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Abstract

The dynamic analysis of a uniform beam resting on an
elastic foundation and subjected to uniformly distributed moving
masses is investigated in this paper. The solution technique is based
on generalized finite integral transforms, the use of the properties of
the Heaviside function as the generalized derivative of the Dirac
Delta function in the distributed sense and a modification of the
asymptotic method of Struble. The analytical and numerical analysis
show that increase in the axial force N and foundation stiffness K
decrease the response amplitude of the uniform Bernoulli-Euler
beams when under the actions of both moving distributed force or
moving distributed mass. Also, for all illustrative examples, for the
same natural frequency, the critical speed for the moving mass
problem is smaller than that of the moving force problem. Hence,
resonance is reached earlier in the former. Thus, it istragic to rely on
moving force solution as an approximation to the moving mass
problem.

Keyword: Response of structuresUniform beam, concentrated loads,
distributed masses, moving masses, Boundary conditinertia effect.

1.0 Introduction

In the structural dynamics, the moving-load-indugéatation problems have been the important
research topic for over 100 years. Therefore, atgamount of work dealing with the dynamic analysis
structures due to moving loads can be found froistieg literature [1-6].
Until early this century, machine and structurealiyuhad very high mass and damping because heavy
beams, castings and timbers were used in theitremtisns. The dynamic response of these structames
machines was low since the vibration excitationrsesi were often small in magnitude. However, wlith t
development of strong lightweight materials, inseth knowledge of material properties and structural
loading, improved analysis and design techniquss,mass of machines and structures built to fusfill
particular function has decreased. Furthermore effieiency and speed of machinery have increased s
that the vibration excitation with reducing machmass and damping has continued at an increasieg ra
to the present day when few, if any, machine caddségned without carrying out the necessary vimmat
analysis.
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In general, the moving load problems are mathemfticomplex when the inertia effect of the
moving load is taken into consideration. Thus nufsthe research works available in the literature a
those in which this effect has been neglected. iBhilsie, at least in part, to the great amounbaiputa-

tional labour, which is required both to set up &amdolve the necessary equation. One importariti@no
that arises when the inertia effect of the massesa@nsidered is the singularity which occurs i ithertia
terms of the governing equation of motion.. A mdjoeakthrough in this field is the work of Stanisical

[7] who solved the problem of simply supported mimdling plate under a multi-mass moving system by
making use of an approximation of Dirac-delta fimrtt Only the inertia term which measures the affe
of local acceleration in the direction of the defien was considered. More recently, Oni [8] ancatdyan
and Oni [9] presented a theory for determining rdgponse of a finite Rayleigh beam (thick beam)eund
an arbitrary number of moving concentrated masBes.theory advanced involves the development of an
analytical versatile technique which is based anrttodified generalized finite integral transforndahe
modified Struble’s method. An important featuretlts technique is that it is applicable to all siaal end
conditions, as well as both thin and thick beam imgpioad problems.

It is remarked at this juncture that most of thedes available in literatures are moving load
problems where authors have modeled the moving lhyaconcentrated moving mass or moving lumped
mass. However, in practice, moving loads are infohe of moving distributed masses rather than tfat
moving lumped mass. For this reason, EsmailzaddzGimorashi [10] further studied the moving-load-
induced vibration problem using a moving unifornstdbuted mass model instead of the moving lumped
mass model. They solved the problem by means otdmeentional analytical approach, which is only
suitable for the simple horizontal beam and wilffssumuch difficulty if the structures are complied.
Also, it is noted that Esmailzadeh and Gorashi [¢©hsidered only the vertical inertia effects oé th
distributed mass moving along a horizontal pinnidved beam. This vertical inertia is called ineftiece.

He neglected both coriolis force and centrifugaicéo of the inertia term in the governing differanti
equation. Wu [11] on the other hand studied theatibn analysis of a pinned-pinned beam and that of
partial frame under the action of a moving uniformdistributed mass using finite element method and
Newmark integration method. Other recent work thse¢d uniformly distributed moving mass model
include Dada [12] who worked on the vibration as&yof elastic plates under uniform partially dstted
loads and Adetunde [13] who studied the dynamipaese of Rayleigh beam carrying an added mass and
traversed by uniform partially distributed movingatls. However their methods of solution are only
suitable for simply supported end conditions. Thils study sets at solving this class of dynamical
problem for all variants of classical boundary dtinds often encountered by practicing engineertha
field.

2.0 Mathematical model

The problem of the dynamic response to a distribldad moving at uniform speed on a uniform
elastic beam resting on elastic foundation is a®reid in this paper. The governing equation isfolieth
order partial differential equation given by

0? 02W(x,t 02W(x,t 0°W(x,t
[y OWOGD | 9WOkt) ) 0W ()
0X 0x 0X ot

where x is the spatial coordinate t is the tim@ (x,t) is the transverse displacemehtis Young's

+ K(X)W(x,t) = P(x,t) (2.1)

Modulus, J is the Moment of inertigi is the mass per unit length of the beam, N is #i&l éorce and K
is the elastic foundation. The moving load on tearh under consideration has mass commensurable with
the mass of the beam. Thus, the Igagi,t) takes the form Fryba [14]
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1 d°W(xt
P(x.t) = P, (xt)|1- L4 WD 22)
g dt
where P; (X,t) is the continuous moving force acting on the beaadel g is the acceleration due to
gravity anddi is the convective acceleration operator defined as
X
d _9° 0>, 97
—=—+2C tC'— (2.3)
dx ot oxot ox
Furthermore, the moving force acting on the beardehbere is defined as
N
P (x,t) =Y MgH (x—ct) (2.4)

i=1
where the time is assumed to be limited to that interval of tiwithin which the masgi/ is on the beam,
that is

O<cts<lL (2.5)
and H (X — ct) is the Heaviside function defined as
forx<0
H(x-ct)= 9
1 for x>0 (2.6)
w P(x.t)
X
&

Figure 2.1: A distributed load on an elastic beam

with the properties,

0) (;j—X{H (x-ct)} = (x-ct) (2.7)
. 0, for x<ct

_ -] 2.8
(ii) f (X)H (x — ct) {f(x), for x> ct (2.8)

where O(X—Ct) represents the Dirac delta function ahti(Xx — Ct) is a typical engineering function

made to measure engineering applications whicmaifieolved functions that are either “off” or “on”
In this paper, the Bernoulli-Euler beam undemsideration is assumed to be uniform, that is,bésem
properties, Young’'s modulls, the moment of inertid and the mass per unit length of the beam do not

vary along the span of the beam. Substituting (Z23), (2.4) and (2.5) into (2.1), one obtains,
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4 2 2
gy SWOY) _ OWO ) WYy gw(x, t)
0X 0X ot (2_9)
2 2 2
+ MH (x — ct) W(X ) 20a Wi c? WY | _ MH (x — ct)
oxot ot?

The boundary conditions of the above problem aseraed to be arbitrary, that is, it can take anynfof
the classical boundary conditions. The initial dtinds without any loss of generality is given by

AW (x,1)
ot

W(x,t)t _ =0= (2.10)

t=0

3.0 Solution procedures

In this section, a general approach used in [2rployed in order to solve the initial-value
problem in equation (2.11).The approach involveth first instance, the use of the generalizeegiratl
transformation technique to transform the governfagrth order partial differential equation . The
resulting coupled second order ordinary differdrdguation is then treated using the modified adptigp
method of Struble and other integral transformatexhniques. In order to solve equation (2.10) exttijo
the conditions (2.11), first, the generalized in&dransformation technique is employed. This gnat
transformation technique is given by

W(mt) = [~ W(xtU,, () (3.1)
with the inverse W (x,t) = Z“’: H W (m, U . (x) (3.2)
where W, = jOL U 2 (x)dx (3.3)

and Um(x) is any function chosen such that the pertinenndauy conditions are satisfied. An appropriate

selection of function for the beam problems arenbeaode shapes. Thus, the mth normal mode of
vibration of a uniform beam

U.(¥ :sin/]%X+Ancos/]%x+BmsinhA%x +Cmcosh/]%x (3.4)

is chosen as a suitable kernel of the integral sfam (3.4) where, /1m is the mode

frequencyA,, B,, G are constants. The parametdss, A,,B,,andC,, are obtained by substituting (3.4)
into the appropriate boundary conditions.

4.0 Transformation of equation
Applying the generalized integral transform (3dquation (2.10) can be written as

RGO LY +FG,®) ~F.Ga(t) +*We (M) + FWM1) + G, () + Gy () + e t) =MgHx—c (4.1)

where F —E F, ZE Fs 25 (4.2)
H H U

GO,L1) = Fg\gﬁx OWXY |y (- ZW(X Y OIu () + WM t)(;jzzu ) W(xt) u (x)} 4.3)

G, (1) = [T W(x 1) " 4U (X) (4.4)
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62W(x t)

Gy(t) = j 20U (X)dx

G (t) = j MH (x - ct)Mu (X)dx

Gy (t) = jo MH(x—d)% (x)dx
G (t) = jMH(x ct)MU (x)dx

It is generally known that the natural modes

satisfy the homogeneous differential equation

4
23890 2 =0
dx
For the Euler beam, the paramef@r, is the natural circular frequency
defined by o2 = m B3
m L4 u
From equation (4.10) we have J- W(x,t) —2—= d’ U (X) EﬁJQiIOLW(X,t)Um(X)dX
Thus, by (3.1) G,(t) = _JW(m ,t)
Ga(t) = —W(m t)

Noting thatV_V(k,t) is just the co-efficient of the generalized intégreransform,

W(x,t) = Z—W(k U, (x)

k=1

0° o U d?
thus, a—W(X t) o WKW(k,t)—ZUk(X)
so that integral (4.5) becomes, Gg(t) = z W(k t)J. -d U (X)U m(X)dx

From [6], the Fourier cosine transform aﬁ(x ct) is given by

J(x—ct) = 1 +EZCOS@ Cos™™t
L L& L

When it is noted that H(x-ct) = J' O(x —ct)dx
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(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)



n7cx nrct
It is straight forward to show that H(x-ct) =— + — ZS n—-— COST +C°(4.19)

n=1
When use is made of equation (4.17) and (4. 14),obltmns,

Gc(t)—a( (K, t)[ j U, (U, ({)dx

k—fl.

+EZC S COS—U (U, (9dx+C°[ U, (YU, ()  (4.20)
k=1

using similar argument in (4. 14)and (4.17), |ttrsthg;htforward to show that,

G, (t)= Wi (K, t)[ [ dL;(X)u (X)dlx
2 - nsct nrecx dU, (X) o rdu, (¥
+FTKZ1:C“ jch ™ U()d+2cj - — 22U, (x)d (4.21)
and  Gu()= o ZMCZW(kt){ Oduxz(x)u (X)dx
nsct nn:xd U, (X) .t dU, (%)
+E;CO° jc S 5 U, (X)dx cj —5 U, (x)dx (4.22)

Substituting (4.13), (4.16), (4.20), (4.21) and@).into (4.1) after some simplifications, and raagement
yields,

v_vn(m,t){npﬂv_wm,t)— Z W (k,t)S, (k,m)

N
U

{i (DS, (K m)+—i S W kt)Cos—%(k mr)

=1 n1 k=1

FLCS Wi (k,1)S, (K, m) + 26> Wi (k,1)S, (k, m)

k=1 k=1

Z ZW (K, t)COSn—n:t Sk mn)+2cC°Z W (k,1)S, (k, m)

nﬂa}((x)nl p=)
IVIC

2 SWK t)Cosn—mt S,(kmn)

n=1 k=1

; e " S WK S,k m)

- ;L [-CosA_ +A Snid_ +B Cosh A +C_SnhA_

m
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At .n)lmct Co /lmct_cms.n A,ct

(4.23)

M
where, Eg =— (4.24)

7

Equation (4.24) is the transformed equation govertine problem of a uniform Bernoulli-Euler beamaon
constant elastic foundation when under the actibm draversing distributed load. This coupled non-
homogeneous second order differential equationshfmidall variants of the classical boundary caodi.

In what follows, two special cases of the equati®24), namely, the moving force and the movingsna
problems are discussed.

5.0 Solution of the transformed equation
5.1 Bernoulli-Euler beam traversed by moving force

An approximate model of the differential equati@scribing the response of a uniform Bernoulli-
Euler beam resting on an elastic foundation anceutite action of a moving distributed force may be

obtained from (4.24) by setti®y = 0. Thus, setting, = 0, equation (4.24) reduces to
W (mt) = {Qz +—}W(m t)y—— Z W(k t)S, (k,m)

=T[— CosA,, + A, ,SnA, +B_ Cosh A +C,_Snhi,
y7)

m

A _ct . A _ct A _ct . A ct
M- n— Cosh—" nSnh—" (5.1)

Evidently, an exact solution to this equation i possible. Though the equation yields readily to
numerical technique, an analytical approximate wettis desirable as the solution so obtained often s
light on the vital information about the vibratisgstem. Therefore, we are going to use a modifinadf

the asymptotic method due to Struble often usetleiating weakly homogeneous and non-homogeneous
non-linear oscillatory system. To this end, equaff®.1) is rearranged to take the form

Wi(mt)+[/2 ~rSmmWmy -r,> Wks, m)

kzm

=T[— CosA, + A,SnA, + B CoshA, +C_ SnhA,
Y7

m

A.C )l e

(5.2)

where, Vg = y,f +% and [, :E (5.3)

By this technique, one seeks the modified frequemyesponding to the frequency of the free sysiem
to the presence of the effect of the axial forceAd. equivalent free system operator defined by the
modified frequency then replaces equation (5.25tFihe right hand side of equation (5.2) is eetdro,

then we consider a parametér<1 for any arbitrary ratiol defined as
r0
1+1,

(5.4)
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so that

Mo =A+0(4) (5.5)
Substituting equation (5.5) into the homogeneousagfeequation (5.2) one obtains
d2 o o
SEWmy - V2 = AS,(mm)W(m ) - A S Wik, 1)S, (k,m) =0 (5.6)
k=1
k#m

Setting A to zero in equation (5.6) a situation correspogdinthe case in which the axial force effect is
regarded as negligible is obtained, then the swiutf (5.6) becomes,

W (Mmt) =C, Cos[ymt —qom] (5.7)
whereC ;, V,; ,andg@, are constants

Furthermore asA <1, Struble’s technique requires that the asymptatidution of the
homogeneous part of the equation (5.2) be the form

W(mt) = B(mt)Cosly, t - gmt)|+ Ag +0(1) (5.8)

where S(m,t) and ¢(m,t) are slowly varying functions of time.

To obtain the modified frequency, equation (5.8) &s derivatives are substituted into equation
(5.6) and one obtains,

2B8(mt)y, Emt)Cody, t - gmt)| - 28mt)y,, Srly,t -dAmb)]
+2S (M m)B(mt)Cogy,t - ¢(mt)|=0 (5.9)

retaining terms td)(A) only. The variational equation are obtained byaging the coefficient of

Syt =m)] and Cogy,t —¢(my)]
on both sides of the equation (5.9). Thus,

-28mt)y, =0 (5.10)
and

2B(m )y, Fmt) AS(mm)Bmt) =0 (5.11)
Solving equations (5.10) and (5.11) respectivelegi

B(mt)=C? (5.12)

@mt) :Mt + (5.13)

nf
where Cr?q and @, are constants.
Therefore when the effect of the axial force is sidared, the first approximation to the

homogeneous system is V_V(m,t) = Cr?qCOS[Hamt - Wy ] (5.14)
where O = Vi 1—m (5.15)
2ynf

represents the modified natural frequency dueh effect of axial force N. It is observed that

whenA = 0, we recover the frequency of the moving force obwhen the axial force effect of the
beam is neglected. Thus to solve the non-homogeneguation (5.2), the differential operator whici a
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on V_V(m,t) and V_\/(m,t) is replaced by the equivalent free system operdtfined by modified

frequencﬂam. Using equation (5.14) the homogeneous part o (5.2) can be written as
2

Fv_v(m,t) +62W(mt)=0 (5.16)

Hence, the entire equation (5.2) takes the form
2
S—W(mt)+¢9 W(m, t)—T[ CosA_ + A SnA_+B _CoshA_ +C_SnhA_
Y7

m

A.C Act

(5.17)

To obtain the squt|on of (5.17), it is subjecteﬁa Laplace transform and using convolution
theory, expression foWW(m,t) is obtained. Thus, on inversion, one obtains,

1 i PL [ H(m,t)(1- Cosd,t) Cosa,t-Cosf, t

W(x,t) =

a,(¥) & | 6, 62, - a?
.\ A ( Sna,t+Sné,.t )+ 4B 6, a,Sné, tSnha,t
O = A a; = 6.,
, 2B,a¢Cos, [Coshat B, 6,,Cosurt+B, (a2 +62,)
@ =b,, a; =6,
. 4C 62 a,Snd, tCosha,t N 2C._aZCosf, tSnha, t
~ O @ =
, CnfmSina,t . CmakSiné?mt(af -6 )}
=, ay = Ou,

k

i A X

S u 5.18
x( Lj (.18

Equation (5.18) represents the transverse resgorsenoving force moving at constant velocity
of a uniform Bernoulli-Euler beam resting on elasfoundation and having arbitrary support end
conditions
5.2 Bernoulli-Euler beam traversed by a moving mass

In this section, the solution to the entire equat(4.24) is sought when no terms of the coupled
differential equation is neglected. As in movingc® problem, an exact analytical solution to ecumti
(4.24) does not exist. Thus, the approximate aitalytsolution discussed earlier namely, modified
Struble’s asymptotic method is employed. Evidentlye homogenous part of equation (4.24) can be
replaced by a free system operator defined by thaifirad frequency due to the presence of axialddxc
Thus equation (4.24) can be rewritten in the form

W e (M, t) + 82 W (m,t) +£ {Z W (k,1)S, (K, m)+—z an(k t)Cos”—mg(k mn)

n—:l. k=1

>

+LCY W (k,1)S, (k,m) + 2¢3 W (k,1)S; (k,m) 23" i, (K, )Cos™ " S, (k, m )
k=1 k=1

n=1 k=1
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+2cc°z W (k,1)S, (k, m) + '\;'AC_ ZW(k ), (k, m) +25 - 2 iW(k t)cosT Sy(k,mn)

n=1 k=1

2
LMCCOZW(k HS,(K, m)_ L |- CosA, + A SnA_+ B CoshA_ +C SnhA

m

A.C /1 mCt

(5.19)

To tackle this problem, the same techmque use6..|’h|s employed to obtain the modified
frequency of the system due to the presence ahtheéng mass, namely

o = Hm[l—%{(sz(m, m) +LC°S, (m,m)) - (LCZCOSw(m’;T;) +c*S(m, m))H (5.20)
h = _%o 5.21
where n= 1ve, (5.21)
S,(mm) = S, (K, M) oy Sy(Mm) = Sy(k, M)| -y (5.22)
S,(mm) =S, (K, M)| ey » Sio(M, M) = S (K, M)|,-p, (5.23)

retaining 0(/7) only. Hence the entire equation (5.2) takes tinefo
g;W(mt) AL T { H(mt) +Cot™ "mCt —A S AmCt |3,11cosh/1m—Ct -C.S nh/]’"—}(s 24)

This is analogous to equation (5.2).Thus, usmgllarmarguments as in the previous section,
W(m,t) can be obtained and on inversion gives,
W(xt) = 1 i £,Lg[ H(m1)(1- Cosh,t) Cosa,t - Cosf,t
a,(X) m A, I_ B, 65 —ag
, Au( Sna,t +Sng, ¢ )+ 4B, 6,.a,Sné, tSnha,t
O — 1 ay = O
. 2B, a Cosf, tCosha, t . BufnCoshe t+B, (o2 +62))
~Oom a; =6,
4C 6% a,9ng, tCosha,t 2C_aZCosf, tSnha,t
' ~g -y
. Cn 92 .Sna,t  C,a,Sing, toz -2, )}
4

Htfm k_ebm
. A X
x| g m 5.25
( " Lj 5:2)

Equation (5.25) represents the transverse respmngemoving mass moving at constant velocity of a
uniform Bernoulli-Euler beam resting on elasticrdation and having arbitrary support end conditions

6.0 Applications
In this paper, some examples of classical boundanditions are selected to illustrate the
analyses presented. Such classical boundary conglithclude; simply supported boundary conditions,
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Clamped-clamped ends conditions and, Clamped-frde eonditions (Cantilever beam).
6.1 Simply supported boundary conditions
In this case, the displacement and the bending mbwamish, Thus

W© =0=w(Lt, IWOD o 0WLY (6.1
ox 0X
Hence for normal modes
FE 2
U, (0 _,_ 09U (L)
U,©0)=0=U,,(L =0=—T— 6.2
m(©0) L) 52 PV (6.2)
which implies that
92 2
U,0)=0=U, (L), :; (0)_0=% (6.3)
X
Thus, making use the of boundary conditions abibwan be shown that
A,=0 B,=0, C,=0and A, =mmr (6.4)
A =0 B =0 C,=0and A =kmr (6.5)

Thus, substituting equations (6.4) and (6.5) irjoation (5.1) and rearranging, the moving forcebfEm
reduces to the non-homogeneous second order oydiifferential equation given by

d—ZW(mt)+92 W(mt) = PL{ (-" +COSme}

2
where 6 = E(M] +E(@j +5 (6.7)
H\ L H\ L H

Thus, solving equation (6.6) in conjunction witle tinitial conditions, one obtains an expression for
W(m,t) which when inverted yields,

© 1™ Cosw. t—Cosé .t
Wix =23 PL | -7 _ Cosat - Cosd,
L& tm nt 62 G2 - af
Equation (6.8) above represents the transverséad&pent response to a moving force moving at a
constant velocity of a simply supported Bernoullikit Beam resting on elastic foundation. Substityti

equations (6.4) and (6.5) into equation (5.52)reeaging and following arguments similar to those in
previous section, Struble technique is used toimbta

A L @ [ 64 c? m?72c?
6. =6_11-—60_ | ——+LC° |- - + 6.9
S B ”(Zmznz j Z;( J 0L (6.9)

(6.6)

(6.8)

nm 6,L

Equation (6.9) is the modified frequency correspogdo the frequency of the simply supported system
due to the presence of moving mass. Thus, thengowass problem reduces to

d? — PL m7ct
—W(mt) +6 W(m t) = -(-1)" +Cos—— (6.10)
dt LT L

solving equation (6.10) in conjunction with thetiai conditions yields expression f(\W(m,t) and on

inversion gives
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= AL%g| (-)"(@-Cosd,,,) (Coswt—-Cosb,..) m7x
W(x,t) =2 me — = Sn—— (6.11
=227 . g —ap | e

Equation (6.11) represents the transverse-displecerasponse to a distributed mass moving withteons
speed of simply supported uniform Bernoulli-Eulealn resting on elastic foundation.

6.2 Clamped/fixed ends condition
At clamped-clamped ends, both deflection and si@pesh
W(0,t) =0=W(L,t) and iW(o,t) =o=iW(|_,t) (6.12)
oX 0X
0 0
And for normal modedJ ,(0) =0=U, (L) and &Um ©0)=0= &Um(L) (6.13)
which implies that,
0 0
u,0=0=U,(L) and—U,0)=0=—U, (L 6.14
.0 (L) and—U, () =0=—U,(L) (6.14)
Thus it can be shown that
A = SnhA,, —Sn4,, _ Cosd, —Coshd,, _ C.and B, =-1 (6.15)
Cosl,, —Coshd,  SnA_+SnhA,
In view of (6.15), the frequency equation is givan
CosA,CoshA, =1 (6.16)
It follows from equation (6.16) that
A, =4.73004, A, = 7.85320, A, =10.99561, (6.17)

By interchanging mand K in equation (6.14) and (6.15), an expressionAfpr B, , C, and

corresponding frequency equations are obtaineds,the general solutions of the associated mownzef
and moving mass problems are obtained by substituélevant results in (6.15) and (6.17) into (.48d
(5.25)

6.3 One end clamped and one end free condition-caeter beam

Next at X = 0 the beam is taken to be clamped at the dnd O, the beam is free. Thus, the boundary
conditions of the Bernoulli-Euler beam can be \eritas,

2 3
W (0O,t) =O=iW(O,t) anda—ZW(L,t) :O:a—3W(L,t) (6.18)
1) o0x o0x

2 3
And for normal modes, U (0)=0= iU ) andd—zU o(L)=0= d—SU o)  (6.19)
dx 0X dx

S d d’ d’
which implies that, U, =0= &U « (0) and WU ((L)y=0= EU (L) (6.20)

Using (6.20), we can show that %t= 0,
A,=C_,andB_ =-1 (6.21)
_9n4,-8nh4, _ Cosd, —CoshA,
Cosd, +CoshA,  SnhA_-SinA_

=-C,and B, =-1 (6.22

An:
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and the frequency equation for the other end cimmdis CosA,CoshA,, = -1 (6.23)

such that, A, =1875, A, = 4694, A, = 7.855, (6.24)

Using (6.22), (6.23) and (6.24) in equation (5.88d (5.25), one obtains the displacement response
respectively to a moving force and a moving mass wifiform clamped-free ends of Bernoulli-Eulerinea
resting on elastic foundation.

7.0 Discussion of the analytical solutions

If the undamped system such as this is studiésidiésirable to examine the response amplitude of
the dynamical system which may grow without bout call this resonance conditions. Equation (6.8)
clearly shows that the simply supported elastiobessting on elastic foundation and traversed byingp
force reaches a state of resonance whenever

m
0, =Tm (7.1)
while equation (5.48) indicates that the same beemdher the action of a moving mass experiences
msc
resonance effect when Hmf :T (7.2)
From equation (6.9),
A L o 0y  c? m?7r°c?
6. =6.1-—|| ——+LC° |- - + 7.3
LR (2m2n2 ] ;{mm o.L) 6.L (7:3)
which implies
mscC
Hmf = A (7.4)
o 0 2 2.2.2
121 (G #1073 - S|
2 ||\ 2m°r m\nmo gL 6.L

From equation (7.4) it is deduced that for the samatiral frequency, the critical speed for the exyst
consisting of a simply supported elastic beam mgstin an elastic foundation and traversed by aeforc
moving with a uniform speed is greater than thathef moving mass problem. Thus, for the same natura
frequency of an elastic beam, resonance is reaghdigr in the moving mass system than in the ngvin
force system.

For the resonance conditions of other classicahtlaty conditions, equation (5.41) clearly shows
that the uniform elastic beam resting on an eldstimdation and traversed by a force moving with a
constant speed reaches a state of resonance wheneve

mrc
6, = U (7.5)
while equation (5.25) shows that same beam undemttion of a moving mass experiences resonance
mrsc
effect whenever 6., = o (7.6)

From equation (5.18)

Oom = 6am|:1_%{(82(m, m) +LC°S, (m,m))- (chcosl‘)(m’gz') 'S, (m m))H (7.7)

which implies
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msc
. it
o p (Le?cos o (mm) +c?S,(m,m)) (79)
1-7)(s,(mm) +Lces, (mm)- AULLL ’
2 Oom
Evidently, from (7.7) and (7.8), the same resuitd analyses obtained in the case of a simply stggor
Bernoulli-Euler beam are obtained for all otherrapées of classical boundary conditions.

8.0 Numerical calculation and discussion of results
For the purpose of Numerical analysis of our dyicamsystem, the uniform beam of length

12.192m is considered. AlsB!_ - 5500 m*/ s2, speed of the mass8s128m/s and the ratio of the mass
7

of the load to the beam is 0.2. The transversedifins of the beam are calculated and plottechagtine

for various values of axial forde and subgradK. Values ofN between 0 and 20,000,000 were used while
the values of K were varied betweemNGn and 400,000N/m?®. The results are as shown on the various
graphs below.

Figure 8.1 displays transverse displacement regpoha simply supported uniform beam under
the action of distributed forces moving at variabédocities for various values of axial force N fiored
values of foundation moduk = 40,000. The figure shows thatMéncreases the deflection of the uniform
beam decreases. In a similar way, for various tintee deflection profile of the beam for variousues of
foundation modulK and for fixed axial forc&l are shows in figure 8.2. It is observed that higlstues of
foundation moduli reduce the deflection profiletloé beam. In figure 8.3 and 8.4, the correspondimges
due to moving masses of the uniform beam clampebo#t ends are presented. Figure 8.5 displays
transverse displacement response of a clamped-ethrapiform beam under the action of distributed
forces moving at constant velocity for various eswf axial forceN for fixed value of foundation moduli
K=40,000. The figure shows that as N increasesdiigection of the uniform beam decreases. The
deflection profile of the beam for various valudsfaundation moduli and for fixed axial force N are
shown in figure 8.6. It is observed as that as d@tion modulus increases the the deflection ofoem
decreases.

W(L/2,m
w

64 - ——N=0
— - - ~N=200000
----- N=2000000

-7
Time(t)sec
Figure 8.1: Transverse displacement of the simply supportechheader the action of forces moving at
constant velocity for various values of axial foitdor fixed value of foundation moduli K (40000).
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W(L/2,m

-10 4

-12

K=0
— - - = K=400000
------ K=4000000

Time(t)sec

Figure 8.2: Deflection profile of the simply supported beam enthe action of force moving at constant velotaty
various values of foundation moduli K for fixed walof axial force N (20000)

Finally, figure 8.5, 8.6 and 8.7 show the comparigd the transverse displacement of moving
force and moving mass cases for N=200,000 and K800for simply supported end condition, Clamped-
Clamped end condition ar@lamped-free (Cantilever beam) end condition rethgedg. The figure shows
that theresponse amplitude of moving mass is higher thanahthe moving force.

w(L/2,)m

0.012

0.01 -

0.008 -

0.006 -

0.004 -

0.002 -

-0.002

K=0
— - - — K=400000
------ K=4000000

T
0.4

Time(t)sec

Figure 8.3: Deflection profile of the clamped-clamped uniforeelm under the action of distributed forces moving a
constant velocity for various values of foundatinaduli K and for fixed value of axial force N (20m1).
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0.007

0.006 4

0.005 - e

0.004 4

W(L/2,)m

=4
o
S
@

N=0
— - = N=200000

00024 L N=2000000 <

0.001 -

T T T T T T T
0 0.2 0.4 0.6 0.8 1 12 1.4 1.6
Time(t)sec

Figure 8.4: Transverse displacement of the clamped-clampednmibeam under the action distributed masses
moving at constant velocity for various values xibhforce N and for fixed value of foundation mdid€ (40000)

9.0 Conclusion

The problem of dynamical analysis of finite pressed Bernoulli-Euler beam with general
boundary conditions when it is under the actiontraivelling loads is considered in this paper. The
governing equation is a non-homogeneous fourth ropaetial differential equation with variable and
singular coefficients. At the right hand side is 8o-called Heaviside function which describesatheval
of a continuous load distributed along the beane ain objective is to obtain a closed form sohutio
valid for all variants of classical boundary comatis to the cumbersome partial differential equstiorhe
solution technique is based on generalized integaalsforms, the use of the properties of the Hudwi

function H (X — Ct) as the generalized derivative of the Dirac Daltaction O(X —Ct)

in the distributed sense and a modification of #symptotic method of struble. The analytical and
numerical analyses show tha} for the same natural frequency, the critical speéthe moving mass
problem is smaller than that of the moving forceljem. Hence, resonance is reached earlier in rgovin
mass problem of a uniform beam under the actioa distributed moving loadiif as the axial forcé&\
increases, the response amplitudes of uniform Rdifieuler beams under the action of moving
distributed loads moving with constant velocitiescigtase. (iii) when the axial force N is fixed, the
displacement of a uniform Bernoulli-Euler beamirgsion elastic foundation and traversed by distedu
masses travelling with constant speed decreast#s®dsundation moduli increase for all variantsttod
boundary conditions.
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0.2

;
0.2
0241 L

0.4 1

W(L/2,Hm

-0.6

0.8 ] [——nN=0
— - - = N=2000000
----- N=20000000

-1

Time(t)sec
Figure 8.5: Transverse displacement of the clamped-free unifmeam under the action of distributed forces mowing
constant velocity for various values of axial foltdor fixed value of foundation moduli K (40000).]

0.5

-0.54

W(L/2,Hm

-1.54

K=0
— - - —K=40000
----- K=400000

-2.5 4

-3

Time(t)sec

Figure 8.6: Deflection profile of the clamped-free uniform beamnder the action of distributed forces moving at
constant velocity for various values foundation ool and for fixed value of axial fordg (200000).
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