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Abstract

We consider the continental crust under damage. rdgithe
observed results of microseism in many seismicistet we study a model —
Duffing oscillator - which shows the same similayitwith the time series of
prevailing seismic waves that signals the occurreraf earthquakes in many
earthquake prone areas of the world. In our studyewse two models — the
case where we include the effect of noise and tasecwhere we consider the
coda waves as the dominant force. We exhibit ingtireg results and their
significance to earthquake prediction.
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1.0 Introduction

In many experimental studies of rock fracture feamaple Eberhardt (1998 [6]) the presence of
backscattered noise is established with or wittematustic event. Nawa et al. (1998 [16]) discoveted
existence of incessant excitation of the Earthég foscillations in absence of earthquakes.

From the installation of the first seismic statipithas been widely observed that, in the absence
of earthquakes, the seismic records display theepe of a continuous ground motion, of variable
amplitudes. It is obvious today and it is well &dighed that this permanent activity is due todbmbined
activities of atmospheric and oceanic as well asidm activities. This continuous activity is knows a
microseism or seismic noise. Macia et al (2003)[$Bpwed also that the base level noise spectrunbea
interpreted as the resonant response of the salih Eo atmospheric and oceanic activities.

As espoused by Thompson and Margetan (2002 [258nwén flaw is present a distribution of
signals in the presence of noise should be coresidé&Within the single scattering model we can atesi
the total signal to be the linear, phased supetipasbf the noise signals (formed by the randontigged
sum of the contribution of many individual flawshdathe flaw signal. Under certain assumptions of
instantaneous noise distribution normally, enveldpection of narrow band signals, the envelopethe
superposition of signal plus noise is known to obeRician probability density functional (Rice 1944
Yalda et al 1998, Haykin 1994 [7, 23, 28],) given b

(r -%ﬁ—”;f\z rA
f(r)= = e Iy P (1.2)

whereA is the noise-free envelope of the signal whichssumed to be the same for all grain ensembles,
the standard deviation of the noise distribution g®l |, is the modified Bessel function of the first kind
and zero order. The signals can then be taken as

| =Rcodqt+6).... (@) (I =Qcosqt+1,).....00) (1.2)
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We note that in all the existing models — Continudamage model (Kachanov 1986, Krajcinovic
1996, Voyiadjil and Kattan 1999, Nanjo et al. 2@) 9, 15, and 275)]. Elasticity based damage model
(Lamaitre and Chaboche 1996 [11]), Pore fluid mogstin 1987, Lockner 1993, 1998 [4, 11, 12]) -
there is no consideration of noise in signals amdndication of being able to predict the possiiiee or
rather a warning time of occurrence of earthqu&egsmic stations are established to study the sienes
of the activities of the continental crust withiaw to predicting possible time of occurrence atleguake.
There is need therefore for a study that can reseelh features. We are therefore considering the ti
series for micro seismic observations and finditable model that fitly exhibits all the featuresseismic
time series. Correig has done a lot of work on {eme for example Correig and Urquizu (2002 [2]),
Corrieg et al (2005 [3])). We here build on thosarfdational models and do an in-depth analysistp h
us relate these physical occurrences to the predicf earthquake in areas of the world where this
prone.

The interpretations of our model give a great instg these occurrences.

2.0 A Proposed model
Correig (2002 [2]) proposed two models of microsetane series given by

&= p

g 0+ =3 cosat) + ()

(2.1)

a9’ ,.q°
Vo(@Q)=-a—+[—
0(Q) > B 4

where \§(q) is the potential andr = a, +/7 f (t) . F(t) is a random noisé,is the coefficient of damping,

B, the coefficient of nonlinearity. Correig [2] alsonjectured that volcanic tremor, be modeled imgeof
an additive force component in the microseism maodel

&= p
ﬂ+%_\g)+5p:iyi cos@t )+ eF ¢)+yF, ¢)

i=1
where F(t) stands for a chaotic source as expounded bgnJB94 and is its strengthy ; the amplitudes
of the external harmonic forces of frequengyands the noise amplituder = 4, (1+/7 cosa)ot) where

n is the amplitude and othe frequency of the parametric resonance. Thisetimibk note of the noise in
signals of flaws.

In his review on microseism studies, Bath (1978)est that the studies of microseisms, the steady
unrest of the ground, is a borderline field betwemeteorology, oceanography, and seismology.
Microseisms are, no doubt of greater concern tens@iogists, but when their generation is to be arpd,
recourse must be taken to meteorology and oceapluigr&onditions. As a consequence, microseism
constitutes a random process, like atmospheriatence and ocean surface waves.

We can look at microseism phenomenon by considetivg 3-phase system atmosphere,
hydrosphere (ocean or lake) and solid earth asupled nonlinear dynamical system that generates
microseism oscillations as a result of its complgramics.

As a first approximation to the mathematical dggn of microseisms, the model of a nonlinear
damped oscillator with multifrequency external ¢éxtton has turned out to be useful.

In a study by Correig and Urquist (1979) the follogvresults were highlighted
0] Microseism time series are nonstationary
(i) Microseism time series are stochastic
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(iii) From the point of view of data analysis, theretiersy evidence in favour of a nonlinear character
of microseism time series.

The same results — nonstationarity, stochastiaity monlinearity — were also obtained for time
series generated by a Duffing oscillator (Guckemiagiand Holmes 1997) as well as for a n-well padént
forced oscillator, having added, in both cases,itag@dnoise to account for stochasticity. It is wor
pointing out that the results were the same foh lditservations and generated time series for alieap
tests. Hence a Duffing oscillator with noise isaglopted model for the study of microseism timeeseri

Inland observations provide the following consttain
(iv) For a given seismic station, the central frequeotyhe main spectral peak may suffer slight
variations, following the time variations of theusce of cyclonic storms.

(v) For a cyclonic storm fixed in space, the centrafjfrency of the main spectral peak may be shifted
when comparing different seismic stations.

(vi) By comparing records corresponding to stormy andtglays, the location of the spectral peaks is
preserved, and for frequencies higher than 2 He. ddrresponding power spectra tend to coalesdaeto t
same level.

(vii) Microseisms propagate incoherently. As observedvabemy nonlinear forced oscillator with
additive noise could be used to simulate the olesbnaicroseism time series. Thus we study the Dgiffin

oscillator
&+ d&—aq+ B’ = ycos() (2.3)

wheres is the coefficient of damping, the proper or resonant frequency of the systentseérabsence of
external forces} the coefficient of nonlinearity, the amplitude of the external harmonic force.
Observation of the classical Duffing oscillator sisothat it can generate time series that may biedier
quasi periodic or chaotic, but not stochastic. lethe need to add white noise to the external forbe
white noise can account for observation (vi) in $b@se that local high frequency noise contentsanag
driving force.

As noted in Correig and Urguizu (2002 [2]) it wasiihd that to generate a time series qualitatively
similar to the observed one, there is need to asletand harmonic force with a driving frequencybbut
0.015 Hz (corresponding to the 70s period wave gatke infra-gravity wave) added to an harmonicdo
with driving frequency of 0.2 Hz (the secondary rmgeism peak) as observed in the recorded micraseis
This last frequency is related to the oceanic stanavave, the infra-gravity waves with a predominan
frequency of 0.015 Hz could be related to wind veaad our equation becomes

&+ &~ aq+ B9’ = i”“ cost) + & (t) (2.4)

As noted in Correig et al (2005 [3]) coda wavestagemain source of energy so that in the equipaetl
region the forces of atmospheric storms or fiosbrences became negligible. This finding was supgor
by the findings of Okeke and Asor (2001 [20]). Wieatsues then is the model of a simple exponential

relaxation procesBl(t) = Noe_At . But since coda waves are continuously generateahanation of the

exponential processes is considered with the ieNent time following a Poisson distribution. Ingttoase
our equation takes the form of the system

p=&
8+ a\g((:) +p= Nozn:e/i(t—ti) (2.5)
i=1
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q2

4
where V(q) is the classical bi-stable potentidl = —0'07+,8q7 andi stands for each coda wave

contribution.

3.0 Stability analysis

It is our intention to study the stability of thguations in the two models. In this first part we
consider the first model. We shall study the secowdlel in a subsequent paper. We study the general
equation of a nonlinear Duffing oscillator

et p(x, §%+q(x) = f (1) (3.1)

In order to analyze the model correctly if we take) to be of the form

O(X) = 8 + X +8,X" +a,x> +O(x") (3.2)
We demand that x q(®) 0 so that 8, = @, = 0 and we have

q(x) = ax+ax’ +O(x") (3.3)
We can therefore take

q(x) =b(x+7x°) b>0, | <<1 (3.9)
A suitablef(t) is Fcoswt so that the Duffing equation we have is

e 2K+ b(x +17x°) = F cosat (3.5)

This equation is in every sense the same as (& sve can have a signal plus noise represented
by Rcosat (see Rice 1948 [23] for this derivation). We betidliat a study of this equation particularly the
stability analysis will give very interesting clte the behaviour of the seismic activities thatreually
culminate in the occurrence of earthquake. Letate here that adding noise to the forcing functiors
not change the form as we noted above as depicteite (1948 [23]).

First we note that equation (3.5) has a solutioseto

X(t) = Acos(t + 6) (3.6)
whereA satisfy the cubic equation
2
2
A (b(1+ 3’72 j—af] +4k*e’ |=F? 3.7)

The question now is: what are the consequencédssofar our problem?
In order to simplify calculations let us set thédwing values

b=1, £=%, k=2k, u=A?, f(uv)=F? (3.8)
This simplification does not change the featureswfmodel and hence the results. Equation (14)rbes

f(u,v) =%’ +2e(1-V)U” + (kv + (1-Vv)*)u (3.9)
Considering the lightly damped case takingf the same order as> 0 for various fixed values of> 0 we

, of
find that forv << 1, f (u,v')< f(u,v) for V >vand forv>>1 we have that the equati%ﬁ— =0
u

has two positive rootg;(u) < v,(u). Sincef(u,v) is cubic inv with positive leading coefficient then we must
have that f (u,V;(u)) is a maximum andf (U, V,(u)) is the minimum which increase with u in such a
way that

U U)> F Uy W), FU,vW))>fuvU), ) >vu), wu)>v,(u) ford>u  (3.10)
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Let us note that what we are interested in hereviiiabenefit us in our analysis of seismic waves
is to know the behavior af(=A? vis-a-visv(e?)for fixed F? (= f(u,v)). If F?is small we see that the liye
= F? crosses the curye= f(u,v) at a unique poir®;(v) = (u,u(v)). As v increase®; moves first to the right
(i.e.u(v) increases) and then back to the left wit¥) decreasing to 0 as— « (see Figure 3.1).

When F? is large and v is small the behavior noted abditeapplies. But when v reaches a
certain value v = \ there are two new points of intersection. We the¢P,(v) and P,(v) move closer
together and at a certain value v, merge and vanish leaving orf(v) so that=? (=f(u,v)) has only one

solution uy(v) for largev. (see Figure 3.2). We find that if we pIM against|a*a mode jumping

phenomenon occur which has a very good resembkanZeeman’s catastrophe machine (Zeeman 1986
[29]) signifying instability. (See Figure 3.3).

One significant observation is the fact that if wary bothF and o (slowly) the surface that
emerges is the same as that which describes tltgnigenf a long thin strut and several other appidyen

v

"X X
Figure 3.1: Roots off(u,v) = F2 for increasing values of

A A

y Y

v

[

Figure 3.2 Roots off(u,v) = F2 for increasing values of
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v

Figure 3.3 Effect of takingu < 0.

disparate physical and engineering phenomena. Beestienko et al (1974 [26]). We note that
these same catastrophe-like results are founceianhlysis of Ario (2004 [1]).
Our Duffing equation can be written as the system

G=p
5 (3.11)
B=-Pp+a,q- L9’ +ycosit)

and the stability matrix given by

04 04
_|9q dp
J= % % (3.12)
oq dp
[ J= 0 ! 3.13
is now “la,-3m¢ - (3.13)
The eigenvalues for this matrix is given by
A, 2%(—51\/52 +4{a, —3,[>’q2)) (3.14)

We note here also that
detd =-a,+3839° TraceJ=35 (3.15)
Thus, forag < 0,3 > 0 andd < 0, ded > 0, and Tracd > 0. For this case we have stability as shown in
Dangelmayr and Kramer (1998 [5]), Oyesanya (20@%)[2and Ario (2004 [1]).
Fora, >0, £<0, <0 we have det< 0 and Tracd > 0 which is a case of instability.

Fora, >0, 8 <0, >0 we have det< 0 and Tracé < 0 which also is a case of instability.

Fora, >0, 5> 0,0 >0 we have the following result
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<0 for a,>3B9°
detJ=3 0 for a,=3839° and Tracd<0 (3.16)
>0 for a,<3B39°

We note of course that since we are consideringnaped oscillatiors # 0 which shows that for
the damped oscillation case no Hopf bifurcatiopassible since for this case Trate 0 condition is not
met. The condition is met fer= 0 which is the undamped case.

The critical points occur for
q=% %o (3.17)
+ 35 .

It is now obvious from the above results that thigcal points occur afj = + 1 and forg = 1 —¢;
there is stability and instability occurs fpE 1 +¢; for somee; > 0. Thus we have that

<1 stahility
gs =1 critical (3.18)
>1 instability
We find that from equation (2.5)= 0 forq = + 1 so that the critical points for this trajetiés are
(1, 0) and (-1, 0).
In continuing to discuss the stability of the Duaffi oscillator we consider two results which we
now state.

Theorem1. (Njoku and Omari 2003 [18])
Assume 6 > 0. Moreover, suppose that o is a strict lower and f is a strict upper solution of the

equation &+ G+ g(t,q) = h(t) which satisfy & < 8. Then, the equation has at least one unstable T-

periodic solution §, with a << § << 8 provided that the number of the T-periodic solutionsisfinite.
Theorem2

2
Consider the equation (3.5) with k= 0 and b, w, 5 fixed (5 > 0). Provided that (2) > b, there
3

is a value Fo of F depending on b, @, and 7 such that the equation @&+ b(q+7q°) = F, cos(t) has a

solutionq(t) = A, COS%[, A %0.
Proof:

Letq(t) = A, cos%t, A, Z0. Then

o= A (9] cod & A 4o Bood @) L
&b(qﬂyq)—b{ (3) co{ 3j+bco{ 3) bnA ((400{ 3j+4cosa1)j
= (b—[ﬁ)j ]+(@jA2 cosﬂ+(b’7A3jcosax=Fcosax
3 4 3 4

(3.19)

Provided that
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(@) )37 02 = .
(b (3} ]+( 2 jA 0, *) (3.20)

3 2
=F. I (Ej > b then (*) has a real non-zero solution and we ared

bnA

and

at+ 27 at +4r
We note that under the conditions aboﬂeco{Tj and ACO{T] are also
solutions. We note that we cannot have an exdatiso q(t) = ACO ?+ 6@ | with A # 0 to the

equation (3.5). But a solution close té% CO{?+H%j + Acos(ax + 01) exists ifo > wg for some

critical frequencywy and if k, b and F take a certain range of valliég solution is stable. This is a stable
wt

solution containing an unexpected sub harmonk% CO{? + H%j . Thus a lower and an upper

solution can be found. We therefore now treatdhmped case as a perturbation of the undamped case
Let us consider the total potential energy of th@tdor the undamped system.

2 2 4
U =%—m§(%—%) (3.21)

A homoclinic orbit is obtained fdd = 0 with the velocity of the orbit given by

2
&= \/;woq\/l‘q? (3.22)

If we now consider the damped case we can congiddptal energy within the damping energy given by
2 2 4

If we now set a limit near the orbit of the no dadgase which preserves the total energy U = Oave h

4
0= + 24y —Kag(qz —%) (3.24)
2
giving &=d -1+ \/1+ K;g (1—%} (3.25)

This gives the orbit for the damped case.

A comparison of equations (3.22) and (3.25) revedglisplacement and velocity response of the
damped case vis-a-vis the undamped case. Thisoisnsin Figure 3.4. An analysis in Ario (2004 [1])
showed the existence of a snap-through phenomeéxwoan be seen from Figure 3.5 the condition of the
Theorem 1 is possible. Since the number of variabigolved is small only a finite nhumber of typical
surfaces can exist. Theorem 1 can be interpretéerins of seismic time series in this way: If sedution
lies between the primary (maximum) peak and a Idimeénimum) peak there is likely going to be at keas
one earthquake occurrence (which may be depicted sscondary peak that may show up as a sub-
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harmonic) and we can then adduce that equation (&% at least one asymptotically unstabjgeriodic
solutionq .

Il

vincreasin

v increasing v rather greater than 1

» X
Figure 3.5 Snap-through phenomenon for damped oscillation.

4.0 Significance to Seismic analysis

The question we now want to address is: what relevaiasethis analysis of the Duffing oscillator
to seismic analysis and prediction of earthqual@imence? Consequent on our analysis of the Dpffin
oscillator the following become evident.

» The response of the Duffing oscillator exhibitsgstiarough phenomenon.

e Astable solution containing sub-harmonics existsaf Duffing oscillator.

» There exists at least one asymptotically unstabperiodic solution.

e There is no room for existence of Hopf bifurcation.

e The primary peak of microseism spectra can bepnééed in terms of the resonant response of the
Earth’s crust and mantle shown by the snap-thrqaggmomenon.

» Since sub-harmonic solutions exist secondary psladisld be expected in the seismic time series.
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» Microseism activity, as a resonant (stochasticpoase of the mantle lies between the high
frequency local response of the medium |(randord)the (linear) free oscillations low frequency
response of the whole Earth.

We should note thadur analysis above is for equation (2.3). The othedel typified by equation
(2.1) needs to be analyzed. But we note that tli@iadal term on the right hand side is to add aatic
source function which may be attributable to mettagical, oceanic or aeronomy influences like wind
gust. An example of this may be something like wiabing on buildings (Melbourne 1977 [14]) or twe t
continental shelf.

We note that for this type of loading the Weibubltdbution (Newland 1984 [17], Norton 1989
[19]) is the most appropriate. In the limit wheretlshape parameter tends to infinity the Weibull
distribution approaches the Dirac delta functionawhbehaves like the Gaussian pulse. It can be show
that the Gaussian pulse behaves like the Fejeekarmich has a representation given by (see Oyesany
2007 [22]).

n
F.(X) =1+ 2> coskx
k=1
which can be seen as an expansion of a series
n
> a coskx [O,a,=1p = 2for k> -
k=0

Consequently the Weibull distribution can be gieeRejer kernel representation. This shows that
equation (2.1) can be expressed as equation (B83. implicates that the above analysis qualitdfive
suffices for the model.

5.0 Conclusions

We have shown that the Duffing oscillator is a goeadel showing the features of microseismic
time series. Our study shows that earthquake oeccer can be predicted from the interpretation af ou
results for the Duffing oscillator. We have als@wh that the two models depicted by equations (@)
(2.3) can be treated as the same with the Duffsujjlator where we have used Fejer kernel reprasent
for the chaotic source function.
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