 944252.124 116979.215 0 77.076

44.999 59.523 25.856 116979.215 467927.09 116981.467 8.485

0 25.856 40.949 0 116981.467 927542.776 0
p p

T

T L T T

−     
    − − + = −    
    −     

&  (6.36) 

Let the particular solution be a constant i.e.pT d= , so that pT 0=&  

It becomes obvious that 

0

0

122.258 44.999 0 77.076

44.999 59.523 25.856 8.485

0 25.856 40.949 0
p

T

T T

−   
  − − = −  
  −   

 

 

1

0

0

122.258 44.999 0 77.076

44.999 59.523 25.856 8.485

0 25.856 40.949 0
p

T

T T

−−   
   = − − −   
   −   

 (6.37) 

0

0

0

0.905

0.747

0.471
p

T

T T

T

 
 =  
 
 

 

In order to obtain the values of c1, c2, c3 we must satisfy the initial condition (0) 0T = .  The general 

solution can be written as 

 ( ) ( ) ( )1 1 1 2 2 2 3 3 3exp exp exp pT c v t c v t c v t Tλ λ λ= − + − + − +    (6.38) 

since (0) 0T = .  Then,  

1 0

2 0

3 0

1 1 1 0.905

1.636 2.26 0.886 0.747

0.467 2.498 0.971 0.471

c T

c T

c T

     
    − =    
    −     

   (6.39) 

1

1 0

2 0

3 0

1 1 1 0.905

1.636 2.26 0.886 0.747

0.467 2.498 0.971 0.471

c T

c T

c T

−
     
    = − ×    
    −     

   (6.40) 

1 0 2 0 3 00.191 , 0.310 0.404c T c T and c T= − = − = − . 

The solution can finally be expressed as: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 2 3

0

3
1 2 3

0

4
1 2 3

0

0.905 0.191exp 0.310 exp 0.404 exp

0.747 0.312 exp 0.701exp 0.358exp

0.471 0.089 exp 0.774 exp 0.392 exp

T t
t t t

T

T t
t t t

T

T t
t t t

T

λ λ λ

λ λ λ

λ λ λ

= − − − − − −

= + − − − − −

= − − − − + −

 (6.41) 

where 1 2 3, ,λ λ λ  are the eigenvalues of the problem 

4

1 2

2.5974 10

L
λ

−×= , 
5

2 2

1.6990 10

L
λ

−×=  and 
5

3 2

7.8619 10

L
λ

−×=   

will be seen from the solution that as t → ∞  

( ) ( ) ( )2 0 3 0 4 00.905 ,  0.747 ,  0.471T t T T t T T t T= = =  

The numerical values of this result are as displayed below in Table 6.2. The variation of temperature with 
time at the positions of interest (x = 0.25L, x = 0.5L and x = 0.75L) along the functionally graded material 
strip is shown in Figures 6.1, 6.2 and 6.3. 
 

Table 6.2: Transient temperatures in a FGM strip with five nodes. 
 

 
X 

0

( )T x
T  steady values 

A B C D E F G H exact 
0.25 0.386 0.592 0.728 0.788 0.823 0.847 0.905 0.908 
0.5 0.013 0.172 0.372 0.487 0.563 0.616 0.747 0.749 
0.75 -0.00994 0.00005 0.093 0.192 0.269 0.326 0.471 0.474 

A = x
L

, B =
0

0.05t
t = ,  

C =
0

0.1t
t = , D =

0
0.2t

t = ,  

E = 
0

0.3t
t = , F =

0
0.4t

t = , 

G =
0

0.5t
t = , H = 

0

t
t = ∞  
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Figure 6.1 Transient temperatures at position x = 0.25L along the FGM strip with 5-nodes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2: Transient temperatures at position x = 0.5L along the FGM strip using 5-nodes 
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Figure 6.3: Transient temperatures at position x=0.75L along the FGM strip with 5-nodes 
 
 
 
 
 
 
 
6.1.3 9 Nodes finite element- eigenvalue solution (Mesh of Four 1-D Quadratic elements) 
6.1.3.1 Element 1 
 Again using the model,  after simplification, we have: 

1

1 1 8 9 5 6 .7 2 1 5 9 5 4 4 .5 2 9 2 9 6 3 9 .9 2 8

5 9 5 4 4 .5 2 9 4 7 4 2 3 5 .9 7 6 5 9 9 0 1 5 .1 8 2

2 9 6 3 9 .9 2 8 5 9 0 1 5 .1 8 2 1 1 8 1 6 2 .7 0 1

M L

− 
   =   
 − 

  (6.42) 

1

1 5 1 .2 1 6 1 7 0 .5 4 6 1 9 .3 3 0
1

1 7 0 .5 4 6 3 0 0 .4 6 3 1 2 9 .9 1 7

1 9 .3 3 0 1 2 9 .9 1 7 1 1 0 .5 8 6

K
L

− 
   = − −   
 − 

  (6.43) 

6.1.3.2 Element 2: 
 Element 2 is simplified to: 

2

1 1 7 8 9 9 .5 7 3 5 9 0 1 5 .3 6 1 2 9 3 7 6 .5 3 2

5 9 0 1 5 .3 6 1 4 7 0 0 2 2 .3 5 5 8 4 9 0 .7 6 5

2 9 3 7 .5 3 2 5 8 4 9 0 .7 6 5 1 1 7 1 1 2 .6 7 9

M L

− 
   =   
 − 

 (6.44) 

and 
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2

8 7 .5 7 2 9 8 .7 6 7 1 1 .1 9 5
1

9 8 .7 6 7 1 7 4 .0 1 0 7 5 .2 4 2

1 1 .1 9 5 7 5 .2 4 2 6 4 .0 4 7

K
L

− 
   = − −   
 − 

  (6.45) 

6.1.3.3 Element 3: 
 Element 3 is simplified to: 

3

1 1 6 8 5 1 .7 3 6 5 8 4 9 0 .8 6 2 9 1 1 5 .4 4 6

5 8 4 9 0 .8 6 4 6 5 8 4 4 .8 7 8 5 7 9 7 0 .9 2 2

2 9 1 1 5 .4 4 6 5 7 9 7 0 .9 2 2 1 1 6 0 7 1 .8 2 9

M L

− 
   =   
 − 

 (6.46) 

3

5 0 .7 2 5 7 .2 0 4 6 .4 8 4
1

5 7 .2 0 4 1 0 0 .7 8 1 4 3 .5 7 7

6 .4 8 4 4 3 .5 7 1 3 7 .0 9 3

K
L

− 
   = − −   
 − 

   (6.47) 

6.1.3.4 Element 4: 
 Element 4 is simplified to: 

4

1 1 5 8 1 3 .2 2 6 5 7 9 7 1 .0 2 7 2 8 8 5 6 .6 8 6

5 7 9 7 1 .0 2 7 4 6 1 7 0 4 .7 2 5 5 7 4 5 5 .7 1 7

2 8 8 5 6 .6 8 6 5 7 4 5 5 .7 1 7 1 1 5 0 4 0 .2 6 2

M L

− 
   =   
 − 

 (6.48) 

4

2 9 .3 7 1 3 3 .1 2 6 3 .7 5 5
1

3 3 .1 2 6 5 8 .3 5 9 2 5 .2 3 3

3 .7 5 5 2 5 .2 3 3 2 1 .4 7 8

K
L

− 
   = − −   
 − 

   (6.49) 

The finite element model becomes: 
 
 
 
 
 
 
 
 
 
 

1 1 1
11 12 13
1 1 1
21 22 11
1 1 1 2 2 2
31 32 33 11 12 13

2 2 2
21 22 23
2 2 2 3 3 3
31 32 33 11 12 13

3 3 3
21 22 23
3 3 3 4 4 4
31 32 33 11 12 13

4 4 4
21 22 23
4 4 4
31 32 33

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

K K K

K K K

K K K K K K

K K K

K K K K K K

K K K

K K K K K K

K K K

K K K








+



1

2

3

4

5

6

7

8

9

T

T

T

T

T

T

T

T

T

  
  
  
  
  
  
    

   
   
   
   
   
    

 + 



 
Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 207 - 224 
Transient temperature field in functionally graded materials    J. A. Akpobi and C. O. Edobor   J of NAMP 
 

1 1 1
11 12 13
1 1 1
21 22 11
1 1 1 2 2 2
31 32 33 11 12 13

2 2 2
21 22 23
2 2 2 3 3 3
31 32 33 11 12 13

3 3 3
21 22 23
3 3 3 4 4 4
31 32 33 11 12 13

4 4 4
21 22 23
4 4 4
31 32 33

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

M M M

M M M

M M M M M M

M M M

M M M M M M

K M M

K M M M M M

M M M

M M M




 +

+

+



11

2

3

4

5

6

7

8

99

0

0

0

0

0

0

0

QT

T

T

T

T

T

T

T

QT

    
    
    
    

     
     

     =   
     
     
     
     
     
        

&

&

&

&

&

&

&

&

&

 (6.50) 

The condensed equations are taking note that 1 0T T=  

1 1
222 11

1 1 2 2 2
332 33 11 12 13

2 2 2
421 22 23

2 2 2 3 3 3
531 32 33 11 12 13

3 3 3
621 22 23

3 3 3 4 4 4
731 32 33 11 12 13

4 4 4
821 22 23

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 01

0 0 0 0 0

0 0 0

0 0 0 0 0

TK K

TK K K K K

TK K K

TK K K K K K

TL K K K

TK K K K K K

TK K K

  
  
  
  
  +  

 
 
+ 
 
 
   






+







 

1 1
22 11 2
1 1 2 2 2
32 33 11 12 13 3

2 2 2
21 22 23 4
2 2 2 3 3 3
31 32 33 11 12 13 5

3 3 3
21 22 23 6
3 3 3 4 4 4
31 32 33 11 12 13 7

4 4 4
21 22 23 8

0 0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

M M T

M M M M M T

M M M T

M M M M M M T
L

M M M T

M M M M M M T

M M M T

  
  +  
  
  

+  
 

 
+ 

 
 
  

&

&

&

&

&

&

&

1
12 0
1
31 0

0

0

0

0

0

K T

K T

  −
  −  
  
  
  =  

   
   
   
   
   
   

 (6.51) 
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300.463 129.917 0 0 0 0 0

129.917 198.158 98.767 11.195 0 0 0

0 98.767 174.010 75.242 0 0 0
1

0 11.195 75.242 114.767 57.204 6.484 0

0 0 0 57.204 100.781 43.577 0

0 0 0 6.484 43.577 66.464 33.126

0 0 0 0 0 33.126 58.358

L

− 
 − − 
 − −
 − −
 − −


− −
 − 

2

3

4

5

6

7

8

T

T

T

T

T

T

T

 
 
 
 
  + 
 
 
 
 
 

 

474235.976 59015.182 0 0 0 0 0

59015.182 236062.274 59015.361 29376.532 0 0 0

0 59015.361 470022.35 58409.765 0 0 0

0 29376.532 58490.765 233964.415 58490.860 29115.446 0

0 0 0 58470.86 465844.878 57970.922 0

0 0 0 29115.446 57970.922

L

−

− −

−

2

3

4

5

6

7

8

231885.005 57971.027

0 0 0 0 0 57971.027 461704.725

T

T

T

T

T

T

T

  
  
  
  
   =  
  
  
  
  

  

&

&

&

&

&

&

&

 

    

0

0

170.546

19.330

0
1

0

0

0

0

T

T

L

 
 − 
 
 
 
 
 
 
 
 

     (6.52) 

The solution is divided into the homogenous solution and the particular solution h pT T T= +  

 ( )exphT v tλ= −  or  ( ) ( )exp 0K M v tλ λ− − =   (6.53) 

from which ( ) 0K M vλ− =  or det 0K Mλ− = . 

Solving this equation yields the eigenvalues with which the eigenvectors are set up. Since the finite-
eigenvalue approach of solving transient temperature field problems has been effectively described above, 
it is of interest only to show that as the number of elements is increased, the solution obtained would 
ultimately tend to the exact solution. 

[ ]{ } { }ˆk T Q
p

=      (6.54) 

1 1 1
222 23 21

1 1 2 2 2
332 33 11 12 13 3

2 2 2
421 22 23

2 2 2 3 3 3
531 32 33 11 12 13

3 3 3
621 22 23

3 3 3 4 4
731 32 33 11 12

4 4
821 22

Tk k 0 0 0 0 0 -k

Tk k k k k 0 0 0 -k

T0 k k k 0 0 0

T0 k k k k k k 0

T0 0 0 k k k 0

T0 0 0 k k k k k

T0 0 0 0 0 k k

   
   +   
   
    =+   

  
  
 + 
  
  

1
1

0

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 

  (6.55) 

That is, 
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300.463 -129.917 0 0 0 0 0

-129.917 198.158 -98.767 11.195 0 0 0

0 -98.767 174.010 -75.242 0 0 0

0 11.195 -75.242 114.767 -57.204 6.484 0

0 0 0 -57.204 100.781 -43.577 0

0 0 0 6.484 -43.577 66.464 -33.126

0 0 0 0 0 -33.126 58.359

 
 
 
 
 
 
 



 

2 0

3 0

4

5

6

7

8

T 170.546 T

T -19.330 T

T 0

T 0

T 0

T 0

T 0

   
   
   
   
   =   
   
   
   
   
   

 (6.56) 

Solving the equations above gives rise to 

2 0

3 0

4 0

5 0

6 0

7 0

8 0

T 0.96017 T

T 0.90789 T

T 0.83912 T

T 0.74884 T

T 0.63011 T

T 0.47424 T

T 0.26919 T

   
   
   
   
   =   
   
   
   
   
   

      (6.57) 

Thus the particular solution yields. 

0

0

0

p 0

0

0

0

0.96017 T

0.90789 T

0.83912 T

T 0.74884 T

0.63011 T

0.47424 T

0.26919 T

 
 
 
 
 =  
 
 
 
 
 

      (6.58) 

The nodes of interest are nodes 3, 5 and 7. The particular solution at these nodes of interest is: 

0

p 0

0

0.908 T

T 0.749 T

0.474 T

 
 =  
 
 

     (6.59) 

The general solution can thus be written as: 

( ) ( ) ( )p 1 1 1 2 2 2 j j jT = T v exp v exp v expc t c t c tλ λ λ+ − + − + + −L L   (6.60) 

Therefore, 

( ) ( ) ( )2
1 1 0 1 2 2 0 2 j j 0 j

0

T
0.908 v T exp v T exp v T exp

T
c t c t c tλ λ λ= + − + − + + −L L  (6.61) 

( ) ( ) ( )1 1 13
1 1 0 1 2 2 0 2 j j 0 j

0

T
0.749 v T exp v T exp v T exp

T
c t c t c tλ λ λ= + − + − + + −L L  (6.62) 

( ) ( ) ( )11 11 114
1 1 0 1 2 2 0 2 j j 0 j

0

T
0.474 v T exp v T exp v T exp

T
c t c t c tλ λ λ= + − + − + + −L L  (6.63) 
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It can easily be seen from the above solution that as t → ∞ ; 

2

0

T
0.908

T
→ , 3

0

T
0.749

T
→ , 4

0

T
0.474

T
→  

It follows therefore that the steady state solution at nodes 3, 5 and 7 are: 
T2 = 0.908 T0, T3 = 0.749 T0 and T4 = 0.474 T0 

 
 
 
 
These correspond to the steady state solutions at these nodes. 
6.2. Example 2: Two-dimensional heat conduction in a FGM square plate 

Consider the conduction heat transfer in a non-homogeneous (functionally graded materials) 

square plate of dimensions   (0,2 ) x L=  by   (0,2 )y L= , conductivity   ( , ) k k x y= =
2 2

0 1
x y

k
L L

    + +    
     

, 

density ρ, specific heat capacity c. The plate is subjected to a sudden internal heat generation of Q0. The 
edges of the plate are maintained at a temperature of T = 0. Determine the steady temperature distribution 
(Tc) at the centre of the plate using the finite element/eigenvalue method (adopted from [1]) 

The temperature distribution at the centre of the plate, solved with the finite element/eigenvalue 
method using a mesh of 2 × 2 rectangular elements, is given as: 

( ) ( ) ( )cT 0.169 0.129 exp 4.575 0.029 exp 19.794 0.010 exp 45.427t t t= − − − − − −  

it follows therefore that as T→∞, Tc→0.169, this fact is shown in Figure 6.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4: Transient temperature at the center of a non-homogeneous square plate under a sudden internal heat 
generation. 

 
7.0 Discussion of results 

A careful examination of the conclusions made in section 6.1.3, 6.2, Tables 1, 2 and Figures. 1, 2, 
3, 4 shows that the method was able to solve the system of time dependent differential equations that 
describe the transient temperature distribution in a functionally graded material with very high accuracy. 
The efficiency of the method is clearly seen as the number of finite elements is increased. It was observed 
that the solution tended fast to the exact solution when the number of elements was increased to four 1-D 
quadratic elements (9 nodes). The results generated are exponential functions of time. 
 
8.0 Conclusion 
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Due to the non-homogeneity of the properties of functionally graded materials, it is often difficult 
to obtain the exact solutions of their thermal conductivity equations, hence the need to develop a numerical 
method to obtain solutions that are as accurate as possible. In this work, a finite element-eigenvalue method 
was discussed, analyzed and used to solve thermal conductivity problem associated with a functionally 
graded material (non-homogeneous material). The solving scheme developed is simple. It finds its basis in 
fundamental eigenvalue/eigenvector problem-solving scheme in mathematics and it does not involve time 
discretization which, in complex cases like this, would have been very difficult to solve unless with the use 
of a software. 
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