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Abstract 

 
In this work, we develop a finite element-finite difference method to 

solve the differential equation governing the radial flow of slightly 
compressible fluids. The finite element method is used to carry out spatial 
approximations so as to study the variation of fluid properties at the various 
nodes to which effect we divided the entire radial domain of the fluid into a 
mesh of four radial 1-D quadratic elements which exposes nine nodes to 
intense study. Time approximation is done with the aid of the Crank-
Nicolson finite difference scheme. 
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1.0 Introduction 
 Fluids, generally, are compressible so that they will change with pressure, but, under steady flow 
conditions and provided that the changes in density are small, it is usually possible to simplify the analysis 
of a problem by assuming that the fluid is incompressible and of constant density. Since liquids are 
relatively difficult to compress, it is normal to treat them as if they are incompressible for all cases of 
steady flow. However for unsteady flow conditions, high pressure conditions can develop and the 
compressibility of liquids must then be taken into consideration. 
 Gases are easily compressed and, except when changes of pressure and, therefore density are very 
small, the effect of compressibility and changes of internal energy must be taken into account. 
 The necessity to consider compressibility, changes of pressure and internal energy effectively 
complicates the analysis of fluid flow hence the necessity to develop a robust numerical scheme which 
would enable the observation of the fluid properties at various points since real fluid flow is always 
turbulent and unsteady. Previously research had been done on: Finite Element Analysis of the distribution 
of Velocity in incompressible fluids, using the Lagrange interpolation function, see [1-6]. 

In this paper, we propose the finite element-finite difference method to solve the differential 
equation which governs the radial flow of slightly incompressible fluids. The method is developed to 
provide more accurate and broader spectrum of analysis for slightly compressible fluids. 
 
2.0 Mathematical modelling 

1

0.000264

p uc p
r

r r r k t

∂ ∂ Φ ∂  = ⋅ ∂ ∂ ∂ 
    (2.1) 

where 
u: volumetric flow rate per unit cross sectional area in the radial direction 
Ф: porosity 
r: radius/length 
c: compressibility 
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k: permeability 
 
 

 
 
 
 

Let tan
0.000264

uc
a cons t

k

Φ = = .  Therefore  

1 p p
r a

r r r t

∂ ∂ ∂  = ∂ ∂ ∂ 
     (2.2) 

Boundary conditions: 

( )0, op t p=  and ( )0, 0
p

t
x

∂ =
∂

 

Initial condition:    ( ),0 op x p=  

The following assumptions were made in developing this model thus 
• The single phase liquid has a small and constant compressibility 
• Permeability is constant and same in all directions i.e. isotropic 
• Porosity is constant 
• Pressure gradients are small 
• The geometry and boundary conditions are dependent only on the radial direction and independent 

of the other two directions 
2.1 Weak formulation 

The weak form of the above equation is obtained by multiplying the equation by a weight function 

( )w w r=  and integrating it over the domain of the element. 

1
0

v

p p
w r a rdrd dz

r r r t
θ ∂ ∂ ∂  = − +  ∂ ∂ ∂  

∫     (2.3) 

1 2

0 0

1
0

B

A

r

r

p p
w r a rdrd dz

r r r t

π

θ ∂ ∂ ∂  = − +  ∂ ∂ ∂  
∫ ∫ ∫  

1
0 2

B

A

r

r

p p
w r a rdr

r r r t
π  ∂ ∂ ∂  = − +  ∂ ∂ ∂  
∫      (2.4) 

1
0 2

B

A

r

r

p p
w r wa rdr

r r r t
π  ∂ ∂ ∂  = − +  ∂ ∂ ∂  
∫     (2.5) 

Using the integration by parts principle 
BB B

A A A

rr r

r r r

p w p p
w r dr r dr wr

r r r r r

∂ ∂ ∂ ∂ ∂   = − +   ∂ ∂ ∂ ∂ ∂   
∫ ∫     (2.6) 

Substituting equation 6 into equation 5 yields 

0 2 2
BB

A A

rr

r r

w p p p
r wra rdr wr

r r t r
π π∂ ∂ ∂ ∂   = + −   ∂ ∂ ∂ ∂   
∫  

( ) ( )1 20 2
B

A

r
e e

A B

r

w p p
r wra dr w r Q w r Q

r r t
π ∂ ∂ ∂ = + − − ∂ ∂ ∂ 
∫   (2.7) 
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where    1 22 2
A B

e e

r r

p p
Q r and Q r

r r
π π∂ ∂   = − =   ∂ ∂   

 

Equation (2.7) is the weak form of equation 1 
2.2  Finite element modelling 
 Let the solution to equation (2.7) be of the separable variable form 

( ) ( ) ( )
1

,
n

e e
j j

j

p r t p t rψ
=

=∑     (2.8) 

 
 

where e
jψ =  Lagrange radial interpolation function at the jth node and e

jp = pressure at the jth node of the 

element.  Since we are applying the Rayleigh-Ritz finite element method in this paper, we assume that the 
weight function is equal to the interpolation function. 

 ( ) ( )iw r rψ=       (2.9) 

Substitute equations (2.8) and (2.9) into equation (2.7) 

( ) ( )1 2
1 1

0 2
B

A

r n n
e e e e e ei
j j i j j i A i B

j jr

r p ra p dr r Q r Q
r r t

ψπ ψ ψ ψ ψ ψ
= =

 ∂ ∂ ∂= + − − ∂ ∂ ∂ 
∑ ∑∫  

( ) ( )1 2
1

0 2 2
B B

A A

r rn
j e e e ei

j i j j i A i B
j r r

r dr p ar dr p r Q r Q
r r

ψψπ π ψ ψ ψ ψ
=

    ∂∂ = + − −    ∂ ∂        
∑ ∫ ∫ &  

Let   2
B

A

r
ji

ij

r

r dr k
r r

ψψπ
∂∂

=
∂ ∂∫ , 2

B

A

r

i j ij

r

ar dr mπ ψ ψ =∫     (2.10) 

and ( ) ( )1 2
e e

i A i B ir Q r Q Qψ ψ+ =  

{ }
1

0
n

e e
ij j ij j i

j

k p m p Q
=

= + −∑ &     (2.11) 

In matrix form, equation (2.11) becomes [ ]{ } [ ]{ } { }0 K p M p Q= + −&  or 

[ ]{ } [ ]{ } { }M p K p Q+ =&     (2.12) 

where 

 

[ ]
[ ]
{ }

M mass matrix

K stiffness matrix

Q flux vector

=

=

=

 

The radial 1-D Lagrange quadratic interpolation functions are 

( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

1 2

2 2

3 2

1
2

4

1
2

B B A
e

A B
e

A B A
e

r r r r r r
h

r r r r r
h

r r r r r r
h

ψ

ψ

ψ

= − − −

= − −

= − − − −

      (2.13) 

where B Ar h r= + .  Substitute equation (2.13) into equation (2.9) to get the stiffness and mass matrices 
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[ ]
( )

( ) ( )
( )

3 14 4 16 2
2

4 16 16 32 12 16
6

2 12 16 11 14

A A A

A A A

A A A

h r h r h r

K h r h r h r
h

h r h r h r

π
+ − + + 

 = − + + − + 
 + − + + 

   (2.14) 

[ ]
4 2 1

2
2 16 2

30
1 2 4

ah
M

π
− 

 =  
 − 

     (2.15) 

We assume that in this paper that the initial point corresponds to the centre of the pipe, which implies that 

0Ar = . 

 
 
 
 
It follows therefore that the stiffness and mass matrices are given by 

[ ] 1

3 4 1
2

4 16 12
6 2

1 12 11

e er r
K

h

π +

− 
+  = ⋅ − − 

 − 

     (2.16) 

 In this paper, we divide the domain into four 1-D quadratic finite elements and the finite element 
model over an element is given as 

e e e e e e e e e
11 12 13 1 11 12 13 1 1
e e e e e e e e
21 22 23 2 21 22 23 2
e e e e e e e e e
31 32 33 3 31 32 33 3 3

m m m p k k k p Q

m m m p k k k p 0

m m m p k k k p Q

         
         + =        

        
         

&

&

&

  (2.17) 

For a mesh of four 1-D quadratic elements the assembled equations are: 
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1 1 1
11 12 13
1 1 1
21 22 23
1 1 1 2 2 2
31 32 33 11 12 13

2 2 2
21 22 23
2 2 2 3 3 3
31 32 33 11 12 13

3 3 3
21 22 23
3 3 3 4 4 4
31 32 33 11 12 13

4 4 4
21 22 23
4 4 4
31 32 33

m m m 0 0 0 0 0 0

m m m 0 0 0 0 0 0

m m m m m m 0 0 0 0

0 0 m m m 0 0 0 0

0 0 m m m m m m 0 0

0 0 0 0 m m m 0 0

0 0 0 0 m m m m m m

0 0 0 0 0 0 m m m

0 0 0 0 0 0 m m m




 +

+

+
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3
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5

6

7

8

9

1 1 1
11 12 13
1 1 1
21 22 23
1 1 1 2 2 2
31 32 33 11 12 13

2 2 2
21 22 23
2 2 2 3 3 3
31 32 33 11 12 13
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p

p

p

p

p

p

p

p

k k k 0 0 0 0 0 0

k k k 0 0 0 0 0 0

k k k k k k 0 0 0 0

0 0 k k k 0 0 0 0

0 0 k k k k k k 0 0

0 0 0 0 k

  
  
  
  

   
   

   + 
   
   
   
   
   
    

+

+

&

&

&

&

&

&

&

&

&

1 1

2

3

4

5

3 3 3
622 23

3 3 3 4 4 4
731 32 33 11 12 13

4 4 4
821 22 23

4 4 4
9 931 32 33

p Q

p 0

p 0

p 0

p 0

p 0k k 0 0

p 00 0 0 0 k k k k k k

p 00 0 0 0 0 0 k k k

p Q0 0 0 0 0 0 k k k

     
     
     
     
     
     

     =   
     
     
     +
     
     
         

 (2.18) 

 
3.0 Numerical example 

Consider the flow of a slightly compressible fluid in a cylinder pipe of radius 1m. The properties 
of the fluid are as shown below 

30.5, 0.0002, 10 , 2.5c u m s kΦ = = = =  

so that 

0.5 10 0.0002
1.5

0.000264 0.000264 2.5

uc
a

k

Φ × ×= = =
×

 

Also    
1

4
radial length of an element h= =  

 
 
 
 
 

1

3 4 1

4 16 12
6

1 12 11

K
π

− 
   = ⋅ − −   
 − 

,  

2

9 12 3

12 48 36
6

3 36 33

K
π

− 
   = ⋅ − −   
 − 

,  
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3

15 20 5

20 80 60
6

5 60 55

K
π

− 
   = ⋅ − −   
 − 

,  

4

21 28 7

28 112 84
6

7 84 77

K
π

− 
   = ⋅ − −   
 − 

.  

Also   1 2 3 4

4 2 1
2

2 16 2
80

1 2 4

M M M M
π

− 
        = = = =         
 − 

 

The assembled equation thus becomes 

1

2

3

4

5

6

7

8

9

p4 2 1 0 0 0 0 0 0

p2 16 2 0 0 0 0 0 0

p1 2 8 2 1 0 0 0 0

p0 0 2 16 2 0 0 0 0
2

p0 0 1 2 8 2 1 0 0
80

p0 0 0 0 2 16 2 0 0

p0 0 0 0 1 2 8 2 1

p0 0 0 0 0 0 2 16 2

p0 0 0 0 0 0 1 2 4

−   
  
  
  − −
  
  π    +− −  

   
   
 − −  
   
   
   −   

&

&

&

&

&

&

&

&
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1

2

3

4

5

6

7

8

9

p3 4 1 0 0 0 0 0 0 Q

p4 16 12 0 0 0 0 0 0

p1 12 20 12 3 0 0 0 0

p0 0 12 48 36 0 0 0 0

p0 0 3 36 48 20 5 0 0
6

p0 0 0 0 20 80 60 0 0

p0 0 0 0 5 60 76 28 7

p0 0 0 0 0 0 28 112 84

p0 0 0 0 0 0 7 84 77

−   
  − −   
  − −
  − −   π    =− −  

   − −   
 − −  
   − −   
   −   

1
1
1
2

1 2
3 1

2
2

2 3
3 1

3
2

3 4
3 1

4
2
4
3

Q

Q Q

Q

Q Q

Q

Q Q

Q

Q

 
 
 
 +
 
 
 + 
 
 
 +
 
 
  

 

Due to the balance of internal fluxes, it follows that 
1 2 2 3 3 4
3 1 3 1 3 1

2 3 4
2 2 2

0

0

Q Q Q Q Q Q and

Q Q Q

+ = + = + =

= = =
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1
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p4 2 1 0 0 0 0 0 0

p2 16 2 0 0 0 0 0 0

p1 2 8 2 1 0 0 0 0

p0 0 2 16 2 0 0 0 0
2

p0 0 1 2 8 2 1 0 0
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6
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&
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p Q
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p 00 0 0 0 5 60 76 28 7

p 00 0 0 0 0 0 28 112 84

p Q0 0 0 0 0 0 7 84 77

   
   
   
   − −
   − −    
   =− −   

   − −   
 − −  
   − −   
   −   








 


 
 
 
 
 
  

  (3.1) 

We now consider the boundary conditions 

( )0, op t p=   

which implies that  

1 op p=  and ( )0, 0
p

t
x

∂ =
∂

  

which implies that    1
1 1 0Q Q= =  

2

3

4

5

6

7

8

9

04 2 1 0 0 0 0 0 0

p2 16 2 0 0 0 0 0 0

p1 2 8 2 1 0 0 0 0

p0 0 2 16 2 0 0 0 0
2

p0 0 1 2 8 2 1 0 0
80

p0 0 0 0 2 16 2 0 0

p0 0 0 0 1 2 8 2 1

p0 0 0 0 0 0 2 16 2

p0 0 0 0 0 0 1 2 4
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  − −
  
  π    +− −  

   
   
 − −  
   
   
   −   

&

&

&

&

&

&

&
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p 03 4 1 0 0 0 0 0 0

p4 16 12 0 0 0 0 0 0

p1 12 20 12 3 0 0 0 0

p0 0 12 48 36 0 0 0 0

p0 0 3 36 48 20 5 0 0
6

p0 0 0 0 20 80 60 0 0

p0 0 0 0 5 60 76 28 7

p0 0 0 0 0 0 28 112 84

p0 0 0 0 0 0 7 84 77

−   
  − −   
  − −
  − −   π    =− −  

   − −   
 − −  
   − −   
   −    9

0

0

0

0

0

0

0

Q

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

The condensed equations are  

2

3

4

5

6

7

8

9

2 1 0 0 0 0 0 0

16 2 0 0 0 0 0 0

2 8 2 1 0 0 0 0

0 2 16 2 0 0 0 02
0 1 2 8 2 1 0 080

0 0 0 2 16 2 0 0

0 0 0 1 2 8 2 1

0 0 0 0 0 2 16 2

4 1 0 0 0 0 0 0

16 12 0 0 0 0 0 0

12 20 12 3 0 0 0 0

0 12 48 36 0

6

p

p

p

p

p

p

p

p

π

π

−   
  
  
  −
  
   +  − −   
  
  − −   
     

−
−

− −
− −

&

&

&

&

&

&

&

&

2

3

4

5

6

7

8

9

3

4

0 0 0 0

0 3 36 48 20 5 0 0 06

0 0 0 20 80 60 0 0 0

0 0 0 5 60 76 28 7 0

0 0 0 0 0 28 112 84 0

o

o

o

p p

p p

p p

p

p

p

p

p

π

−    
    
    
    −
    
     =    − −     
   − − 
    − −     
   − −     

  (3.2) 

Recall that the finite element model was of the form 

[ ]{ } [ ]{ } { }M p K p Q+ =&  

Thus 
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[ ]

2 1 0 0 0 0 0 0

16 2 0 0 0 0 0 0

2 8 2 1 0 0 0 0

0 2 16 2 0 0 0 02

0 1 2 8 2 1 0 080

0 0 0 2 16 2 0 0

0 0 0 1 2 8 2 1

0 0 0 0 0 2 16 2

M
π

− 
 
 
 −
 
 =
 − −
 
 
 − −
 
  

   (3.3) 

 
 
 
 

[ ]

4 1 0 0 0 0 0 0

16 12 0 0 0 0 0 0

12 20 12 3 0 0 0 0

0 12 48 36 0 0 0 0

0 3 36 48 20 5 0 06

0 0 0 20 80 60 0 0

0 0 0 5 60 76 28 7

0 0 0 0 0 28 112 84

K
π

− 
 − 
 − −
 − − =
 − −
 

− − 
 − −
 

− −  

   (3.4) 

{ }

3

4

0

06

0

0

0

o

o

o

p

p

p

Q
π

− 
 
 
 −
 
 =  
 
 
 
 
 
 

     (3.5) 

 
4.0 Finite difference modelling 

In this work, we use the α family of approximation, in which a weighted average of the time 
derivative of the dependent variable, p, is approximated at two consecutive time steps by linear 
interpolation of the values of the variable at the two steps: 

( ){ } { } { } { }1
1

1

1 0 1s s
s s

s

p p
p p for

t
α α α+

+
+

−
− + = ≤ ≤

∆
& &    (4.1) 

where { }s
 refers to the value of the enclosed quantity at time 

1

s

s ii
t t t

=
= = ∆∑ .  Since the finite 

element model is valid for any 0t > , it is valid for st t=  and 1st t +=  

[ ]{ } [ ]{ } { }s s s
M p K p Q+ =&     (4.2) 

[ ]{ } [ ]{ } { }1 1 1s s s
M p K p Q

+ + +
+ =&    (4.3) 

We multiply both sides of equation (4.1) by [ ]1st M+∆  to get 

[ ]{ } ( )[ ]{ } [ ] { } { }( )1 11 1
1s ss s s s

t M p t M p M p pα α+ ++ +
∆ + ∆ − = −& &  
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We substitute for [ ]{ } 1s
M p

+
&  and [ ]{ }s

M p&  from equations (4.2) and (4.3) respectively 

{ } [ ]{ }( ) ( ) { } [ ]{ }( ) [ ] { } { }( )1 11 1 1
1s ss s s s s s

t Q K p t Q K p M p pα α+ ++ + +
∆ − + ∆ − − = −  

Rearranging the terms into known and unknown, we get 

[ ] [ ]( ){ } [ ] ( )[ ]( ){ } { } ( ){ }( )1 1 11 1
1 1s s ss s s s

M t K p M t K p t Q Qα α α α+ + ++ +
+ ∆ = − ∆ − + ∆ + −  

But       

{ } { } { }1s s
Q Q Q

+
= =  

Therefore writing     

1st t+∆ = ∆  

[ ] [ ]( ){ } [ ] ( )[ ]( ){ } { }1
1

s s
M t K p M t K p t Qα α

+
+ ∆ = − ∆ − + ∆  (4.4) 

we apply the Crank-Nicholson finite difference scheme i.e. we take 0.5α =  equation (4.4) becomes 
 
 
 
 

[ ] [ ] { } [ ] [ ] { } { }12 2s s

t K t K
M p M p t Q

+

   ∆ ∆
+ = − + ∆   

   
 

{ } [ ] [ ] [ ] [ ] { } [ ] [ ] { }
1 1

1 2 2 2s s

t K t K t K
p M M p M t Q

− −

+

      ∆ ∆ ∆
 = + − + + ∆        
       

 

Let      

[ ] [ ] [ ] [ ] [ ]
1

2 2

t K t K
M M S

−    ∆ ∆
 + − =   
     

    (4.5) 

[ ] [ ] { } { }
1

2

t K
M t Q C

−
 ∆

+ ∆ =    
 

     (4.6) 

where      t time step∆ =  

The Crank-Nicholson finite difference scheme can thus be written as 

{ } [ ]{ } { }1s s
p S p C

+
= +       (4.7) 

Considering the initial condition, it follows therefore that 

( ) 0

1

1

1

1
0

1

1

1

1

p p

 
 
 
 
 
 =  
 
 
 
 
 
 

 

 
The solutions are then obtained by substituting equations (3.3), (3.4) and (3.5) into equations (4.5) and (4.6) 
which are in turn substituted into equation (4.7).  To achieve this, a code is written in the MatLab 
programming environment. 
 
5.0 Exact solution 
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1

0.000264

p uc p
r

r r r k t

∂ ∂ Φ ∂  = ⋅ ∂ ∂ ∂ 
 

Let      

tan
0.000264

uc
a cons t

k

Φ = =  

Therefore 

1 p p
r a

r r r t

∂ ∂ ∂  = ∂ ∂ ∂ 
 

It is obvious that as t → ∞ , 0
p

t

∂ →
∂

, the steady state solution is obtained by solving the differential 

equation     
1

0
p

r
r r r

∂ ∂  = ∂ ∂ 
 

Applying the principles of integration by parts yields  
2

2

1
0

p p
r

r r r

 ∂ ∂+ = ∂ ∂ 
 

 
 
 

2

2

1
0

p p

r r r

∂ ∂+ =
∂ ∂

 

or     
2

2
0

p p
r

r r

∂ ∂+ =
∂ ∂

    (5.1) 

( )0, op t p=  

and     ( )0, 0
p

t
x

∂ =
∂

 

Solving the above differential equation with its boundary conditions yields 

( )( ) 1op r p r= −      (5.2) 

The repeated use of equation (4.7) can cause the temporal approximation error to grow with time, 
depending on the value of α. The critical time step is given by 

max

2
crt

λ
∆ =  

where λmax is the maximum eigenvalue associated with equation (2.12) 

[ ]{ } [ ]{ } 0M p K pλ− + =  

For the model under scrutiny, this reduces to  

2 1 0
40 6

p p
π πλ− + =  or 

20

3
λ =  

This yields     
3

10crt∆ =  

 
6.0 Results 
 

Table 6.1: Variation of pressure of fluid with time at the various nodes 
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( )t s →  0.1 0.5 1.0 5.0 10.0 15.0 t → ∞  Steady state 
solution 

0.25r m=  0.95 0.92 0.89 0.84 0.81 0.78 0.75 0.75 

0.50r m=  0.80 0.72 0.68 0.64 0.61 0.57 0.50 0.50 

0.75r m=  0.62 0.59 0.52 0.49 0.41 0.36 0.25 0.25 

1.0r m=  0.36 0.32 0.28 0.21 0.17 0.11 0 0 
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Figure 6.1: Graph showing the variation of fluid pressure with time at various points 

 
6.1 Discussion of results 
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 The graphs shown in figure 6.1 indicate that the pressure at the various nodes of interest tended 
towards the steady state solution which is an indication that the solutions are accurate and the method very 
robust. 

The critical time step was computed as 
3

10crt∆ = . Thus in order for the solution to be stable, the 

time step should be smaller than 
3

10crt∆ = ; otherwise the solution will be unstable. Hence to obtain a 

sufficiently accurate solution, the time step must be taken as a fraction of crt∆ . 

 
7.0 Conclusion 

We have presented in this work an accurate model for solving the differential equations governing 
radial flow of slightly compressible fluids using the finite element-finite difference method which can thus 
be used in characterizing the behaviour of these flows. 
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