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Abstract 
 

A synthetic technique is derived for control systems governed by 
linear differential-difference equations. It is shown that such a system is 
equivalent to an infinite-dimensional difference equation whose matrix 
elements can be readily calculated by recursive formulas. To accomplish this, 
we introduce sampling, and replace the differential-difference equation by an 
infinite-dimensional system of difference equation. The infinite-dimensional 
system corresponds exactly to the finite dimensional one. The computation of 
the necessary transition matrices is done by matrix iterations similar to those 
used to compute the transition matrices of ordinary linear systems. For 
results, two practical examples are illustrated.  From this it takes but a slight 
extension of present day procedures to calculate a stable system. 
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1.0 Introduction 

In many industrial processes where transportation lags are common, the time behaviour of the 
system can be adequately derived by linear differential-difference equations. That is, the system is 

described by )()()(
11

1 j

m

j
j

n

i
i TtuDTtxAtx −+−= ∑∑

==

& , where x and u are the state and input vectors, and 

Ti and Tj are some fixed delay times.  Techniques now classical in the control field, such as the Laplace 
transform [1] or the direct method of Lyapunov [2,3], can be used in the analysis of the equation. It is worth 
mentioning that the utilization of these techniques require extensive computation. This is natural since the 
state has infinite dimension. It is desirable to do these computations on a digital computer. However, when 
a computer issued, the design technique should be one which is intended for a computer and unfortunately 
the classical techniques do not have this desirable property. 

Thus, the purpose of this paper is to present a synthesis technique suitable for digital computation 
of engineering problems. To achieve this we introduce sampling, and replace the differential-difference 
equation by an infinite-dimensional system of difference equation shown by Conte [4] and Pipes [5].  

In this paper we will have occasion to refer to “ordinary” linear difference equations and to a 
“linear control law” of such equations. By an “ordinary” difference equation, we mean finite dimensional 

equations such as )()()1( kukxkx ∆+Φ=+  where x  and u  are finite-dimensional state and input 

vectors, and Φ and ∆ are constant matrices.  By a “linear control law”, we mean that )(ku is a linear 

vector functional of the state, that is, )()( kxcku = . 
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In general, a linear control law is determined from some performance index J. That is, )(ku is 

chosen to minimize some functional J of the state and control vectors along the motion of the system. The 
theory of such control laws has been expensively studied, and we will assume that the various methods of 
synthesis are known to the reader [6].  
 
2.0 Input-delay problem 

Let’s consider a simple input-delay problem whose system is governed by  

)()()( 2 TtuDtxAtx −+=
•

 

If this system is sampled every τ seconds, with T/τ = N, an integer, and if the input is applied 
through an appropriate sample-and-hold element, then 

( ) ( ) ( ) ( ) ( )ττττ NtUtxtx kkk −∆+Φ=+    (2.1) 

where ( ) ( ) ( ) ( ) 20
exp,exp DdsAsA





=∆=Φ ∫

τ
τττ . 

We wish to present at this stage two methods which can be used to synthesize a control for the 

above system. In the first approach, we replace (2.1) by ( ) ( ) ( ) ( ) ( )kkk tVtxtx τττ ∆+Φ=+ .  

Thus, we have defined ( ) ( )τNtUtV kk −≡  

The above equation is an ordinary linear difference equation for which a linear control law for 

( )v t  can be found. Assuming that this control law has been found [7], the ( ) ( )kk txctv = .  To arrive 

at ( )ktu , we have  

( ) ( ) ( )τNtxcNTtVtu kkk +=+≡ ( ) ( ) ( ) ( )
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Thus, we observe that the control law is a function of ( )ktx  and the N past inputs. 

The next alternative approach (which allows for more flexibility is the performance index at the 
expense of additional complexity), is to enlarge the state space when we define  
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where *Φ  and *∆  are defined by the above equation.  Again, we have an ordinary linear-difference 
equation for which a linear control law can be found by standard techniques.  Without difficulty, it is 
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possible to apply either of the two procedures outlined here to the case involving multi-delays.  Since the 
procedure is straight forward, we will dispense with further discussion and turn to the state-delay problem 
 
 
 
 
 
 
3.0 General difference equation 

Here we assume that the system is governed by the following differential-difference equation for 
which we desire a sampled version 

( ) ( ) ( ) ( ) ( )TtuDtuDTtxBtxAtx −++−+= 2    (3.1) 

where 

( ) =tx (n × n) vector; referred to hereafter as the state vector 

( ) =tu  (r × l) input vector, assumed constant between samples, i.e., ( ) ( ) 1k k k
u t u for tt t t +

= ≤ ≤  

( ),A B n n= × constant matrices; 

=21DD (n × r) constant matrices. 

By direct integration, the solution to the homeogeneous part of the above equation is  

( ) ( ) ( ) ( ) ( )




 −−+= ∫ dsTsxBAsxAttx

t

0
exp0exp  

Now, if it is assumed that ( ) 0, ≤ttx is itself a solution, then by integrating the above equation we have 

( ) ( ) ( ) ( ) ( ) ( )
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 −+= ∫ TxdsAsBAsxAttx
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0
 

 ( ) ( ) ( ) ( ) dsdTxBAAsBAs
st

λλλ 2expexpexp
00

−−+ ∫∫  

Applying successive iteration, we obtain the infinite-dimensional difference equation 

( ) ( ) ( )iTxttx
oi

i −Φ=∑
∞

−

       (3.2) 

where ( ) ( )Att exp0 =Φ , dssBAsAt i

t

i )()(exp)exp(
01 Φ−=Φ ∫+ .  From this result, we see that 

iΦ can be identified with the terms of the transition matrix A + B. In essence,  

)0())exp()()(lim
0

0
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i
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Because of this identity, we are assured of the existence of the ( )i tΦ  for all i  and t . Also, we realize that 

the sequence ...1,0,)( =Φ ii τ  for fixed t - τ is majorized by  

 [ ( ) ( ) ( ) ]...
!

...
!2

1
2

+++++
n

e
n

TA λτλτλτ  

where h is a fixed constant greater than zero. Therefore, 
( ) ( ) ( )τλττ

ii i
Φ

+
≤Φ + 11 . 

Letting n be the first i  for which ,1 λτ>+i  ( )ττ ii r Φ≤Φ + )(1 for ; 1i n r> < .As a 

result, there exist constants c and r < 1 such that i
i cr≤Φ + )(1 τ .  This result will be used later. 
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Finally, )(τiΦ can be calculated by an infinite series. This follows from the fact that )(1 τΦ  

must be the sum of those terms of ( )( )τBA +  involving the ith  powers of B.  From this and examination 

of the terms of ( )( )τBA +     , we have 

∑
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=
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,)(
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= −
+ k

cBcA
c kiki

ki

ττ
, c0,0 = I, ci,0 = 0, i > 0, c1,k = 0, k ≥ 0. 

 
 
 

Thus, it is possible to compute the )(τiΦ  on a digital computer by an infinite series expansion in 

the same way as exp (Aτ).  Following the same line of reasoning, when the control is added and considered 
constant during a sampling interval, we arrive at the complete infinite-dimensional difference equation: 

τψττττ T
kik

i
i NiNtuiNtxtx =−∆+−Φ=+ ∑

∞

=
);()()()()(

0

  (3.3) 
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C are define in the same previous 

iteration for )(τiΦ  

 
4.0 Stability 

In this section we wish to define stability and derive a theorem necessary for our purposes.  For a 
more thorough analysis in the continuous cases, the reader is referred to a paper by Driver [10] and the 
works of Ogata [2] and Dorf and Bishop [8]. 

 We shall consider a liner space whose elements, e, are infinite sequences of vectors 

( [ ]21 xx . For notational convenience, we shall agree that if  

[ ]),...1(),( −= kxkxek  then [ ]),...1(),(),1(1 −+=+ kxkxkxek  

Definition 4.1 
 The null solution, e = [ ] ,0...0,0,0 = of the system 0),0();,(1 ==+ kfkefe kk  will be said 

to be stable if given any number ε > 0 there corresponds a λ (ε, k) > 0 and a norm such that if λ≤ke  

then ε≤+1ke  for i > k.  If  λ is not a function of k, the solution will be said to be uniformly stable. 

Definition 4.2 
 The null solution of 0),0();( ,1 ==+ kfefe kkk  will be said to be uniformly asymptotically 

stable if it is uniformly stable and if given any M > 0 there correspond a T(M) and a norm such that 

Me pk ≤+  for all P>T whenever ,rek ≤  and r not depending on M or ek. 

Lemma 4.3: 

Given the system defined by )()1(
0

ikxkx
i

i −Φ=+ ∑
∞

−

, where ∑
∞

−

≤Φ
0

1
i

i .  Then, the system 

is uniformly stable. 
Proof: 
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Define ,...1,0,)( =−= iikxMaxe
i

k .  Let λ=ε → ε≤ke  or )( ikx −  i;ε≤  ,0=  

,...1 .  From the hypothesis of the lemma, ( ) ∑∑
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i ikxkx εε .  By 

induction, the above holds for all ,1);( >+ jjkx  and we obtain ε≤+ jke .  Hence the lemma is 

proved.           �  
Theorem 4.4 

Given the system governed by )()1(
0
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i  and there exist 

constants c and r < 1 such that i
i cr≤Φ .  Then, the system is uniformly asymptotically stable. 

 
 
 
 

 
 
Proof: 

By Lemma 1 the system is uniformly stable. Now we define 
( )

;max
2i

ikx
e

i
k

−
= ,0=i 1,  

...,1 .  It is clear that the theorem is true if we can show that ,...2,1;)( =kkx  progressively 

decreases.  In what follows we will establish this.  First, we show that if there exists a β > 1 such that 

11
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i
kx )1( −  progressively decreases.  Now, we assume at some fixed point k 

...2,1,0;)( =≤− irikx , then surely ...2,1,0;)( =≤− irikx iβ  and ≤+ )1(kx  ∑
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∞

=
∑∑ Φ≤Φ≤ βββ 1−≤ βr .  By induction, TrTkx −≤+ β)(  and the 

result desired is established. 

Now, by the conditions of the theorem 1; <≤Φ rcr i
i .  From the continuous function 

f(t) 2
1

0

)()( <∞<≤ ∑
∞

=

tforrttctf
i

i  since 11)1( <≤≤ randaf , by continuity then 

exist some t = t*, 1<t*<r-1, such that f(t*) ≤ 1.  Thus,  )(kx  progressively decreases and the theorem is 

proved.           �  
 

5.0 Synthesis 
A basic synthesis development is given in this section. We shall assume that the system is 

governed by an infinite dimensional difference equation which has been derived from a differential-
difference equation. This assumption is made to insure that the norms of the matrices decrease in a suitable 
manner. 

The general approach will be to terminate the infinite dimensional series after its first term, 
reducing the equation to an ordinary linear difference equation.  Reduction equation we shall develop a 
linear control law which will facilitate a stability analysis of complete equation by means of the theorem 
discusses above. 
 Now, starting with the first terms on the right in (3.3), we obtain 
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    )()()( 00 kkk tutxtx ∆+Φ=+τ    (5.1) 

Assuming a linear control law for this reduced equation has been obtained, then )()( kk txctu = .  If this is 

substituted into (3.3), we have   )()(
0

ττ −=+ ∑
∞

=
k

i
ik txvtx    (5.2) 

where  cv iii ∆+Φ= .  Now, we apply the theorem to the matrices ;iv that is, find a norm such that 

1
0

<∑
∞

=i
iv .  Certainly, it would be fortunate if such a norm could be found for any control law. The 

choice of the control law should be made with this problem in mind. To achieve the desire result, let us for 
now assume that the performance index that we wish to minimize for the reduced system is 

1);()()((
0

0 >=∑
∞

=

ββ kk
i

k txtxtxJ     (5.3) 

It has been shown in the literature [9] that the linear control law which minimize J can be 

calculated from the following iteration: 1, <≤Φ rCr r
i  

 
 
 
 
(Iteration A) 

Ι+=+ NNNN SPSP β1 , NN cS 00 ∆+Φ= , [ ]00
1

00 Φ∆∆∆−= −
NNN PJPC , Ι=0P , 

)()( kk txctu ∞= is the desired control law. 

 
It is also known that the induced matrix norm to a vector norm defined as 

( ) 0;2
1

>Ρ= Pxxx  is the Euclidian matrix norm of 1TAT −  where PTT = .  By examining the 

equation for P∞  above, we observe that 111111 ))(( −−−
∞

−−
∞

− +=Ι= TTTTSTSTTPT β  

where ∞= PTT .  Thus, ( )TSTTT ∞
−−− −Ι= 111 β  = positive definite matrix.  However, roots 

[ ] 1AΙ −β = −β  roots (A).  Therefore, the induced norm S∞ is less than 1 β . However, S∞  is vo in 

(5.1). Thus, by choosing β  large enough, we can always find a control law such that the norm of vo is 

arbitrarily small. This is illustrated in Example 6.2 below, where we can expand the dimensionality of the 
state such that the norms of the remaining matrices in (5.1) become small.  Thus, it is possible to achieve a 
stable control system in a straight forward manner. 
 
6.0 Examples and results 
Example 6.1: Input Delay 
 Assume that we have the system  
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The sampled equation with u constant during a sampling interval, is as follows: 

( ) ( )22
1

1

)(
01

10

1 ππ −
















+
















−
=+ kkk tutxx  



Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 55 - 62 
Control of linear systems using pure time-delay  Bede Asuquo and Emmanuel Usah  J of NAMP 
 

If it is desired to achieve a deadbeat performance, that is, reduce )( 0tx → 0  in minimum time, we proceed 

as follows: 

[ ] [ ] )()(01)( 2
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The system will be returned to the origin in τ3=t . 
Example 6.2: State-Delay 
Consider a system governed by 
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πτ ==T .  The first six siΦ  and 1
is∆  calculated by their respective iteration are tabulated  

 
 
 
 
in Table 7.1. (All the others being zero to eight places).  We expand the dimensionality of x by defining  
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Using 2β = in the proposed performance index: 

P∞ Matrix 
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17.4841 13.0768 2.3796 0.5215 4.9132

13.0768 41.4109 3.8072 0.6420 23.4899

2.3796 3.8072 1.4952 .0169 1.9932

.5215 0.6420 .0169 1.0656 .6206

4.9132 23.4899 1.9952 .6206 16.3186

 
 − 
 
 − − 
 − 

 

C∞  Vector  

[ ].6827 1.1927 .0003 .1043 1.1060− − −  

The norms of the first 5 composite matrices (5.1) are (where the vector norm is :)1 xPx  

.7012 244 1 2

0706 351

0000 417

0000 000

0000 000

<

 

 
 
 
 
 
 
 
 
 
Table 7.1 
 

0 0

1 1

2 2

.7071 068 .7071 068 .0000 000

.7071 068 .7071 068 .0000 000

.1338 340 .0279 680 .2928 932

..0277 680 .0782 980 .7071 068

.0109 582 .0022 524 .0075 873

.0022 542 .0026 278 .0308 106

   
Φ = ∆ =   

   

   
Φ = ∆ =   −   

   
Φ = ∆ =  − −  

3 3

4 4

5 5

.0003 903 .0000 742 .0004 532

.0000 742 .0000 854 .0007 349

.0000 236 .0000 026 .0000 119

.0000 026 .0000 013 .0000 163

.0000 008 .0000 001 .0000 003

.0000 001 .0000 000 .0000 00




   
Φ = ∆ =   − −   

   
Φ = ∆ =   − − −   

 
Φ = ∆ = − −  2
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7.0 Conclusion 

A synthesis technique has been derived for control systems governed by linear differential-
difference equations. This technique is particularly suited for a digital computer because the procedure uses 
matrix iterations exclusively. 
 For a given control system, stability is usually the most important thing to be considered. If the 
system is linear and time invariant, criteria are available to include the reguiest stability and Routh’s 
stability. In this study our attention was focus on stability in the sense of Lypunoy. Finally, if the upper 
limit of integration in the performance index J given in (7) is finite, then it can be shown that the optimal 
control vector is still a linear function of the state variables, but with time-varying coefficients. Therefore, 
the determination of the control vector involves that of optimal time-varying matrices. 
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