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Abstract 
 

The dynamic analysis of a uniform beam resting on an 
elastic foundation and subjected to uniformly distributed moving 
masses is investigated in this paper. The solution technique is based 
on generalized finite integral transforms, the use of the properties of 
the Heaviside function as the generalized derivative of the Dirac 
Delta function in the distributed sense and a modification of the 
asymptotic method of Struble. The analytical and numerical analysis 
show that increase in the axial force N and foundation stiffness K 
decrease the response amplitude of the uniform Bernoulli-Euler 
beams when under the actions of both moving distributed force or 
moving distributed mass. Also, for all illustrative examples, for the 
same natural frequency, the critical speed for the moving mass 
problem is smaller than that of the moving force problem. Hence, 
resonance is reached earlier in the former. Thus, it is tragic to rely on 
moving force solution as an approximation to the moving mass 
problem.  
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1.0 Introduction 

In the structural dynamics, the moving-load-induced vibration problems have been the important 
research topic for over 100 years. Therefore, a great amount of work dealing with the dynamic analysis of 
structures due to moving loads can be found from existing literature [1-6]. 
Until early this century, machine and structure usually had very high mass and damping because heavy 
beams, castings and timbers were used in their constructions. The dynamic response of these structures and 
machines was low since the vibration excitation sources were often small in magnitude. However, with the 
development of strong lightweight materials, increased knowledge of material properties and structural 
loading, improved analysis and design techniques, the mass of machines and structures built to fulfill a 
particular function has decreased. Furthermore, the efficiency and speed of machinery have increased so 
that the vibration excitation with reducing machine mass and damping has continued at an increasing rate 
to the present day when few, if any, machine can be designed without carrying out the necessary vibration 
analysis.  
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In general, the moving load problems are mathematically complex when the inertia effect of the 
moving load is taken into consideration. Thus most of the research works available in the literature are 
those in which this effect has been neglected. This is due, at least in part, to the great amount of computa- 

 
 
 
 
 
 

tional labour, which is required both to set up and to solve the necessary equation. One important problem 
that arises when the inertia effect of the masses are considered is the singularity which occurs in the inertia 
terms of the governing equation of motion.. A major breakthrough in this field is the work of Stanisic et al 
[7] who solved the problem of simply supported non-mindling plate under a multi-mass moving system by 
making use of an approximation of Dirac-delta function.  Only the inertia term which measures the effect 
of local acceleration in the direction of the deflection was considered. More recently, Oni [8] and Gbadeyan 
and Oni [9] presented a theory for determining the response of a finite Rayleigh beam (thick beam) under 
an arbitrary number of moving concentrated masses. The theory advanced involves the development of an 
analytical versatile technique which is based on the modified generalized finite integral transform and the 
modified Struble’s method. An important feature of this technique is that it is applicable to all classical end 
conditions, as well as both thin and thick beam moving load problems.  

It is remarked at this juncture that most of the studies available in literatures are moving load 
problems where authors have modeled the moving load by concentrated moving mass or moving lumped 
mass. However, in practice, moving loads are in the form of moving distributed masses rather than that of 
moving lumped mass. For this reason, Esmailzadez and Ghorashi [10] further studied the moving-load-
induced vibration problem using a moving uniform distributed mass model instead of the moving lumped 
mass model. They solved the problem by means of the conventional analytical approach, which is only 
suitable for the simple horizontal beam and will suffer much difficulty if the structures are complicated. 
Also, it is noted that Esmailzadeh and Gorashi [10] considered only the vertical inertia effects of the 
distributed mass moving along a horizontal pinned-pinned beam. This vertical inertia is called inertia force. 
He neglected both coriolis force and centrifugal force of the inertia term in the governing differential 
equation. Wu [11] on the other hand studied the vibration analysis of a pinned-pinned beam and that of 
partial frame under the action of a moving uniformly distributed mass using finite element method and 
Newmark integration method. Other recent work that used uniformly distributed moving mass model 
include Dada [12] who worked on the vibration analysis of elastic plates under uniform partially distributed 
loads and Adetunde [13] who studied the dynamic response of Rayleigh beam carrying an added mass and 
traversed by uniform partially distributed moving loads. However their methods of solution are only 
suitable for simply supported end conditions. Thus, this study sets at solving this class of dynamical 
problem for all variants of classical boundary conditions often encountered by practicing engineers in the 
field. 
 
2.0 Mathematical model 

The problem of the dynamic response to a distributed load moving at uniform speed on a uniform 
elastic beam resting on elastic foundation is considered in this paper. The governing equation is the fourth 
order partial differential equation given by 
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where x is the spatial coordinate t is the time, ),( txW  is the transverse displacement E is Young’s 

Modulus, J  is the Moment of inertia,µ is the mass per unit length of the beam, N is the axial force and K 

is the elastic foundation. The moving load on the beam under consideration has mass commensurable with 
the mass of the beam. Thus, the load ),( txp  takes the form Fryba [14]  
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where ),( txPf  is the continuous moving force acting on the beam model g is the acceleration due to 

gravity and 
dx

d  is the convective acceleration operator defined as 
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Furthermore, the moving force acting on the beam model here is defined as 
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where the time t is assumed to be limited to that interval of time within which the mass µ  is on the beam, 

that is 
Lct ≤≤0      (2.5) 

and )( ctxH −  is the Heaviside function defined as  
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with the properties, 
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where )( ctx −δ  represents the Dirac delta function and )( ctxH −  is a typical engineering function 

made to measure engineering applications which often involved functions that are either “off’” or “on”. 
    In this paper, the Bernoulli-Euler beam under consideration is assumed to be uniform, that is, the beam 
properties, Young’s modulus E, the moment of inertia J and the mass per unit lengthµ  of the beam do not 

vary along the span of the beam. Substituting (2.2), (2.3), (2.4) and (2.5) into (2.1), one obtains, 
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Figure 2.1: A distributed load on an elastic beam 
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The boundary conditions of the above problem are assumed to be arbitrary, that is, it can take any form of 
the classical boundary conditions. The initial conditions without any loss of generality is given by  
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3.0 Solution procedures 

In this section, a general approach used in [2] is employed in order to solve the initial-value 
problem in equation (2.11).The approach involves in the first instance, the use of the generalized integral 
transformation technique to transform the governing fourth order partial differential equation . The 
resulting coupled second order ordinary differential equation is then treated using the modified asymptotic 
method of Struble and other integral transformation techniques. In order to solve equation (2.10) subject to 
the conditions (2.11), first, the generalized integral transformation technique is employed. This integral 
transformation technique is given by 
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and )(xUm  is any function chosen such that the pertinent boundary conditions are satisfied. An appropriate 

selection of function for the beam problems are beam mode shapes. Thus, the mth normal mode of 
vibration of a uniform beam 
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is chosen as a suitable kernel of the integral transform (3.4) where, mλ  is the mode 

frequency, mmm CBA ,, are constants. The parametersmλ , ,, mm BA and mC  are obtained by substituting (3.4) 

into the appropriate boundary conditions. 
 
4.0 Transformation of equation 

Applying the generalized integral transform (3.1), equation (2.10) can be written as 
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It is generally known that the natural modes 
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satisfy the homogeneous differential equation 
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For the Euler beam, the parameter mΩ  is the natural circular frequency  
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From [6], the Fourier cosine transform of  )( ctx −δ  is given by 
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When use is made of equation (4.17) and (4.14), one obtains, 
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using similar argument in (4.14)and (4.17), it is straightforward to show that, 
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Substituting (4.13), (4.16), (4.20), (4.21) and (4.22) into (4.1) after some simplifications, and rearrangement 
yields, 
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where,   
L

M

µ
ε =0        (4.24) 

Equation (4.24) is the transformed equation governing the problem of a uniform Bernoulli-Euler beam on a 
constant elastic foundation when under the action of a traversing distributed load. This coupled non-
homogeneous second order differential equation holds for all variants of the classical boundary conditions. 
In what follows, two special cases of the equation (4.24), namely, the moving force and the moving mass 
problems are discussed. 
 
5.0 Solution of the transformed equation 
5.1 Bernoulli-Euler beam traversed by moving force 

An approximate model of the differential equation describing the response of a uniform Bernoulli-
Euler beam resting on an elastic foundation and under the action of a moving  distributed force may be 

obtained from (4.24) by setting 00 =ε . Thus, setting 00 =ε , equation (4.24) reduces to  
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Evidently, an exact solution to this equation is not possible. Though the equation yields readily to 
numerical technique, an analytical approximate method is desirable as the solution so obtained often shed 
light on the vital information about the vibrating system. Therefore, we are going to use a modification of 
the asymptotic method due to Struble often used in treating weakly homogeneous and non-homogeneous 
non-linear oscillatory system. To this end, equation (5.1) is rearranged to take the form 
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where,    
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By this technique, one seeks the modified frequency corresponding to the frequency of the free system due 
to the presence of the effect of the axial force N. An equivalent free system operator defined by the 
modified frequency then replaces equation (5.2). First, the right hand side of equation (5.2) is set to zero, 
then we consider a parameter 1<λ   for any arbitrary ratio λ  defined as 
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so that 
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Substituting equation (5.5) into the homogeneous part of equation (5.2) one obtains 
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Setting λ  to zero in equation (5.6) a situation corresponding to the case in which the axial force effect is 
regarded as negligible is obtained, then the solution of (5.6) becomes, 
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Furthermore as 1<λ , Struble’s technique requires that the asymptotic solution of the 
homogeneous part of the equation (5.2) be the form  
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To obtain the modified frequency, equation (5.8) and its derivatives are substituted into equation 
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Therefore when the effect of the axial force is considered, the first approximation to the 
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 represents the modified natural frequency due to the effect of axial force N. It is observed that 
when 0=λ , we recover the frequency of the moving force problem when the axial force effect of the 
beam is neglected. Thus to solve the non-homogeneous equation (5.2), the differential operator which act 
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on ),( tmW and ),( tmW is replaced by the equivalent free system operator defined by modified 

frequency amθ . Using equation (5.14) the homogeneous part of equation (5.2) can be written as 
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To obtain the solution of (5.17), it is subjected to a Laplace transform and using convolution 

theory, expression for ),( tmW  is obtained.  Thus, on inversion, one obtains, 
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Equation (5.18) represents the transverse response to a moving force moving at constant velocity 
of a uniform Bernoulli-Euler beam resting on elastic foundation and having arbitrary support end 
conditions 
5.2 Bernoulli-Euler beam traversed by a moving mass 

In this section, the solution to the entire equation (4.24) is sought when no terms of the coupled 
differential equation is neglected. As in moving force problem, an exact analytical solution to equation 
(4.24) does not exist. Thus, the approximate analytical solution discussed earlier namely, modified 
Struble’s asymptotic method is employed. Evidently, the homogenous part of equation (4.24) can be 
replaced by a free system operator defined by the modified frequency due to the presence of axial force N. 
Thus equation (4.24) can be rewritten in the form  
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To tackle this problem, the same technique used in 5.2 is employed to obtain the modified 
frequency of the system due to the presence of the moving mass, namely 
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retaining )(ηo only.  Hence the entire equation (5.2) takes the form, 
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This is analogous to equation (5.2).Thus, using similar arguments as in the previous section, 

),( tmW  can be obtained and on inversion gives, 
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Equation (5.25) represents the transverse response to a moving mass moving at constant velocity of a 
uniform Bernoulli-Euler beam resting on elastic foundation and having arbitrary support end conditions. 
 
6.0 Applications 

In this paper, some examples of classical boundary conditions are selected to illustrate the 
analyses presented. Such classical boundary conditions include; simply supported boundary conditions,  
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Clamped-clamped ends conditions and, Clamped-free ends conditions (Cantilever beam). 

6.1 Simply supported boundary conditions 
In this case, the displacement and the bending moment vanish, Thus 
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Hence for normal modes 
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which implies that 
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Thus, making use the of boundary conditions above, it can be shown that 

πλ mBA mm ==== mm     and   0C    ,0   ,0       (6.4) 

πλ kBA kk ==== kk     and   0C    ,0   ,0     (6.5) 

Thus, substituting equations (6.4) and (6.5) into equation (5.1) and rearranging, the moving force problem 
reduces to the non-homogeneous second order ordinary differential equation given by 
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Thus, solving equation (6.6) in conjunction with the initial conditions, one obtains an expression for 

),( tmW  which when inverted yields, 
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Equation (6.8) above represents the transverse displacement response to a moving force moving at a 
constant velocity of a simply supported Bernoulli-Euler Beam resting on elastic foundation. Substituting 
equations (6.4) and (6.5) into equation (5.52) rearranging and following arguments similar to those in 
previous section, Struble technique is used to obtain 
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Equation (6.9) is the modified frequency corresponding to the frequency of the simply supported system 
due to the presence of moving mass.  Thus, the moving mass problem reduces to  
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solving equation (6.10) in conjunction with the initial conditions yields expression for ),( tmW  and on 

inversion gives 
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Equation (6.11) represents the transverse-displacement response to a distributed mass moving with constant 
speed of simply supported uniform Bernoulli-Euler beam resting on elastic foundation. 
 
 
 
 
 
6.2 Clamped/fixed ends condition 

At clamped-clamped ends, both deflection and slope vanish 
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In view of (6.15), the frequency equation is given as 

    1=mmCoshCos λλ      (6.16) 

It follows from equation (6.16) that 
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By interchanging m and k  in equation (6.14) and (6.15), an expression for kC  ,   , kk BA  and 

corresponding frequency equations are obtained. Thus, the general solutions of the associated moving force 
and moving mass problems are obtained by substituting relevant results in (6.15) and (6.17) into (5.18) and 
(5.25)  
6.3 One end clamped and one end free condition-cantilever beam  
Next at 0=x  the beam is taken to be clamped at the end  0=L , the beam is free. Thus, the boundary 
conditions of the Bernoulli-Euler beam can be written as, 
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Using (6.20), we can show that at 0=x ,  
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and the frequency equation for the other end condition is 1−=mmCoshCos λλ   (6.23) 

such that,  875.11 =λ , 694.42 =λ , 855.73 =λ ,    (6.24) 

Using (6.22), (6.23) and (6.24) in equation (5.18) and (5.25), one obtains the displacement response 
respectively to a moving force and a moving mass of a uniform clamped-free ends of Bernoulli-Euler beam 
resting on elastic foundation. 
 
7.0 Discussion of the analytical solutions 

If the undamped system such as this is studied, it is desirable to examine the response amplitude of 
the dynamical system which may grow without bound. We call this resonance conditions. Equation (6.8) 
clearly shows that the simply supported elastic beam resting on elastic foundation and traversed by moving 
force reaches a state of resonance whenever 
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which implies 
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From equation (7.4) it is deduced that for the same natural frequency, the critical speed for the system 
consisting of a simply supported elastic beam resting on an elastic foundation and traversed by a force 
moving with a uniform speed is greater than that of the moving mass problem. Thus, for the same natural 
frequency of an elastic beam, resonance is reached earlier in the moving mass system than in the moving 
force system. 

For the resonance conditions of other classical boundary conditions, equation (5.41) clearly shows 
that the uniform elastic beam resting on an elastic foundation and traversed by a force moving with a 
constant speed reaches a state of resonance whenever 
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while equation (5.25) shows that same beam under the action of a moving mass experiences resonance 

effect whenever    
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From equation (5.18) 
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which implies 
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Evidently, from (7.7) and (7.8), the same results and analyses obtained in the case of a simply supported 
Bernoulli-Euler beam are obtained for all other examples of classical boundary conditions. 
 
8.0 Numerical calculation and discussion of results  
 For the purpose of Numerical analysis of our dynamical system, the uniform beam of length 

12.192m is considered. Also ,/2200 24 sm
EI =
µ

speed of the mass is128.8 m/s and the ratio of the mass 

of the load to the beam is 0.2. The transverse deflections of the beam are calculated and plotted against time 
for various values of axial force N and subgrade K. Values of N between 0 and 20,000,000 were used while 
the values of K were varied between 0 N/m3 and 400,000 N/m3.  The results are as shown on the various 
graphs below. 
 
 
 
 
 Figure 8.1 displays transverse displacement response of a simply supported uniform beam under 
the action of distributed forces moving at variable velocities for various values of axial force N for fixed 
values of foundation moduli K = 40,000.  The figure shows that as N increases the deflection of the uniform 
beam decreases. In a similar way, for various time t, the deflection profile of the beam for various values of 
foundation moduli K and for fixed axial force N are shows in figure 8.2. It is observed that higher values of 
foundation moduli reduce the deflection profile of the beam. In figure 8.3 and 8.4, the corresponding curves 
due to moving masses of the uniform beam clamped at both ends are presented. Figure 8.5 displays 
transverse displacement response of a clamped-clamped uniform beam under the action of distributed 
forces moving at constant velocity for various values of axial force N for fixed value of foundation moduli 
K=40,000. The figure shows that as N increases the deflection of the uniform beam decreases. The 
deflection profile of the beam for various values of foundation moduli and for fixed axial force N are 
shown in figure 8.6. It is observed as that as foundation modulus increases the the deflection of the beam 
decreases. 
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Figure 8.1: Transverse displacement of the simply supported beam under the action of forces moving at 
constant velocity for various values of axial force N for fixed value of foundation moduli K (40000). 
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Finally, figure 8.5, 8.6 and 8.7 show the comparison of the transverse displacement of moving 
force and moving mass cases for N=200,000 and K=40,000 for simply supported end condition, Clamped-
Clamped end condition and Clamped-free (Cantilever beam) end condition respectively. The figure shows 
that the response amplitude of moving mass is higher than that of the moving force. 
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Figure 8.2: Deflection profile of the simply supported beam under the action of force moving at constant velocity for 
various values of foundation moduli K for fixed value of axial force N (20000) 

Figure 8.3: Deflection profile of the clamped-clamped uniform beam under the action of distributed forces moving at 
constant velocity for various values of foundation moduli K and for fixed value of axial force N (200000). 
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9.0 Conclusion 

The problem of dynamical analysis of finite prestressed Bernoulli-Euler beam with general 
boundary conditions when it is under the action of travelling loads is considered in this paper. The 
governing equation is a non-homogeneous fourth order partial differential equation with variable and 
singular coefficients. At the right hand side is the so-called Heaviside function which describes the arrival 
of a continuous load distributed along the beam. The main objective is to obtain a closed form solution 
valid for all variants of classical boundary conditions to the cumbersome partial differential equations. The 
solution technique is based on generalized integral transforms, the use of the properties of the Heaviside 
function )( ctxH −  as the generalized derivative of the Dirac Delta function )( ctx −δ   

 
 
 
 
 

in the distributed sense and a modification of the asymptotic method of struble. The analytical and 
numerical analyses show that (i) for the same natural frequency, the critical speed of the moving mass 
problem is smaller than that of the moving force problem. Hence, resonance is reached earlier in moving 
mass problem of a uniform beam under the action of a distributed moving load. (ii) as the axial force N 
increases, the response amplitudes of uniform Bernoulli-Euler beams under the action of moving 
distributed loads moving with constant velocities decrease. (iii) when the axial force N is fixed, the 
displacement of a uniform Bernoulli-Euler beam resting on elastic foundation and traversed by distributed 
masses travelling with constant speed decreases as the foundation moduli increase for all variants of the 
boundary conditions. 

Figure 8.4: Transverse displacement of the clamped-clamped uniform beam under the action distributed masses 
moving at constant velocity for various values of axial force N and for fixed value of foundation moduli K (40000) 
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Figure 8.5: Transverse displacement of the clamped-free uniform beam under the action of distributed forces moving at 
constant velocity for various values of axial force N for fixed value of foundation moduli K (40000).] 

Figure 8.6: Deflection profile of the clamped-free uniform beam under the action of distributed forces moving at 
constant velocity for various values foundation moduli K and for fixed value of axial force N (200000). 
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