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Abstract 
 

Mathematical formulations of the temperature distribution in the 
flow of a viscous incompressible fluid past a stretching sheet with internal 
heat generation and subsequent analytical solutions are the subject of this 
article. The velocity of the sheet is proportional to the distance from the slit 
and the sheet is subject to a uniform heat flux. A closed form solution of 
temperature is obtained in terms of incomplete Gamma function. During the 
course of discussion, the effects of Prandtl number and heat generation 
parameter on temperature field is extensively discussed. It is hoped that the 
solution reported herein will serve as a stimulus for experimental work and 
as a vehicle for understanding the problem of a polymer strip extruded 
continuosly from a die, or a long thread travelling between a feed roll and a 
wind-up roll. 
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1.0 Introduction 

The flow formation in the boundary layer of an incompressible viscous fluid due to moving 

solid surfaces was studied by Sakiadis [1,2]. Since the ambient fluid is at rest, the flow formation in the 
boundary layer is quite different from that in Blasius fow past a flat plate. These investigations have a 
bearing on the problem of a polymer strip extruded continuously from a die. Erikson et al. [3] extended the 
work of Sakiadis [1] by taking into account the suction /injection at the moving plate with heat and mass 
transfer. In the above studies the strip is assumed to be inextensible, but in polymer industry, situations 
arise to deal with extensible strip as pointed out by McCormack and Crane [4]. Such situations for non-
Newtonian fluid were studied by Siddappa and Abel [5]. Again Dutta et al. [6] studied the temperature field 
in the flow over a stretching sheet with uniform heat flux.  

However, the problem of determining the temperature field over a stretching sheet subject to 
uniform heat flux and temperature dependent heat generation, which is more realistic in many practical 
situations, does not seem to have received any attention. The present study is addressed to this situation. 
 
2.0 Mathematical analysis 

We consider the two dimensional flow of viscous, incompressible heat generating fluid past a 
horizontal stretching plate that issues from a thin slit at x = 0, y = 0 , as in a polymer processing application 
(Figure 2.1). The  
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derivation of equations governing the steady temperature distribution in the flow of a viscous 
incompressible fluid caused by the stretching of a sheet which issues from a slit into the fluid is given by 
Dutta et al. [6]. Following this treatment, on taking into account the temperature dependent heat generating 
fluid, the basic equations relevant to problem under boundary layer approximation are:  
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The relevant boundary conditions are u = αx, v = 0, A
y

T ′=
∂
∂− λ  at y = 0 

∞→→→ ∞ yasTTu ,0     (2.4) 

where A′  is the uniform surface heat flux, δ* is the heat source parameter and other quantities have their 
usual meanings as defined by Dutta et al. [6]. Since the fluid is incompressible, the momentum equation 
(2.2) and energy equation (2.3) can be solved consecutively. A stream function ψ defined by 
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is introduced such that the continuity equation is identically satisfied. Defining a stream function  
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Using equation (2.6) in equation (2.2) we get 

)()()()]([ 2 ηηηη FFFF ′′′=′′−′ ,   (2.7) 

with boundary conditions obtained from equation (2.4)  
0)(,1)0(,0)0( =∞′=′= FFF     (2.8) 

where )(ηF ′  represent derivative with respect to η  . 

Crane [7] has given the solution of equation (2.7) which satisfies the boundary condition as   
)exp(1)( ηη −−=F      (2.9) 

To solve the energy equation (2.3), the temperature distribution can be taken in the form of a similar 
solution as 
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Using equation (2.10) in equation (2.3) we get 
0)(])(Pr[)( =′++′′ ηδηη GFG ,   (2.11) 

with the boundary conditions 
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where ,)/( 2

1
* vαδδ = is the dimensionless heat source parameter. 

The solution of equation (2.11) satisfying equation (2.12) in terms of incomplete Gamma function [8] is 

))exp(PrPr,(Prexp(Pr))( Pr ηγη −= − CG C  ,  (2.13) 

where )(Pr,ξγ is the incomplete Gamma function defined as  
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and C=1+δ  . 
Rewriting equation (2.14) in terms of confluent hypergeometric function [8] 

];Pr1;[PrPr)(Pr, Pr1 ξφξξγ −+= −       (2.15) 

where φ  stands for the confluent hypergeometric function. Hence 

)](expPrPr;1;Pr[Pr)/))1(exp(Pr()( ηϕηη −−+−= CCCCG   (2.16) 

In the absence of heat source ( )0=δ , all the above results reduce to that reported by Dutta et al. [6]. 

Finally the wall temperature ∞T is obtained from (2.10) as  
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where Pr;Pr(Prexp(Pr))0( Pr CG C γ−= ) 

 
3.0 Results and discussion 

In order to point out the influence of the heat source parameter and Prandtl number into the 

problem on the temperature field, we have computed numerically ,)/()( ∞∞ −− TTTT W  using equations 

(2.10), (2.16) and (2.17).  
For illustration purposes, the temperature variations have been shown in the Table for different 

values of the Prandtl number (Pr) and heat generation parameter (δ). The results pertain three values of 
Prandtl numbers 0.1, 0.7 and 1.0 .The fluids correspond to these Prandtl numbers exhibit decreasing heat 
conductivities in that order. From table it is clear that thermal boundary layer thickness increases with 
decreasing Prandtl number due to the increased conductivity of the fluid. Furthermore the impact of heat 
generation parameter in reducing the temperature is also evident from the table. The results in table yield 
quantitative estimate of the counterbalancing effects of Prandtl number and heat generation parameter on 
the temperature profile. We also observe from the table that the convergence of the temperature values to 
the corresponding free stream values are considerably influenced by the Prandtl number and heat 
generation parameter. We believe that these results will be useful in the problem of cooling of a polymer 
sheet extruded continuously from die.   
 

Table 3.1: Variation of temperature field 
 

η  

Pr δ  0.0 2.0 4.0 6.0 8.0 10.0 

0.0 1.0000 0.8250 0.6762 0.5537 0.4533 0.3712 
0.5 1.0000 0.7490 0.5557 0.4118 0.3051 0.2260 

 
0.1 

1.0 1.0000 0.6798 0.4566 0.3061 0.2052 0.1376 
 0.0 1.0000 0.3098 0.0790 0.0196 0.0048 0.0012 
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0.5 1.0000 0.1637 0.0209 0.0026 0.0003 0.0000 0.7 
1.0 10000 0.0851 0.0054 0.0003 0.0000 0.0000 
0.0 1.0000 0.2002 0.0287 0.0039 0.0005 0.0001 
0.5 1.0000 0.0808 0.0043 0.0002 0.0000 0.0000 

 
1.0 

1.0 1.0000 0.0317 0.0006 0.0000 0.0000 0.0000 
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Fig.1  Boundary layer on a stretching plate.  
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Figure 2.1: Boundary layer on stretching plate 


