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Abstract 
 

 This paper presents the numerical methods of Non-linear Integral 
Equations by Cubic Spline Collocation Tau Methods.  Two Numerical 
collocation methods are applied to some nonlinear integral Equations after 
the non-linear Integral Equations have been linearized  using Taylor’s Series 
linearization scheme.  Then the linearized Integral Equation is then 
evaluated for the purpose of comparison the computational cost, accuracy 
and the errors obtained for each method.  The two numerical methods are 
Standard Cubic Spline Collocation Method (SCSCM) and Perturbed Cubic 
Spline Collocation Tau method (PCSCTM).  These methods have been used 
by ref. [2]  for solving singularly Perturbed second Order Differential 
Equations.  Numerical examples are given which show that the errors 
obtained by PCSCTM are smaller than that of SCSCM. 
 
 
 

1.0 Introduction  
 We consider the general nonlinear volterra integral equation of the form 
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Where λ is a scalar parameter, y(s) is an unknown function, f(s) is a given function and k(x , t , y(t)) is the 
kernel which is always given.  Many numerical techniques have been used successfully for equation (1.1) 
and in this section; we discussed in details a straight forward yet generally applicable technique the “Cubic 
Spline Collocation” method (see Ref. [1]).  The Newton’s scheme from the Taylor’s series expansion may 
be represented by the first three terms of around (xn , tn , y0) in the following form: 
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By substituting equation (1.2) in equation (1.1), we obtain 
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The integral part of (1.3), t is an independent variable, y is a dependent variable, and s is a parameter, 
therefore by integrating equation (1.3) with respect to t, we obtain  
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Thus, equation (1.4) is our linearized form of equation (1.1).  Now, it is convenient to begin by considering 
techniques based on the use of approximate Cubic Spline solution (see Ref [1]) on equation (1.4) to obtain. 
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In equation (1.5), the integrals have to be evaluated. 
 
2.0 Standard cubic spline collocation method (SCSCM) 
 Details of this method can be found in [3].  However, after the evaluation of the integrals in 
equation (1.5), the left over are then collocated at point s = sk, hence equation (1.5) becomes 
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where 
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Thus, equation (2.1) gives a system of (n + 1) linear algebraic equations, which together with the recursive 
Cubic Spline relation (see Ref. [1]) and the two end, conditions, 
 
     M0  =  Mn =  0     (2.3) 
 
Altogether, comprise a complete system to solve for the (2n + 2) unknowns  
 
    y0, y1 , … ,  yn, m0, m1…, mn 
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3.0 Perturbed cubic spline collocation method (PCSCTM) 
 In this method, after the evaluation of the integrals in equation (1.5), again, the left over are then  
slightly perturbed to give 
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is the Chebyshev polynomial of degree n valid in [a ,b] is defined by   
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and it satisfies the recurrence relation   
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The Chebyshev polynomial oscillates with equal amplitude in the range under consideration and this makes 
the Chebyshev polynomial more suitable in function approximation problems. 
 Thus, equation (3.1) are then collocated at point s = sk , hence, equation (3.1) becomes 
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Thus, equation (3.3) gives rise to a system of (N + 2) linear equations, which together with the recurrence 
Cubic Spline (see Ref. [1]) and the two end conditions in equation (2.3).  altogether, comprise a complete 
system to solve for the 3(N + 1) unknowns y0, y1,…,yn m0, m1, m2…,τ0, τ1,…,τN. 
The error is defined by 
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where y(x) is given in a closed form. 
 
4.0 Numerical results and discussion 

We consider two test examples 
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Example 4.1 
Consider the nonlinear weekly singular Volterra integral equation of the form: 
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with exact solution ( )
2

12 += xxy and singular point x0 = 0, following the linearization techniques 

discussed earlier, the above nonlinear in equation (4.1) will be reduced to the linear Volterra integral 
equation of the form: 

( ) ( ) 1̀0
2

0
11̀

1

1

224

,
2
1

1
28

3
6

5
10 +

++

+

+

≤≤+






 −+−++−= ∫ n

x

n

n

n

n

n

n xxxdtty
xx

y
x

x

xx

x

yxx
xy  (4.2) 

 
Table 4.1: Error for Example 4.1 at the seven iteration for case N = 5. 

 
h x Standard Cubic 

Spline  
Collocation Method 

Perturbed Cubic Spline  
Collocation Method 

5
1  

5
1  1.043216 × 10-4 4.3289156 × 10-6 

 
5

2  2.0048299 × 10-4 3.8923452 × 10-6 

 
5

3  5.6721891 × 10-4 5.6328731 × 10-6 

 
5

4  8.7159238 × 10-4 6.0123494 × 10-6 

 
5

5  8.9672320 × 10-4 6.4349732 × 10-6 

 
Table 4.2: Errors for Example 4.1 at the seven iterations for case N = 8 

 
 
h 

 
x 

Standard Cubic 
Spline Collocation 
Method 

Perturbed Cubic Spline 
Collocation Method 

8
1  

8
1  7.0247320 × 10-4 2.6732954 × 10-8 

 
8

2  4.9346722 × 10-3 3.692936 × 10-8 

 
8

3  3.8134567 × 10-3 3.942349 × 10-8 

 
8

4  3.2173298 × 10-3 4.632185 × 10-8 

 
8

5  3.004329 × 10-3 5.0421173 × 10-8 

 
8

6  2.994238 × 10-3 6.3347213 × 10-8 

 
8

7  1.8739256 × 10-3 6.0034321 × 10-8 

 
8

8  1.623459 × 10-3 7.00034997 × 10-8 

 
Example 4.2 
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The nonlinear Volterra integral equation 
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with exact solution y(x) = exp(x). 
The linearized form of equation (4.3) is of the form: 

 ( ) ( ) ( )( ) ( )∫ +≤≤+−−−=
x

nnn xxxdttyyxyxxxy
0 10

2 ;212exp
2

1
exp  (4.4) 

 
 
 
 
 
 
 

Table 4.3: Error for Example 4.2 at the seven iterations for case N = 5. 
 

h x Standard Cubic Spline  
Collocation Method 

Perturbed Cubic Spline  
Collocation Method 

5
1  

5
1  1.072437 × 10-5 1.033425 × 10-7 

 
5

2  8.992639 X  10-4 1.432119 × 10-7 

 
5

3  7.8872351 × 10-4 6.734892 × 10-6 

 
5

4  4.8993281 × 10-4 9.665928 × 10-6 

 
5

5  9.004927 × 10-4 9.721351 × 10-6 

 
 

Table 4-4: Error for Example 4.2 at the seven iterations for case N = 8. 
 

h x Standard Cubic Spline 
Collocation Method 

Perturbed Cubic Spline 
Collocation Method 

8
1  

8
1  4.342189 × 10-4 1.0563289 × 10-9 

 
8

2  6.349231 × 10-4 2.6234951 × 10-9 

 
8

3  6.994327 × 10-4 2.4213895 × 10-9 

 
8

4  8.0021635 × 10-4 3.6789348 × 10-9 

 
8

5  1.9967387 × 10-3 5.0072381 × 10-9 

 
8

6  2.0045931 × 10-3 5.732895 × 10-9 

 
8

7  4.6623996 × 10-3 6.1132819 × 10-9 

 1 5.843218 × 10-3 7.0004328 × 10-9 
 
 
5.0 Conclusion 
 In this paper, two collocation methods namely, standard cubic spline collocation and perturbed 
cubic spline collocation methods (which is well known as orthogonal) are examined for solving nonlinear 
Integral Equations. 

Tables 4.1 – 4.4 show the numerical solutions in terms of the errors obtained for the two nonlinear 
integral equations at the seven iterations.  It is observed that the perturbed cubic spline collocation method 
converges faster than the standard cubic spline collocation method.  The SCSCM and PCSCM involves 
large matrix system of algebraic equations of different degrees.  It is interesting to compare the accuracy 
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and the cost of computation involved in the two methods.  In table 4.1, for example, for the case N = 5, 
SCSCM involved 12 systems of algebraic equations with maximum error 8.967232 E – 04 while the 
PCSCM involved 18 systems of algebraic equation with maximum error 6.4349732E-06.  in the case of 
PCSCM, extra work and computations are involved and these are compensated for in terms of the errors 
obtained.  We also observed that as N increases, PCSCM converges faster in all cases considered. 
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