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Abstract

We had earlier investigated the case of Shallow Water flow over a
bottom with rough topography. However, in the solution and thus the graphs
shown, we had only considered the real parts of the phase speed, C. In this
present study, we included these neglected imaginary or complex parts as
parts of the value of the phase speed so as to see its impact on the flow. With
this therefore, we saw that the flow form in terms of the velocity and wave
profile did not resemble at all. This therefore shows that the complex nature
of the phase speed of the flow must be retained so as to get the true nature of
the flow characteristics and pattern whenever any flow analysis has to be
carried out about shallow water flow.

1.0 Introduction

For quite some time, Shallow water problem in fldghamics have attracted the attentions of
researchers. In most of these works, assumptiens made of simpler bottom topography of such shall
waters. This is simply to avoid the complex natir¢he physical features peculiar to such shallmater.
However, it is these physical features that costtbe mechanism of wave propagation and probasly it
breaking along the line of flow, development ofggilarities along the line of flow and where possjbl
turbulence.

It is these important qualities of the bottom togguiny that led to our attempt to model the real
nature of the bottom of shallow water. In our sttiterefore, the analytical study of the developnvegre
based mainly on the traditional shallow water agpnations with some little modifications.

Okeke (1983 [1]) and Okeke (1985 [2]) had workedsballow water waves where he assumed
that the shallow water has slopping bottom. Hea#gassumed the waves to be linear which in ngadit
not true. In our work, we assumed that the wawgeigerally non-linear and considered two caseseviher
is dispersive and non-dispersive.

In his later work, Okeke (1985 [2]), he even assuitiat such shallow water has constant Water
depth. A comparison of the results we obtainedeéhivery favourably with Okeke (1983 [1]) if we
assume the terms of the model the way he did.

To be able to obtain a closed solution for the watave, we used the expression for the water
depth as we obtained in the non linear dispersiseewtrain of the shallow water model here. Penegri
(2972 [3]), Whitham (1975 [4]), Leibovich (1974 }5hnd Okeke (1983 [1]) were very helpful in the
understanding of the assumptions made so as tinaktasonable solution. Also, the solution we aiddi
in Mbah and Ezeorah (2007 [6]) which is redevelopert showed a very good result which on our attemp
on including the complex part @ in the graphing, gave us a totally different skigmphs. It is this
behaviour that necessitated this current study.

2.0 A Model of the bottom topography of shallow water.
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In Mbah and Ezeorah (2007 [6]), we had consideledgeneral bottom topography of Shallow water flow
as:

wave

/
\

Figure 2.2

From this diagram, we obtained the general expadsir the height of the water at all points of
the bottom of flowas: H =y'+dy' +h= H = xtana + x{cot8 —tana} + h = h+ xcot 3
(2.1)
whereh = height at the level bottom ( no contour); the width of the contoured region ghds the angle
of inclination of the center of the contoured regigith respect to the starting point of the widkh=(0 ).
In this case, we have assumed jffas not a function of x so that we consider it canst Later, we shall

study a case where the andfds a function of x.

3.0 Governing equations for shallow water waves with rough bottom tagraphy

Our development of the model here is based esfigrdgiathe shallow water equation governing
the weakly non-linear waves on the surface of tl@lew water with rough bottom topography. We khal
incorporate the vertical component of water pagicland the related energy transfer as the wave
progresses. The effect of linear dispersionétuided as against what mostly obtains in liteesur
Thus, we take the—axis as the horizontal and normal to shore lihe,ztaxis is the vertically upward
direction wherez = n(x, t) represents the wave profile occurrence on themgairfacez = h is the constant
water depth of the shallow water as measured froenundisturbed water level. Thus, the equation

governing the evolution of usiig = h +x cot,B as:

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 143 - 150
Shallow water with non-uniform bottom topography  G.C. Mbah J of NAMP



2
90+ 2 [u(h+xcotB)] =0, 8, 8u, gan 0% _(htxcoth) ok ) gy
ot 0x at ox ~ox  ox 3 ox°at

Hereu(X,t) is the component of the particle velocity along th- axis for t > 0 as the timed

is the constant associated with the wave dispeiigidine shallow waterd is the constant due to gravity
with

(h + xcotﬁz) FET

the term (3.2)
3 aXZt)l
representing the vertical velocity effect on therizontal velocity as well as the pressure.
3.1 Solution Procedure
Let us define another function(vX,t) such that:
1 ow
Us ——— (3.3)
htxcotS ot
ow
and n=— (3.4)
ox

and they satisfy equations (3.1) and (3.2) whemstiulted into them. Thus, substituting (3.3) aBd!) into
(3.1) and (3.2) have both satisfied provided that

1 °w 1 1 o°w °w
>+ —ucotfB | —g——+A
h+xcotf 0t h+xcotf | h+x cotF| oxot 0x
1 o'w _ 3cotB  d'w N 2cotB 0w @ cotp
h+xcotgox’ot (h+xcotB ¥ ox’ot (+xcof faxdt (h+xcotp)’

(h+xcotB)’ 1 0'w 2cotp  d'w

= 2402 2 2 (3.5)
3 h+xcotB 0x0t” (h+xcotf)” 0xot
Equation (3.5) simplifies to
62W+/1 0°w _ 3icotB 9°w N 2A cot® B 62W+ 1 0°w
ot> " ax’dt h+xcotBax*dt (h+xcotB)? dxdt h+ xcotS ox>ot
2 3 4
_ g(h+xcotp)? w_ ucotB _ 6ucot ﬂ2 _ (h+xcotp) 62w2 )
ox> h+xcotB (h+xcotp) 3 ox’ot
0°w

- 2(h+ xcotS)cot

( A) ﬂaxatz

Since periodic wave trains are possible in nonlind@épersive system, let us define a
characteristic curvd - f = X—Ct which is the phase of the oscillation propagatirih constant phase

speed ¢ and wave number k such that we can write w= W(q() (3.7)

Now let us make the substitution r =h+xcotgs. (3.8)
Then using equation (3.7) and (3.8) in equatioB)(3ve obtain
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In equation (3.9), the non-linear term is includedas to know its effect no matter how small onghase
speed. Thus, we shall obtain the phase speecdtiofdwo cases:

(3.9)

1) where the dispersive effed is neglected thatis} =0
(2 where the dispersive effecis not neglected, that is] Z O.
Casel

If A= 0 and we explicitly define/\l(f) = Ae™ then equation (3.9) reduces to

k“ ’c? 2iAk3 2c?

2 2
AK2CZ + AK%gr + ZAC,ZAk o2 + Ack +|Ack ;:otﬁ ~0
r r r

r r2
k3r cot
= c{ 3 —2|kr—k} +C[? 'B}+grk 0,
Solving forc, we obtain y
. . 2 3.2 2
_{kpco;ﬂ}i{(kpcgtﬂ) -agrk| K1 _Zikzr-kﬂ
r r r r 3
3,2
2[k L 2ik?r —k}
3

In shallow water wave, only low wave numbers amived so that we can negleéakdk® to obtain

. : 2 %
_{kJrlcozt,B}i (k+|cozt,6’j + agrk?
Lo roor 310
°7 -2 2ikr + 1k '

4.2 2
that is, { k 2iAk3r—Ak2} +C{Ak +ﬂc0tﬁ} + Ak?gr =0

c=

Case Il
We consider here a non-linear dispersive wave iichvhow A # 0. Thus substituting for v} in
equation (9), we obtain
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-{)Ic+ rzgz}(Ak )+{3A—Ccot,8 2r2CZ—COt'B}{—iAKB} +

r

{cz—gr—ZA }( Ak )+{—cot,[>’+— cofﬁ} Ak )= 0
r
4.2 H 21,3
N c{— Ak3r _2i1Ar kK cot,B—Akz} +
H 3 2 2
c{—)lAk“—?’/“;A‘k + Mr'i‘k ot B+ Ak +I':‘—kcot,[3}+grAk2 GAIAk cofB=C

Provided the roughness of the bottom of the shallater is not a step slope, we can neglect
Cot?g since in this caqu is large. Hence, the above equation reduces to

2 .
K _ 2K e p K |cotﬁ}_grk= 0
r re r2

We can solve this equation to obtain a value fahich on neglecting3 andk® gives:

- . - : 2 vz
—[%k —Z/Ll(cotzﬁ—klcozw}{( ar'k - A ope K1 B (r:(;ﬁj + 4yk| ok coﬁ+k}}

k% ?
c? 3 +2irk?cotB +k ¢t +c| Ak +

r r ror r? r

2] 2rk* cotB+k]
Sincek is small and} is large, we readily see that the value obtained in this case Il is greater than that
obtained in case 1. If we had linearised the warewould obtain ¢ ‘{g[h+xcot,8]}m

Therefore, for this non-linear dispersive wav@as obtained is greater than the c for a linearewav

1/2
speed given by = {g (h + XCO'[,B)} and this is as a result of additional terms tiegiended on the

_ ) ) 1/2
wave amplitude. Hence, we shall adopt that ¢ inoase here is greater th{ng (h + XCOt,B)} SO

that we will able to solve equation (3.9) to thdatain values for the velocity and the wave profildence,
integrating equation (3.9) once and neglectingcthrestant of integration we obtain:

{Ac+ rz?fz}dgw(‘() —{3fccot,8+ xc? cotﬁ}—dzw(f) —{cz o cot 5 - r}dw(f) ;

dé? dé? dé
{%cotﬁ+ﬂcoﬁﬁ} = 0. (3.11)
r r2
_ dw(¢) . |
Suppose we |eP = d—{and then substitute in the equation above. Thetave a second

order non-homogenous differential equation withstant coefficients given as
d’p ([34c 6cotB) dp {2 2c c} {c 6l }
Ac +— — cotB+ — - -gr——cot =} p—{— coff &— cot B} = ( 3.12
{ }dg‘2 { d r }d{ 2 o P v r2 o (3.12)

To simplify this equation further, let us make some sulitns like:
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o=Ac+l S p:%—ccotﬁ+600t’8, r:(:z—gr—mzccotz,[i’—E
3 r, r r
and 5z%cotﬁ+?—jco?ﬁ.
| . 0°P_ op__ _
With these, we get equation (3.12) as: ~— Pz"TP= 0 (3.13)
o0& o0&

and this is non-homogenous. When solved, we get the eareptary solutions as:

’, {@M;}y W {(ﬁjzﬂi}%

m=

2 2|\ o o
%

o | 2 }/2 2
= P :I"(r Acos}g((gj + 43} &E+B si }5((5) + 4;-} & (3.14)

We can equally solve for the particular part solution of theaggn (3.13) to get that

P, =-% (3.15)
Thus, the general solution of equation (3.13) is:
P=P, +P,
1 1
L 2 2 2 2
— p=12" Acos! = [ﬁj + 45| Le+B si 1 (ﬁj 4| L _9 (3.16)
2\\ o o 2(\o o r

M) g U:_gdvt;/(j)’

ButP =

then we have that

1 1
o, 2 > 2 2
u=-C12"| acost (ﬁ] +al | Lerpanld (ﬁj L e
r 2\\ o o 2|\ o o T

_owfé) _
n= & =p

so that also,

Y 1(pY . 1) 1((pY . 1) o
n=A"|Acos—|| = | +4— | ({+Bsik=|| = | +4—| }é{—— (3.18)
2 2\\o r

g g g
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Equation (3.17) and (3.18) the expression for the vglauiid the wave profile of the shallow
water wave over rough bottom topography as shown ifighees below.

4.0 Analysis and discussion of the result

In this analysis, we shall look at what happens to the @pessd ¢ for both the dispersive and the
non-dispersive cases. The graphs in figures 1 & 2 semies therefore reflect the effect of the dispersive
term) on the flow velocity as well as on the wave profile. Paldity, figure 1 is for the case when the
flow is dispersive and shown , for chosen values for thetaats, as:

X 1019 Figure 4.1 X 1019
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For the same values of the constants, we have the case whitwa/tisenon-dispersive as:

Figure 4.2
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Figure 2
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Comparing these two figures, we can see the great effect @rsliggness on the flow system.

Even when we compare these two figures with what obtainedr ifoomer work, Mbah & Ezeorah (2007),

where we considered only the real parts of the phase speedjsthmrenuch resemblance in the flow
graphs. This goes to show that dispersiveness of thedfistem has much effect on the flow field and
results and equally accepting only the real parts of the plpessl Sh analysis may not give the true

situation in the flow results or characteristics.

Equally tested in this analysis is the effect of deptthefwwater on the dispersiveness of the flow.
Thus, retaining the values for the parameters but onlyingtiie angle of the contoured region from 0.5 tO
0.85 will give us the following graphs shown in FiguBe& 4.
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Figure 4.4
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From comparison of Figures 4.1, 4.2 and Figures 44, wWe can see clearly the effect of the
height of the water on the dispersiveness of the flow. ,Tivhen the water is very shallow, h very small,
we expect less effect of the dispersiveness on the flow.

In general, when we consider the same cases as we considerbdir&NEzeorah (2007 [6]) and

Mbah (2007 [7]) we get the same observations althouglythphs are not the same showing the effect of
the complex (non-real) nature of the phase speed. Thus wliderthat a true study of the effect of the
dispersive term on the flow mechanism of shallow water roossider the phase speed as complex
number. Also, as shown and will be shown in our subsetyworks, one must state clearly the flow
parameters before going on to state the result of onesigatésts. Shallow water flow is very common
and clear understanding of the mechanism of its flow is nageds is always found in our Agricultural
practices and in erosion controls in terms of channel flowstlagrefore very relevant in our day to day
activities.
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