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Abstract

The static buckling pressure of imperfect toroidal shell segments
under external load is here determined asymptotically by assuming that the
stress-free imperfection can be represented as a two-term double Fourier
series expansion. The buckling modes are taken strictly in the shape of the
imperfection and simply-supported boundary conditions are assumed. Non-
linear Karman-Donnell equations relevant to toroidal shell segments are
used and theresult clearly shows ,among other things, that the buckling load
dependson all the Fourier coefficients that are admitted in the imperfection
representation. The result is particularized to that of imperfect cylindrical
shell segments. The load degradation is found to be of order two-thirds of the

imperfection amplitude.

1.0 Introduction

The stability of imperfection elastic structuresdar various loading conditions, is an important
loading condition normally sought for, for purposdspractical applications and practical assimilatof
engineering structural materials. In this invedia we consider imperfect toroidal shell segméoésied
by an external static pressure and aimed at datargiithe static buckling load, assuming that the
imperfection of the structures can be adequatglsesented as a two-term double Fourier series siquan
Non-linear Karman-Donnell theory is assumed onlthsis of asymptotically exact solution found foe th

initial post—buckling behaviour of the structures

2.0 Formulation

The original derivation, as it concerns toroidatlslsegments, was carefully formulated by Stein
and McElman [1], while Hutchinson [2] later studiget buckling behaviour of such structures undegeth
loading conditions, namely, lateral pressure, exkpressures and axial tension. Relatively restrties
of the structures were given by Oyesanya [3-5]in4$], we shall , in the non-linear Karman-Donnstiell
theory that follows, let the components of the egafized stress couple Béd,, M, and M,, while the
generalized components of the stress resultantegmesented by, N, and N,, where all these are

functions of the spatial variables x and y. We Isimathe same token IdﬂX,Dy and ny be the strains

while K,, K, andK,, are the components of the bending strains. Thevardt normal displacement is
W(X,Y) while U(X,Y) andV(X,Y) are the in-plane tangential displacements. Tizéns are given [1,2] by
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while the stress-strain relationship is given as
Ne) (c ve o 0 0 0,
N, | lvcc o 0 o o
ny _ 0 0 (1-V)C 0 0 ny .
Mx 0 0 0 D vD Kx .
My 0 0 0 vD D K,
M,y 0 0 0 0 (1-V)D Ky
Eh’®

where C =

andD = , E is the Young’s modulus whilg is the Poisson’s ratio and
2 1201-v?)

1-v
h is the shell thickness. The equations of equilibrare formulated on the basis of variational gipte of
virtual work for non-linear Donnell theory in tli@m

[[IND, +N,80, +2N, 60, +M, Sk, + M, Sk, +2M,, 3K, |dxdy
S

+[[Pow dxdy- [[NoUdxdy=0 (2.3)
S C

where P is the applied pressure amd is the stress resultant at the ends of the sbgihents while

5DX:5U,x+6—W+W,X5W,X+W,X5W,X andd Kk, =—-0W, _, etc (2.4)

IXX !

X
Here,d is the variational operator and a subscript follmva comma indicates partial differentiation
Variational calculus would normally lead to thrd#ferential equations irJ,V and W. However, by

introducing the stress function F(X,Y) , and usihg = F, N, =F N -F two of the

Xy = IXy !
equations are satisfied automatically. Finally, ttempatibility equation and equilibrium equatiore ar
respectively given [2-4] in terms of the outwardmal W(X,Y) and Airy stress functioR(X,Y) as
1 1 1 1 —
SO'F - SW, =W,y = —SW,SW +W (2.5)
Eh r, r, 2

IXX !
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DD4\N+ri F,Xx+ri F,YY+5E(W+W),XX+(1—£—:j(vv +W),YY} = S +W,F)26)

y X X
whereX andY are the usual spatial variables in the axial araimferential directions respectively and

W(X,Y) is a stress-free initial impen‘ectionD4 is the usual biharmonic operator, namely

2 2 \?2
04 = (02( >t OaYzj , While §(P,Q), is the bilinear operator given by

S(P,Q) =P,y x Quyy tPiyy Quixx =2P,x v Qixy (2.7)

Toroidal shell segments are characterized by b of curvature, namely, and ry in such a way if

r . I .
Y =r <0, the structures are said to be bowed-inif= r > 0, they are said to be bowed-out, where

ry r

X

r
as if —=r =0,the structures are said to correspond to cyliadlrghell segments. However, if
r

X

r
Y =r =1, the shell segments are said to be locally $pdleon each point on the surface. In this
r

X
investigation, we shall pay attention to toroidaél segments that are shallow with respect ¢éoatkial

L
coordinate and this is characterized by <1, where L is the shell length. We w introduce the
r.X

following non-dimensional quantities (slightly difent from those in [3,4] ):

K Y (LY b En [1(L)]]
LYY A (ﬂrj a r () D(1+{)2{ry(nj} (.8a)

W W - PrL?
=— ,O0W=—, 1 =
h h D7

Normally, the conditiod D| <1 holds, however in this analysis, we consiflex[1< 1, and now assume

(2.8b)

F andW in the following form

+ hw (2.9)

= av
2 212 Pry 1-—-
av:), ERL? o 2
2 ) mtr@+éf Eh
where the first terms on each of F and W abovetsegre-buckling approximations whil@ takes the
value & =1, if pressure contributes to axial stress throegl plates, otherwiseér =0 if pressure acts
laterally. On substituting (2.9) into (2.8a,b),wavk the following equations

T4F - [+ &) (w +Ew,y, ) = -H {1+ £)2§(W,V5V+ Dv_vj (2.10)

F :%Ery(xz ++
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Tw-K(&)(f,,, +& f,yy)m{ (w+Dw).xx+i(1—%](w+mv—v),yy}

(2.11a)
= —K(&HS(f,w+OW)
w=w, =f=f, =0at x=0, . (2.11b)
where
=4 _ 02 02 _
4= 6X E_ ’S(P’Q) - P’XX Q’yy+P’yy Q’XX _2P’xy any (212)

Here ,/T is the load amplitude parameter ,whose value eitlmg we are to determine.

3.0 Classical buckling load
The classical buckling loadl, is defined as the minimum value ofl for there to exist a

nontrivial solution to the corresponding linear lpieam for the case where the structures are deervéeicp
. The associated equation , from (2.10) and (2n)lare

O*f —(1+E)2(W,XX+ErW,yy) 0 (3.1)
E4W_K(£)( 'xx+frf’yy) {a TXX E(l_%jW,YY}:O (3'2
w=w, =f=f,  =0at x=0, (3.3)
To solve (3.1-3.3), we let
) (8% | cosmcs | % |sinmx siniy + )
()7 ar(nzl)( cosmx br(f.Z sinmx [sin(ky + @, )sinny (3.4)

On substituting (3.4) into (3.1), we have
1+ &) (m* +r £k2)al),
(m? +& k)

If we now substitute (3.5) into (3.2), we get

j ol s e f k(e +re ke ef e + )
am? K f[ arj
2 2

The minimum value [1-5] of/T, namely /10 , is obtained by treatin&k as a continuous variable ,

i) =- o i=1,2. (3.5)

(3.6)

assuming thak is sufficiently large ,and setting1= 1 to get

j = e ] oK(@uerenf 0P lene)”

a+nzg(1_arj
2 2

where N is the integer value ofk that minimizes A .The corresponding values of the normal
displacement and Airy stress function are

(3.7)
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1 1
UVJ =|all 1+ 5)2(1+ nzrf) cosx + b{) 2+ 5)2(1+ nzrf) sinx [sinny  (3.8)
L+ nef L+ nef

4.0 Non-linear theory
We shall now writeA = AA., 0<A <A, and henceforth, aim at determining the buckling

load Ag,(i.e. the value ofd = Agat buckling) by solving (2.10) and (2.11a, b). Wafie the buckling

load /IS, for 0< /IS < /1C, as the maximum load parameter which the strustaesn support prior to

buckling .We now let (i)
(\IVE;( i’/;] ) i(\fv(l)g 3] o (4.1)

On substituting (4.1) into (2.10) and (2.11a,b),heee the following equations

M(f @, wi)=0 (4.23)
N(f (l)'W(l))+ AAC |:%V_v'xx+£(1_%jv_v'YY:| =0 (42b)
M (f @ W(z)) = -H(L+ <r)z{ % §(w(1) ' w(l))+ §(w(1),W)} (4.3a)
N1 )= ). (1,0 =
M (f (3) ' W(3)) =-H (1+ 5)2[§(W(1) , W(Z))+ §(W(2 ,V_V)] (4.3a)
N(f (3),W(3)) - _HK(E)ls(f (1),W(2))+ §(f (2),W(1))+ §(f (2),V_V)J (4.4b)
wih=wl) =f0=+¢0 =0at x=0,7,i=1,2,3A (4.5)
where
M(EO W)= T4 10 - 1+ £ (wh), +r Ewd), ) (4.62)

Yy

N(FO,w)) =T -k ()0 +r £ £0) )+MCB wi) +;(1-%jvw> } i=1,2,3 (4.6b)

In line with the boundary conditions (4.5), we tlae¢ imperfectionv_v(x, y) take the form
w(x, y) = (acosny + bsinny)sin x 4.7)

f(i)(X, y)] o (fl(i)] [fz(i)] _ _
‘ = . |cospy+| 2 |sinpy|singx (4.8)
]S oin ==

We now substitute (4.8) into (4.2a) and simplifygtet
fl(l) _ _(1+ {)Z(qz +<(I’p22)W§1) ’ f2(1) - _ (1+5)2 (q2 +f|’p22)W(21) (4.9a)
(@2 +¢p?) (@2 +¢p?)

If p=m,q=n ,bothintegers, then we have

and now let
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(= (1+<r)2(m2 +<r”2r)WJ(l)

1) - _ ,1=1,2 (4.9b)
J (mz +<rn2)2
We shall particularly need the cagg =1 (this value is associated with buckling) in whizse, we have
FO =g Wi ) = (1+¢) (1+ 32n2r) i=1,2. (4.9¢)
i j @+£nq
We next substitute (4.8) into (4.2b), using (48 ell as (4.9¢) to get
Wl(l):’ga:M,Wg):gb:M, (4.10a)
2 2
where
=2 erg1- 2], <[ e -2, (e o o)
L (4.10Db)
—_ C'1
B o,
We next substitute for terms on the right handssiofg4.3a,b) and get
M (f @) W(Z)) =-n?H(1+ {)Z[Q1 sin2ny+Q, cos2ny + Q, cost] (4.11)
N(f @, w®)= -n?HK (¢)[Q, sin2ny + Q, cos2ny+ Q, cos2x]  (4.12)
\/\/(2) = \N(XZZ( = f(z) = f)((zx) (4.13)
Q= uf rand) vowl), Q, = (1" -w)s ant?” -ont?) cana
Q, = —{% (wl(l) ‘4 w§1)2)+ (a Wl(l) 4 bwgl) 2)} (4.15a)
Q :{fl(l)wl(l) — 00 —p £, + of (1)} =| ( o -ng> +awd bw2 )) (@150

Qs = ~{ £, + £ vv(1+bf +af O} =1, (\N(l + +avv(1+bvv(1) (4.15d)

We now substltute (4.8) for = 2, into (4.12), multiply the resultant equation thgh, first bycosuny
sinmx and next bywinunysinmx (for ,u andmto be determined) and note that fior 2,p = 2n, andg=m,
we have, in the first and second cases ( anthfodd)

4H n?
- (1+¢&)? AR, +(m? +an%rg) Lw®
(2) — msz C_
fio = S =12 (4.16)
(m2 + 4n2£)
We next substitute (4.8) ,fdr=2, into (4.12), multiply the resultant equation thgh, first bycosuny

sinmx and next byisunysinmx (for, u,p,q andm as determined before) and get, for the first sexbnd
respective cases amdodd

W = Rl W = Rz R, = 4HK(E )nZ[QS + Q[P +4nr &)(L+ (P +4n? &)

(4.17a)
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2 2 £ _ m’a 2fd,_0ar
(m +4n {) /MC{ 5 +4n {[1 2)}

R,=m (4.17b)
—K (&)m? +an?r £F (14 &) (2 + an? &)
R, = 4HK (E)[Q4 +Q(m? +4n?r &)@+ &) (m? + an? E)_ZJ (4.17¢)
and
oo = ~AHK(EN[Q, + @, + anreNu+ &)’ + n’e)” @170

RZ
Henceforth, the value of any function off, say fj(i)(m) .evaluated atm =1, shall be denoted simply
(i)

as Fj . Thus from (4.17a-c), we have
~ 4HK _
W = - ﬁz(f) (Q, +1,,Q,), 1,5 = [(1+ an’r E)(1+ &) (1+ 4n2£) 2] (4.18a)

R = n{(l+ ané )2 - {% + 4n2€(1— %j} -K(& )(1+ 4n2rf)2 (1+ 5)2(1+ 4n2€)_2} (4.18b)
On substituting forQ; andQ,, into (4.18a) from (4.15c) and (4.14), we get

= b 0o o )] 1, = 2, 1, = a0

similarly, for Wgz) in (4.17d),evaluated at = 1, we get

~(2) — 1 1 1 1 — —_

W) = | gwlwl + 1 0wl +aw?) |, 1o = (25 +116), 120 = (15 +11)  @:20)
It similarly follows from (4.16) (foj = 1), that

= _ 41+ &) n’H
f1(2) = _(|13Q2 + I14W1(2)) s = ({—)22 (4.21)
1+ 4né)
APl antre) -
14~ PPAY (4.22)
i+ 4n’¢)
If we substitute forQ, in (4.21) from (4.14), we get
= 1
£, = 1w+ 1,w? +al,w® +blL,wd ;1 ={ 1), —= |
1 21771 22772 23771 24772 21 14717 2 13 (423)
= _|22 ; |23 = (|14|18 - |13) = _|24
Similarly, from (4.16) and for j=2, evaluatedmat= 1, we get
f2(2) = _(|13Q1 + |14\7V£2)) (4.24a)

On substituting in (4.24a) fdQ, from (4.14), and for\Tvgz) from (4.20), we have
~ 1
2) — 1 1 1 1 — — —
fz( ) = |25W£ )Wg) + a|26W£) + b|27V\é) ) |25 - (Il4|19 _Elnj’ |26 - (|20|14 _|13) - |27 (4.24b)
Thus far, we infer that
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@(x,y)= i (wl(z) cos2ny +w¥ sin 2ny)sin mx, w29
m=135A .

(x y) ( )cosny+ W( )sin ny)sin X
We now substitute on the right hand sides of ($)Yand simplify to get

( V\F) ~(1+&PH Z[(4n2 +nrn? ){ (WPV\{Z) + aV\[Z))cosn;cosZnysin xsinmx
m=135A
+ (Wi + anf?)sinnycos2nycosx cosmx+ (wiw? +bw? )sinnyco2nysin xsinmx
+ (w(zl)V\él) +bvxé2))sinnysin2nysin >6inmx}+4n2m{ (wgl)V\lf) +avxf22)) sinnycos2nycosxcosmx
+ (WQ)V\{Z) + bvx{l))cosnysinZnycoy COSMX- (wgl)vxéz) + aqu))sinnysinZnycosmosmx
- (WP + bwi?) cosny cosZnycosxcosmx} | (4.26)
N(f (3),W(3))=—HK Z[(4n + mznz){( )+ £ 0w + af 2 )cosnycosZnysin xsinmx

m—l,35/\
+ (ng)f @+ £ 0w + afz(z))sin Ny cos2nycosx cCosmx + (W(Zl)fl(z) + 0w + bfl(z))
xsinnycosZnysin xsinmx+( W2 + £ w2 +bf2(2))sinnysin2nynysin Xsinmx
+4n m{ (W() + f w(2 +af )sin ny COS 2nyCOSX Sin mx
-(WOEP + £ 0w + af )sm nysin 2nycosx cosmx
+ (w29 + 12w +bf, @) cosny sin 2ny cosxcosmx
- (W(zl)fz(z) + £ 0w + bfz(z))cosny COS2NyCOSX COSMX } J (4.27)
We substitute (4.8) into (4.26), far= 3, multiply the resultant equation, first BpS/ Ny Sinumxand
nextsin Snysinumxand, in each case, note that the following comimnatof 5 and u are required to

give the necessary eigen Airy stress functidi$8 = Lu=1 (i) #=1u=3,(iii)f=3u=1.

Based on these combinations, the eigen Airy sfigsgions in the first multiplication are in theagies of

(a) cosnysinmx ,(b)asny sin3mx and (c)cos3nysinx. Similarly, the eigen Airy stress functions ireth
second multiplication are in the shapes of (d)msirsinmx, (e) sinnysin3mx and) Gin3nysinx. Of these, it

is only (a) and (d) , for the case m=1 ,that aelyi to be in the shapes of the imperfection agtii) and
that will eventually [2] have a dominant role imetbuckling process. Thus the associated Airy stres
functions, for any m (odd) ,in these two casesespectively evaluated from (4.26) as

o__(+&f(meenzEr®  (1+g) @)
h (m2 +n’& )2 l 217( ) m—%s,[/\{ (Wl '+ ) (4.28a)
+ (wgl)wgz) + bwgz))}{a)m (4n2 +m?n )+ 4n mﬁm}]
() & (e o)
W, =42~ - 0. = + (4.28b)
1+2m 1-2m 1+2m 2m-1
and
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o QP | (1+EPH W
f, (o B mlz35|;\{( et (4.29)
(w2 + k) Y, an’ + i)+ arime |

Since the case m=1 in (4.28a,b) is essential in Ibekling process ,we therefore evaluate

Fl(s) and Fz(s) as

- 1+& ) nPH( 1+& ) -
o= 25 | g MO IFe (55 1 47)

1+n°é 2 \1+n°é (4.30a)

X[Wl(Z)W()+W() ) + an® + b? ]
2 2
F(g,):_ 1+¢ W(3)+n2H 1+¢
? 1+n2¢) % 2m\1+n%*¢ (4.30b)
(a)l+46?)[w - WO + and? - le(z)]

where ¢J and 8, are the values ofy, and 8, respectively at m=1,and which are easily evaluéieah

(4.28b).We next substitute (4.8) into (4.27) , for 3, and in a similar analysis that led to the

determination of (4.28a,b) and (4.29), deterntimenormal displacemenl\ﬂ/l(s) and Wg3) corresponding
to (4.28a) and (4.29) respectively as

=L Sl i varma (i i i)

m| MEL35A

, ) (4.31a)
o e 1 +bf2<2))}}}+4(mz(;”ﬁ§)§): i
3l e, e, ol ) i)} 1}
m=135A

where
2

W= {(m2 +rré)f -2 /lc{a ;n + nZg( —a_zr)} —K(&)(m? +n2r &) (1+ &) (e + nzf)_z} (4.31b)

D :E—h i(ka 2 (4.31c)
YD+ |\ '
W§3):2;|2[Z; {IT i{{{(4n2+m2n2)wm+4n2m9m}{( W) 4 g0 ()+af())
m m=135A
4 2+ 2 Q( 1+§(2
W+ 0w b @)} 4 (m(m2n+rn2)<(z)2 )
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i{ {{ (4n2 + mznz)a)m + 4n2m8m}{(wf)w§2) + awl(z))- (W(zl)w(f) + bwl(z))} } }} (4.32)

m=135A
In particular, When m=1, We have , from (4.31a+m) é4.32), after some simplification,

- HD n? 5 + 49
W(s) 0)1 [l 28W; 1) 2W£1) + |30W1(1)Wg1) ’ + |31W£1) ’ + |3.2W1(1)2
2y, (4.33)
L) 1 )
_w HD,n?(5&, +48 3 2 2
W) =2 25720‘;171 l) [|37ng) +1 oW W+ 1wl w3
+ |40W1(1)W£1) + |41W£1)2 + |42W1(1) + |43W£1)]
where
|28 = _D2I17 + D1(|21 _|0|17) 1|29 = _D2|17 ) |30 = D2I17 + D1(|22 +|0|17 |25 —|0|19)(4.35a)
I3 =Dylyy 15y = Dz{a(|17 - |18)+ b|17} + Dla(l 237 |0|18) (4.35b)
|33 = Dzlla(b_ a)+bD (l + IOI18 |26 _Iolzo + |25) ’|34 (4.35¢)

= Dz(blla - al17)+ Dl(a26 - blolzo + alzz)

|y = D,l,5(a2 +ab)+ D, (a2, +b21,,), 155 = =D,y (ab +b?)+ D,ab(l,, +1,4) (4.350)

l3; ==D,ly; = (l +|o|17) o = D2(|17 _|19)+ D1(|25 —lolig =1y + |0|17) (4.35€)
l39 = =D,bl,, + le(|27 ~loly _|21) (4.39)

Iy = Dz{a(l —ly = |19)+ bllg} + aDl{l 26 ~lolao T125 =155t |0|18} (4.359)

s = =Dyl = 0D, (1,4 +1ghs +155) » 1r = 150D, (b7 — ab) + abDl(I27—I23) (4.35)

lus = Dlolab—a )+ D, (a5 —b71,,). D, = (%] (+nire). @, =1, (a39)

Here {, is the value of ¢/, evaluated at m=1 and it takes the same valuk, asn (4.10b). Thus we
now write

wh(x,y) = Z(vvf) cosny+w sin ny)sin mx (4.36a)
m=135A
so that the overall displacement w(x,y) now become

00

w(x, y) =0 (vvl(l) cosny+w sin ny)sin x+ [ ( Z( {2 cos2ny+w? sin2ny)sin mx}
AN

m=135

+0* > (Wf) cosny +w sin ny)sin mx [+O (D“) (4.36b)
m=135A
However, it is only the displacement components &he in the shape of imperfection that have a danti

role in the buckling process and so, hencefortle, neglect terms OO(DZ) in (4.36b) and now evaluate
the remaining displacement B =1 to get

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 121 - 132
Buckling of toroidal shell segments A.M.E& Jof NAMP



w(x, y) :D(vvf) cosny +wi) sinny)sinx+ * (\Tv1(3) cosny+WwY sin ny)sin X+ O(D“) (4.37)

5.0 Buckling load, Ag

According to Budiansky and Amazigo [6] and Ette9]7 the buckling Ioad/]sis obtained from
the maximization

dA
—=0 (5.1)
dw
However in order to eliminate the spatial dependeinc(4.37),we first determine the same equation at

critical valuesX, , Y, of X and Yy respectively. The conditions for this are

Wi, (%o Ya) =W, (%, y,) =0 (5.2)
We let
Ya = Yot Py, +A (5.3)
From the first of (5.2), using (4.37), we have
. :% (5.4)
On substituting (5.4) in the second of (5.2), using7) and (5.3) and equating the coefficients baind
[ , we obtain respectively
1. L(wd) 1 {bj
=—tan’| —= |=—tan’| — 55
Yooy [ w)on a 55
and
-n®y, (Wl(l) cosny, +wY sin ny0)+ n (— w® sinny, + W cosnyo) =0 (5.6)
From (5.6) we get
WL — wCwo
Y, = 1 le b ;Nz (5.7)
n Wl(l) + ng)
By now evaluating (4.37) &, , Y, using (5.4)-(5.7), we have
w=C, 0+C,[I* +A (5.8a)
6, = [ e u) c, = Wl vl (5.8b)
Vil )
As in [6-8], we first reverse the series (5.8a/id abtain
O=d,w+d,w° +A (5.9a)
1 C
d=—,d,=-=2 5.9b
1T ST (5.9b)

By substituting into (5.9a) fow from (5.8a) and equating the coefficientd dfand [ , we have

The maximization (5.1) easily follows direct from$a) to yield
0 + hod
=2 & -2 avxl(s) bvzz(s) (5.10)
3V3c, 3\ 3w +ba?)
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where all functions ofl in (5.10) are now evaluated zlts .On substituting for all the terms in (5.10), we
have

{(H e _ASAC{% nz‘{l_%j}‘ K(E)@+nire? &) nzgfz)z}2

_ (5.11)
_#,1 Acn {%+n25(1—%j} Lz} \/HD1(55J1+491)
where
2 3
P= 1+i(|—2j [( 8l + bl Wl +(al,, +blhaf e +al g +(aly, +bluohaf?”
g\ AsAcl, (6.12)

+ (a|33 + b|4O)V\£1) V\él) +( 34 + b|41)vq.1) ( 35 + b|42)vq1 36 + b|43 V\é ]

6.0 Analysis of results
The results (5.11) and (5.12) are asymptoticalljdvdor n>5 as well as for the case where the

h
imperfection amplitude is less than one half of itnperfection amplitude (i.e. 1< E). Notwithstanding

their seeming lengthy nature , the results are Isirapd straightforward formulae that determine gtaic
buckling Ioad/]S in a simple manner because all other terms appetrere are either specified or already
derived. By setting’ =0, we automatically obtain equivalents results védidimperfect cylindrical shell
segments under the same loading conditions. Byeotisely setting the Fourier coefficien&=0 (in
the first instance) antd = 0 (in the second instance), we automatically asgeetively obtain equivalent
results valid for imperfections in the form& =bsinnysin X and W =acosnysin X.An

approximate result of (5.11) can be obtained byntaaiing, in the expressioﬁvl(3) and \va) ,only the

vingw®® and wid? ——
terms multiplyingW;” and W;” and so, simplify to get
3

{(1_'_ nzfz) — A {2+n E[ C"er}_K(f)(1+nzrfz)2(1+£)2(1+n2<cz)—2}2
D@/‘SA(J‘D{%*’”ZE(]-_%)} &HD1(55)1+4§?)|:3_4|28 +b:(a|31+b|37)i|2

a?+b?

(6.1)

On substituting forA ¢ only the left hand sides of (5.11) and (5.13) fr@17), we get respectively

(1-1)2 = #nam{% {% + nzf[l—%j H " JHD, (5, + 48

and
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NI

1
5 — 4 3
a-2.); DBﬂ_ﬁi - {2 nZ{l_%j} : (ol rag)| e Tt

a’ +b?
2
We clearly observe from (5.14) and (5.15) thatlteal degradation is of ordéd® . we equally observe from all the
results that the buckling IoayzlS depends on the two Fourier coefficieateindb as well as on the multiplicative

coupling of these coefficients. In general, thailtsswould normally depend on all the Fourier cméfhts admitted in
the formulation but the analysis becomes incre&gipgohibitive if the number of these coefficienssgreater than

two. By assigning various values to the parametee can explore the variation ds with various values af.
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