Iterative methods involving composed operators of the accretive type

S. J. Aneke
Department of mathematics
University of Nigeria, Nsukka, Nigeria

Abstract

> In this paper, the equation $$
L u=f,
$$

where $L=A+B, A$ a K-positive definite operator, B an L-positive definite operator, is solved in a Banach space. An iterative scheme which converges to the unique solution of this equations is also constructed. Finally, a composed equation involving other operators of the accretive type is also solved in a Banach space.

Keywords: K-positive definite, Iteration, weakly contractive, accretive.

1.0 Introduction

Let H_{o} be a dense subspace of a Hilbert space, H. AN operator T with domain $D(T) \supseteq H_{o}$ is said to be continuously H_{0}-invertible if the range of $T, R(T)$ with T considered as an operator restricted to H_{o} is dense in H and T has a bounded inverse on $R(T)$. Let H be a complex and separable Hilbert space and A be a linear unbounded operator defined on a dense domain $D(A)$ in H with the property that there exist a continuously $D(A)$-invertible closed linear operator K with $D(A) \subseteq D(K)$, and a constant $\alpha>0$ such that

$$
\begin{equation*}
(A u, K u) \geq \alpha\|K u\|^{2}, u \in D(A) \tag{1.1}
\end{equation*}
$$

then A is called K-positive definite ($K p d$) (see e.g. [7]). If $K=1$ (the identity operator on H) inequality 1 reduces to $<A u, u>\geq \alpha\|K u\|^{2}$ and in this case A is called positive definite. Positive definite operators have been studied by various authors (see e.g. [2, 3, 4, 7]). It is clear that the class of K-pd operators contains among others, the class of positive definite operators and also contains the class of invertible operators (when $K=A$) as its subclass.

The class of K-positive definite operators was first studied by W.V. Petryshyn, who proved interalia, the following theorem, (see [7]).

Theorem \mathbf{P}

If A is K-pd operator and $D(A)=D(K)$, then there exists a constant $\alpha>0$ such that for all $u \in D(K)$

$$
\|A u\| \leq \alpha\|K u\|
$$

Furthermore, the operator A is closed, $R(A)=H$ and the equation $A u=f, f \in H$, has a unique solution. The author and C. E Chidume extended this result to different Banach spaces and obtained convergence results in different directions (see $[3,4]$). We proved, among others, the following theorem.

Theorem CA (see [4])

Journal of the Nigerian Association of Mathematical Physics Volume 12 (May, 2008), 29-32
Composed operators of the accretive type S. J. Aneke J of NAMP

Suppose X is a real uniformly smooth Banach space. Suppose A is an asymptotically K-positive
e-mail: syma@inforweb.abs.net, sylvanus_aneke@yahoo.com
definite operator defined in a neighborhood $U\left(x_{o}\right)$ of a real uniformly smooth Banach space, X. Define the sequence $\left\{x_{n}\right\}$ by $x_{0} \in U\left(x_{0}\right), x_{n+1}=x_{n}+r_{n}, n \geq 0, r_{n}=K^{-1} y-K^{-1} A x_{n}, y \in R(A)$. Then x_{n} converges strongly to the unique solution of $A x=y \in U\left(x_{0}\right)$.

The present paper looks at a composed operators of the K-pd and also of the K-pd and the weakly contractive map. It is shown that each of the composed equations has a unique solution. Furthermore, an iterative scheme that converges to the unique solution of the equation $L u=f$, where $L=A+B$ is constructed.

2.0 Preliminaries

For a Banach space X we shall denote by J the duality mapping from X to $2^{x^{*}}$ given by

$$
J x=\left\{f \in X^{*}:<x, f>=\|x\|^{2}=\|f\|^{2}\right\}
$$

where X^{*} denotes the dual space of X and $\langle,>$ denotes the generalized duality pairing. It is well known that if X^{*} is strictly convex then J is single valued and if X^{*} is uniformly smooth (equivalently if X^{*} is uniformly convex) then J is uniformly continuous on bounded subsets of X^{*} (see e.g. [6]). We shall denote the single valued duality mapping by j. Thus, by a single-valued normalized duality mapping we shall mean a mapping $j: X \rightarrow X^{*}$ such that for each $x \in X, j(x)$ is an element of $X *$ which satisfies the following two conditions:

$$
<x, j(x)>=\|j(x)\|\|x\|,\|j(x)\|=\|x\| .
$$

Lemma 2.1 (see e.g. [6]
Let X be a real Banach space and let J be the normalized duality map on X. Then for any given $x, y \in X$, the following inequality holds:

$$
\|x+y\|^{2} \leq\|x\|^{2}+2<y, j(x+y)>\quad \forall j(x+y) \in J(x+y)
$$

Definition 2.2

Let X be a Banach space and let A be a linear unbounded operator defined on a dense domain. $D(A) \in X$. An operator A will be called K-positive definite (kpd) if there exist a continuously $\mathrm{D}(\mathrm{A})-$ invertible closed linear operator K with $D(A) \subseteq D(K)$, and a constant $c \geq 0$ such that for $j \in J(K u)$,

$$
<A u, j(K u)>\geq c\|K u\|^{2}, u \in D(A) .
$$

Definition 2.3

A mapping T with domain $D(T)$ and range $R(T)$ in X is called weakly contractive if there exists a continuous and nondecreasing function $\phi:[0, \infty]:=R^{+} \rightarrow R^{+}$such that ϕ is positive on $R^{+}-0, \phi(0)=0, \lim _{t \rightarrow 0} \phi(t)=\infty$ and for $x, y \in D(t)$ there exists $j(x-y) \in J(x-y)$ such that

$$
\|T x-T y\| \leq\|x-y\|-\phi(\|x-y\|)
$$

It is called d-weakly contractive if

$$
|<T x-T y, j(x-y)>| \leq\|x-y\|^{2}-\phi(\|x-y\|)
$$

The weakly contractive and d-weakly contractive operators were first studied by Alber and GuerreDelabriere [1].

3.0 Main results

We establish the following results: 1. Let A be K-pd, i.e. there exists a continuously $\mathrm{D}(\mathrm{K})-$ invertible closed operator K and a constant α :

$$
<A u, K u>\geq \alpha\|K u\|^{2}, u \in D(A)
$$

Let B be L-pd, then there exist L and β such that $B u, L u>\geq \beta\|L u\|^{2}$;

$$
\begin{aligned}
<(A+B) u,(K+L) u & >=<A u, K u>+<A u, L u>+<B u, K u>+<B u, L u> \\
& \geq \alpha\|K u\|^{2}+<A u, L u>+<B u, K u>+\beta\|L u\|^{2} \\
& \geq \alpha\|K u\|^{2}+\beta\|L u\|^{2} \quad \text { provide } \quad A \perp L, B \perp K \\
& \geq \min (\alpha, \beta)\|(K+L)\|^{2}, \text { if } K \perp L .
\end{aligned}
$$

Thus, $A+B$ is $(K+L)$ - positive definite provided the following orthogonality conditions hold:

$$
A \perp L, \quad B \perp K \text { and } K \perp L
$$

Theorem 3.1

Let X be a real separable strictly convex Banach space and let A be a K-pd operator, B and L-pd operator with domain $D(A) \cup D(B)=D(K) \cup D(L)$. Then there is a constant $\theta \geq 0$ such that

$$
\|(A+B) u\| \leq \theta\|(K+L) u\|
$$

Furthermore, the equation

$$
(A+B) u=f
$$

has a unique solution.

Proof:

Let $P=A+B, Q=K+L$. We take $D(P)=D(A) Y D(B) D(Q)=D(K) Y D(L)$
Then

$$
D(Q) \supseteq D(K) \supseteq D(L)
$$

We introduce in $D(Q)$ a new inner product and norm defined respectively by:

$$
[u, v]_{0}=<Q u, Q v>=<(K+L) u,(K+L) v>;|u|_{0}=\|Q u\|_{0}
$$

Clearly P is closed since addition is continuous.
Also P is invertible (same reason). $R(Q) \supseteq R(K) \Rightarrow R(Q)$ is dense in $H . \quad K$ is continuously $\mathrm{D}(\mathrm{A})$ invertible; L is continuously $D(B)$ invertible. This implies $\mathrm{K}+\mathrm{L}$ is continuously invertible in $R(K) \cup R(L)$. The rest of the proof follows as in theorem P , to establish that $L u=f$ has a unique solution. In the next result, we construct an iteration process which converges strongly to the unique solution of the equation $L u=f$ in a Banach space. This result generalizes all others (see e.g. [3, 4, 7]).

Theorem 3.2

Suppose X is a real Banach space and $A \mid D(A) \subseteq X \rightarrow X$ is a K-pd operator; $B \mid D(B) \subseteq X \rightarrow X$ is an L-pd operator with

$$
D(A) \cup D(B)=D(K) \cup D(L)=R(K) \cup R(L)
$$

Define the sequence u_{n} by $u_{o} \in D(A), u_{n+1}=u_{n}+r_{n}, n \geq 0 . \quad r_{n}=Q^{-1} f-Q^{-1} P x_{n}$, where $P=A+B, Q=K+L ; f \in R(K+L)$. Then u_{n} converges strongly to the unique solution of $p u=f, P=A+B$.
Proof:
Clearly $P=A+B$ and $Q=K+L$ are invertible.

$$
Q r_{n}=f-P x_{n}
$$

$$
\begin{aligned}
& Q r_{n+1}=f-P\left(x_{n+1}\right)=Q r_{n}-\operatorname{Pr}_{n} \\
& \begin{aligned}
\left\|Q r_{n+1}\right\|^{2} & =\left\|Q r_{n}-\operatorname{Pr}_{n}\right\|^{2}=\left\|Q r_{n}\right\|^{2}-2 \pi \operatorname{Pr}_{n} j\left(Q r_{n}-\operatorname{Pr}_{n}\right) \phi(\text { by Lemma 2.1) } \\
& \leq\left\|Q r_{n}\right\|^{2}-2 \pi Q r_{n}, j\left(Q r_{n+1}\right) \phi \\
& \leq\left\|Q r_{n+1}\right\|^{2}-2 \gamma\left\|Q r_{n+1}\right\|^{2} .
\end{aligned}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& (1+2 \gamma)\left\|Q r_{n+1}\right\|^{2} \leq\left\|Q r_{n}\right\|^{2} \\
& \left\|Q r_{n+1}\right\|^{2} \leq(1+2 \gamma)^{-1}\left\|Q r_{n}\right\|^{2}
\end{aligned}
$$

It follows that the sequence $\left\{Q r_{n}\right\}$ is monotonically decreasing, and hence it converges to a real number $\delta>0$. Since Q has a bounded inverse, then $r_{n} \rightarrow 0$ and thus $Q x_{n} \rightarrow f$, i.e., $(A+B) x_{n} \rightarrow f$ or $x_{n} \rightarrow Q^{-1} f$, the unique solution of the equation $Q u=(A+B) u=f$.

In the next section we study some composed operators involving the K-pad and some accretive type operators such as the weakly contractive, (see [3, 4, 7] for detailed study of these class of operators and consequent convergent results proved. In particular, we show that a composed equation involving the weakly contractive and the K-pd has a unique solution.

Theorem 3.3

Let A be a K-pd operator equation and B a weakly contractive operator. Then the equation

$$
B A u=f, f \in X
$$

has a unique solution.
Proof A satisfies:

$$
A u, j(K u)>\geq \alpha\|K u\|^{2}
$$

and B satisfies the following inequalities:

$$
\|B x-B y\| \leq\|x-y\|-\phi(\| x-y) \|,
$$

where ϕ is as defined above.

$$
\begin{aligned}
\|B A x-B A y\| & \leq\|A x-A y\|-\phi(\|A x-A y\|) \\
& =\|A u\|-\phi(\|A u\|) \\
& \leq \alpha\|K u\|-\phi(\|A u\|) \\
& \leq \alpha\|K u\|
\end{aligned}
$$

It follows that the convergence of $\{k u\}$ implies that of $\{B A u\}$. But K is continuously invertible. Hence as in [7] $B A u=f$ has a unique solution.

References

[1] On the projection methods for fixed point problems, Analysis 21 (2001, 17-39).
[2] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-288.
[3] C. E. Chidume and S. J. Aneke, Existence, uniqueness and approximation of a solution for a K-positive definite operator equations, Appl. Anal. 50 (1993), 285-294.
[4] C. E. Chidume and S. J. Aneke, A local approximation method for the solution K-positive definite operator equations, Bull. Korean. Math. Soc. 40 (2003), 603-611.
[5] C. E. Chidume and S. J. Aneke and H. Zegeye, Approximations of fixed points of weakly contractive Nonself maps in Banach spaces, J. Math. Anal. 270 (2002), 189 - 199.
[6] J. Lindenstrauss. L. Tzafriri, Classical Banach spaces II, Springer Verlag, Belin-Heidelber, New York, 1979.
[7] W. V. Petryshyn, Direct and iterative methods for the solution of linear operator equations in Hilbert spaces, Trans. Amer. Math. Soc. 105 (1962), 136-175.

