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Abstract: 

 
We consider the continental crust under damage. Using the 

observed results of microseism in many seismic stations we study a model – 
Duffing oscillator - which shows the same similarity with the time series of 
prevailing seismic waves that signals the occurrence of earthquakes in many 
earthquake prone areas of the world. In our study we use two models – the 
case where we include the effect of noise and the case where we consider the 
coda waves as the dominant force. We exhibit interesting results and their 
significance to earthquake prediction.   
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1.0 Introduction 

In many experimental studies of rock fracture for example Eberhardt (1998 [6]) the presence of 
backscattered noise is established with or without acoustic event. Nawa et al. (1998 [16]) discovered the 
existence of incessant excitation of the Earth’s free oscillations in absence of earthquakes. 

From the installation of the first seismic stations, it has been widely observed that, in the absence 
of earthquakes, the seismic records display the presence of a continuous ground motion, of variable 
amplitudes. It is obvious today and it is well established that this permanent activity is due to the combined 
activities of atmospheric and oceanic as well as human activities. This continuous activity is known as 
microseism or seismic noise. Macia et al (2003 [13]) showed also that the base level noise spectrum can be 
interpreted as the resonant response of the solid Earth to atmospheric and oceanic activities. 

As espoused by Thompson and Margetan (2002 [25]) when a flaw is present a distribution of 
signals in the presence of noise should be considered. Within the single scattering model we can consider 
the total signal to be the linear, phased superposition of the noise signals (formed by the randomly phased 
sum of the contribution of many individual flaws) and the flaw signal. Under certain assumptions of 
instantaneous noise distribution normally, envelope detection of narrow band signals, the envelope r of the 
superposition of signal plus noise is known to obey a Rician probability density functional (Rice 1944, 
Yalda et al 1998, Haykin 1994 [7, 23, 28],) given by 
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where A is the noise-free envelope of the signal which is assumed to be the same for all grain ensembles, r 
the standard deviation of the noise distribution p® and I0 is the modified Bessel function of the first kind 
and zero order. The signals can then be taken as 

  ( ) ( ) ).....(cos)(....cos bIqtQIaqtRI N+=+= θ    (1.2)  
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We note that in all the existing models – Continuum damage model (Kachanov 1986, Krajcinovic 
1996, Voyiadjil and Kattan 1999, Nanjo et al. 200 [8, 9, 15, and 275)].  Elasticity based damage model 
(Lamaitre and Chaboche 1996 [11]), Pore fluid model (Costin 1987, Lockner 1993, 1998 [4, 11, 12]) - 
there is no consideration of noise in signals and no indication of being able to predict the possible time or 
rather a warning time of occurrence of earthquake. Seismic stations are established to study the time series 
of the activities of the continental crust with a view to predicting possible time of occurrence of earthquake. 
There is need therefore for a study that can reveal such features. We are therefore considering the time 
series for micro seismic observations and find a suitable model that fitly exhibits all the features of seismic 
time series. Correig has done a lot of work on this (see for example Correig and Urquizu (2002 [2]), 
Corrieg et al (2005 [3])). We here build on those foundational models and do an in-depth analysis to help 
us relate these physical occurrences to the prediction of earthquake in areas of the world where this is 
prone. 

The interpretations of our model give a great insight to these occurrences.  
 
2.0 A Proposed model 

Correig (2002 [2]) proposed two models of microseism time series given by 
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where V0(q) is the potential and 0 ( )f tα α η= + . F(t) is a random noise, δ is the coefficient of damping, 

β, the coefficient of nonlinearity. Correig [2] also conjectured that volcanic tremor, be modeled in terms of 
an additive force component in the microseism model i.e. 
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where Ftr(t) stands for a chaotic source as expounded by Julian 1994 and γ is its strength. γ i the amplitudes 

of the external harmonic forces of frequency ώi and ε the noise amplitude ( )0 01 cos tα α η ω= +  where 

η is the amplitude and ώ 0 the frequency of the parametric resonance. This model took note of the noise in 
signals of flaws.  

In his review on microseism studies, Bath (1973) states that the studies of microseisms, the steady 
unrest of the ground, is a borderline field between meteorology, oceanography, and seismology. 
Microseisms are, no doubt of greater concern to seismologists, but when their generation is to be explained, 
recourse must be taken to meteorology and oceanographic conditions. As a consequence, microseism 
constitutes a random process, like atmospheric turbulence and ocean surface waves.  

We can look at microseism phenomenon by considering the 3-phase system atmosphere, 
hydrosphere (ocean or lake) and solid earth as a coupled nonlinear dynamical system that generates 
microseism oscillations as a result of its complex dynamics. 

As a first approximation to the mathematical description of microseisms, the model of a nonlinear 
damped oscillator with multifrequency external excitation has turned out to be useful. 
In a study by Correig and Urquist (1979) the following results were highlighted 
(i) Microseism time series are nonstationary 
(ii)  Microseism time series are stochastic 
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(iii)  From the point of view of data analysis, there is strong evidence in favour of a nonlinear character 
of microseism time series. 

 
 
 
 
 
 
 
The same results – nonstationarity, stochasticity and nonlinearity – were also obtained for time 

series generated by a Duffing oscillator (Guckenheimar and Holmes 1997) as well as for a n-well potential 
forced oscillator, having added, in both cases, additive noise to account for stochasticity. It is worth 
pointing out that the results were the same for both observations and generated time series for all applied 
tests. Hence a Duffing oscillator with noise is an adopted model for the study of microseism time series. 

Inland observations provide the following constraint: 
(iv) For a given seismic station, the central frequency of the main spectral peak may suffer slight 
variations, following the time variations of the source of cyclonic storms. 
(v) For a cyclonic storm fixed in space, the central frequency of the main spectral peak may be shifted 
when comparing different seismic stations. 
(vi) By comparing records corresponding to stormy and quiet days, the location of the spectral peaks is 
preserved, and for frequencies higher than 2 Hz. The corresponding power spectra tend to coalesce to the 
same level. 
(vii)  Microseisms propagate incoherently. As observed above any nonlinear forced oscillator with 
additive noise could be used to simulate the observed microseism time series. Thus we study the Duffing 
oscillator 

)cos(3 tqqqq ωγβαδ =+−+ &&&      (2.3) 

where δ is the coefficient of damping, α the proper or resonant frequency of the systems in the absence of 
external forces, β the coefficient of nonlinearity, γ the amplitude of the external harmonic force. 
Observation of the classical Duffing oscillator shows that it can generate time series that may be periodic, 
quasi periodic or chaotic, but not stochastic. Hence the need to add white noise to the external force. The 
white noise can account for observation (vi) in the sense that local high frequency noise contents may act a 
driving force. 

As noted in Correig and Urguizu (2002 [2]) it was found that to generate a time series qualitatively 
similar to the observed one, there is need to add a second harmonic force with a driving frequency of about 
0.015 Hz (corresponding to the 70s period wave packet, the infra-gravity wave) added to an harmonic force 
with driving frequency of 0.2 Hz (the secondary microseism peak) as observed in the recorded microseism. 
This last frequency is related to the oceanic standing wave, the infra-gravity waves with a predominant 
frequency of 0.015 Hz could be related to wind waves and our equation becomes 
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As noted in Correig et al (2005 [3]) coda waves are the main source of energy so that in the equipartioned 
region the forces of atmospheric storms or fiord resonances became negligible. This finding was supported 
by the findings of Okeke and Asor (2001 [20]). What ensues then is the model of a simple exponential 

relaxation process teNtN λ−= 0)( . But since coda waves are continuously generated a summation of the 

exponential processes is considered with the inter-event time following a Poisson distribution. In this case 
our equation takes the form of the system 
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where V(q) is the classical bi-stable potential 
42

42

0

qq
V βα +−=  and i stands for each coda wave 

contribution. 
 
3.0 Stability analysis 

It is our intention to study the stability of the equations in the two models. In this first part we 
consider the first model. We shall study the second model in a subsequent paper. We study the general 
equation of a nonlinear Duffing oscillator 
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In order to analyze the model correctly if we take q(x) to be of the form 
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We demand that x q(x) ≥ 0 so that  020 == aa  and we have  

)()( 43
31 xOxaxaxq ++=       (3.3) 

We can therefore take 

1,0)()( 3 <<>+= ηη bxxbxq      (3.4) 

A suitable f(t) is Fcosωt so that the Duffing equation we have is 

tFxxbxkx ωη cos)(2 3 =+++ &&&      (3.5) 

This equation is in every sense the same as (2.3) since we can have a signal plus noise represented 
by Rcos tω (see Rice 1948 [23] for this derivation). We believe that a study of this equation particularly the 
stability analysis will give very interesting clue to the behaviour of the seismic activities that eventually 
culminate in the occurrence of earthquake.  Let us note here that adding noise to the forcing function does 
not change the form as we noted above as depicted in Rice (1948 [23]). 
First we note that equation (3.5) has a solution close to  
   )cos()( θω += tAtx       (3.6) 

where A satisfy the cubic equation 

  222

2

2
2

2 4
4

3
1 Fk

A
bA =














+










−







+ ωωη

    (3.7) 

The question now is: what are the consequences of this for our problem? 
In order to simplify calculations let us set the following values 
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This simplification does not change the features of our model and hence the results. Equation (14) becomes  

 uvvuvuvuf ))1(()1(2),( 22233 −++−+= κεε     (3.9) 

Considering the lightly damped case taking κ of the same order as ε > 0 for various fixed values of v > 0 we 

find that for v << 1, vvforvufvuf >′<′ ),(),( and for v >>1 we have that the equation 0=
∂
∂
u

f
 

has two positive roots v1(u) < v2(u). Since f(u,v) is cubic in v with positive leading coefficient then we must 

have that ))(,( 1 uvuf  is a maximum and ))(,( 2 uvuf  is the minimum which increase with u in such a 

way that  
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Let us note that what we are interested in here that will benefit us in our analysis of seismic waves 
is to know the behavior of u(=A2) vis-à-vis v(ω2)for fixed F2 (= f(u,v)).  If F2 is small we see that the line y 
= F2 crosses the curve y = f(u,v) at a unique point P1(v) = (u,u(v)). As v increases P1 moves first to the right 
(i.e. u(v) increases) and then back to the left with u(v) decreasing to 0 as v → ∞ (see Figure 3.1). 

When F2 is large and v is small the behavior noted above still applies. But when v reaches a 
certain value v = v 1 there are two new points of intersection.  We see that P1(v) and P2(v) move closer 
together and at a certain value v = v2 merge and vanish leaving only P3(v) so that F2 (=f(u,v)) has only one 

solution u2(v) for large v. (see Figure 3.2). We find that if we plot A  against ω a mode jumping 

phenomenon occur which has a very good resemblance to Zeeman’s catastrophe machine (Zeeman 1986 
[29]) signifying instability. (See Figure 3.3). 

One significant observation is the fact that if we vary both F and ω (slowly) the surface that 
emerges is the same as that which describes the bending of a long thin strut and several other apparently  
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Figure 3.1: Roots of f(u,v) = F2 for increasing values of v. 
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Figure 3.2: Roots of f(u,v) = F2 for increasing values of v. 
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Figure 3.3: Effect of taking µ < 0. 
 

disparate physical and engineering phenomena. See Timoshenko et al (1974 [26]).  We note that 
these same catastrophe-like results are found in the analysis of Ario (2004 [1]). 

Our Duffing equation can be written as the system 
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and the stability matrix given by 
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is now    
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The eigenvalues for this matrix is given by 
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We note here also that 

   2
0 3det qJ βα +−=   Trace J = - δ    (3.15) 

Thus, for α0 < 0, β > 0 and δ < 0, detJ > 0, and Trace J > 0. For this case we have stability as shown in 
Dangelmayr and Kramer (1998 [5]), Oyesanya (2005 [21]), and Ario (2004 [1]). 

For 0,0,00 <<> δβα  we have detJ < 0 and Trace J > 0 which is a case of instability. 

For 0,0,00 ><> δβα  we have detJ < 0 and Trace J < 0 which also is a case of instability. 

For 0,0,00 >>> δβα  we have the following result 
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We note of course that since we are considering a damped oscillation δ ≠ 0 which shows that for 
the damped oscillation case no Hopf bifurcation is possible since for this case Trace J = 0 condition is not 
met. The condition is met for δ = 0 which is the undamped case. 
The critical points occur for  

β
α
3

0±=q       (3.17) 

It is now obvious from the above results that the critical points occur at q = ± 1 and for q = 1 – ε1 
there is stability and instability occurs for q = 1 + ε1 for some ε1 > 0.  Thus we have that 
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We find that from equation (2.5) p = 0 for q = ± 1 so that the critical points for this trajectories are 
(1, 0) and (-1, 0). 

In continuing to discuss the stability of the Duffing oscillator we consider two results which we 
now state. 
Theorem 1. (Njoku and Omari 2003 [18])  

Assume δ > 0. Moreover, suppose that α is a strict lower and β is a strict upper solution of the 
equation )(),( thqtgqq =++ &&& δ  which satisfy α ≤ β.  Then, the equation has at least one unstable T-

periodic solution ŝ, with α << ŝ << β provided that the number of the T-periodic solutions is finite. 
Theorem 2 

Consider the equation (3.5) with k = 0 and b, ω, η fixed (η > 0). Provided that 
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Provided that 
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We note that under the conditions above 
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solution containing an unexpected sub harmonic  
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solution can be found.   We therefore now treat the damped case as a perturbation of the undamped case.  
Let us consider the total potential energy of the orbit for the undamped system. 
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A homoclinic orbit is obtained for U = 0 with the velocity of the orbit given by  
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If we now consider the damped case we can consider the total energy within the damping energy given by  
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If we now set a limit near the orbit of the no damped case which preserves the total energy U = 0 we have 
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This gives the orbit for the damped case. 
A comparison of equations (3.22) and (3.25) reveals the displacement and velocity response of the 

damped case vis-à-vis the undamped case. This is shown in Figure 3.4. An analysis in Ario (2004 [1]) 
showed the existence of a snap-through phenomenon. As can be seen from Figure 3.5 the condition of the 
Theorem 1 is possible. Since the number of variables involved is small only a finite number of typical 
surfaces can exist.  Theorem 1 can be interpreted in terms of seismic time series in this way: If the solution 
lies between the primary (maximum) peak and a lower (minimum) peak there is likely going to be at least 
one earthquake occurrence (which may be depicted as a secondary peak that may show up as a sub-



Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 133 - 142 
Duffing oscillator as model for earthquake occurrence M. O. Oyesanya  J of NAMP 
 

harmonic) and we can then adduce that equation (3.5) has at least one asymptotically unstable T-periodic 
solutionq̂ .  

     ║A║ 
        C1 
 
 
                B 
 
 
 
               C 
 
                B1 
 
 
                ║ω║ 
   

Figure 3.4: Graph of A against ω  for fixed F1. 

 
 
  f(u,v) 
 
 
      v increasing 
 
 
 
 
 
 
 
    v increasing  v rather greater than 1 
 
               x 

Figure 3.5: Snap-through phenomenon for damped oscillation. 
 

4.0 Significance to Seismic analysis 
The question we now want to address is: what relevance has this analysis of the Duffing oscillator 

to seismic analysis and prediction of earthquake occurrence?  Consequent on our analysis of the Duffing 
oscillator the following become evident. 

 
 

 
• The response of the Duffing oscillator exhibits snap-through phenomenon. 
• A stable solution containing sub-harmonics exists for a Duffing oscillator. 
• There exists at least one asymptotically unstable T-periodic solution. 
• There is no room for existence of Hopf bifurcation. 
• The primary peak of microseism spectra can be interpreted in terms of the resonant response of the 

Earth’s crust and mantle shown by the snap-through phenomenon. 
• Since sub-harmonic solutions exist secondary peaks should be expected in the seismic time series. 
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• Microseism activity, as a resonant (stochastic) response of the mantle lies between the high 
frequency local response of the medium |(random) and the (linear) free oscillations low frequency 
response of the whole Earth. 
We should note that our analysis above is for equation (2.3). The other model typified by equation 

(2.1) needs to be analyzed. But we note that the additional term on the right hand side is to add a chaotic 
source function which may be attributable to meteorological, oceanic or aeronomy influences like wind 
gust. An example of this may be something like wind loading on buildings (Melbourne 1977 [14]) or on the 
continental shelf. 

We note that for this type of loading the Weibull distribution (Newland 1984 [17], Norton 1989 
[19]) is the most appropriate. In the limit when the shape parameter tends to infinity the Weibull 
distribution approaches the Dirac delta function which behaves like the Gaussian pulse. It can be shown 
that the Gaussian pulse behaves like the Fejer kernel which has a representation given by (see Oyesanya 
2007 [22]).  
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Consequently the Weibull distribution can be given a Fejer kernel representation. This shows that 
equation (2.1) can be expressed as equation (2.3). This implicates that the above analysis qualitatively 
suffices for the model. 
 
5.0 Conclusions 

We have shown that the Duffing oscillator is a good model showing the features of microseismic 
time series. Our study shows that earthquake occurrence can be predicted from the interpretation of our 
results for the Duffing oscillator. We have also shown that the two models depicted by equations (2.1) and 
(2.3) can be treated as the same with the Duffing oscillator where we have used Fejer kernel representation 
for the chaotic source function. 
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