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Abstract

We determinethe precise order of B* (G),for G=1,G ,a

bounded abelian 2-group, where G; isa direct sum of r copies of a cyclic
group of order 2". Thecasesr = 1 and r =k, for some natural number k, are
respectively considered in this paper.

MSC: 05A10; 05A15; 15A03; 15A12; 19A49; 13D15; 2AKA1N13.

1.0 Introduction

The mathematical motivation for this paper is afofvs: LetG be a finite group, the Burnside
ring B(G) of G, as introduced by L. Solomon [6] is the Grothenkligroup of the category of fini@-sets
with multiplication given by direct product. Tamni@m Dieck in [1] constructed congruences between
fixed point numbers to determine the order of umitsBurnside rings of various finite groups while
Matsuda introduced the structure matrix method é@tewiine the order of units of Burnside rings for
various finite groups with many normal subgroup®ur principal aim is to prove the following. Let

G= C2n , the cyclic group of ordeR", N> 1, then we show that the precise order of unit grotits

Burnside ring is 2 and more generally, whefs := %221%9?”2[][{(4[]4%}“ , the abelian 2-group of
r—times

exponent 2and rank r > 1,n = 1 and it is considered, then we obtain the preaideroof unit group of its

corresponding Burnside ring to 2 . More precisely, using the congruence methodtdueom Dieck
we proved first the following result: (see notasdrelow)
Theorem 1.1

LetG:=C,, and H; <G with1:=H, <H, <K <H_ =G. Lety(H,){£l}
for i = OLA ,n—1, then
VH) +y(Hi) +20(H ) +K + 277 (H ) +K +2772 (H ) + 277 (H ) 00(2™)
forall i =0, LK ,n-21ifandonlyify(H,) = y(H,) =K =p(H, ) =%xy(H,).
Remark 1.2
Theorem 1.1 implies thdtB* (G) |= 2° Finally, using Matsuda’s approach, we proved theféng:

Theorem 1.3
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Let G=C 0OC OA OC.., k a natural number greater than 1, then we have
T4 N s g
k-times

|B*(G) |5 2*
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Notes on Notations

In this paper we use the following notations:

1 the unite element of G

(H) the conjugacy class of a subgroup H of G
Sub(G) the set of cojugacy classes of all subgrofi

For a G-sets X and for eack[] X , the set
G, ={gUG|gx=x} is the isotropy subgroup at a point x of a G-set X

X ¢ ={xOX | gx=x OgOG} is the set of fixed points of a G-set X

[X| is the cardinal number of a set X.

[X] is the element of B(G) represented by a fiGtset X,
1) is the unite element [point] of B(G),

N(F) is the normalize of a subgroup F of G in G,

R is the unit group of a ring R,

Z is the ring of rational integers,

Z,is the set {1 - -1},

Z, is the set {0, -2}.

2.0 Preliminaries

The following is a summary for the reader’s conigane of elementary facts about the Burnside
ring of a finite group and its units which will hesed in the sequel, most of which are standardriakte
taken directly from Matsuda [3] and are stated auithproof;
Theorem 2.1 [5]

Let G be a finite group and(8) the Burnside ring of G. Then we have the follgwin
[1] B(G) is a commutative ring and a freeZ-module generated by the set

{{G/F]|(F)OSuG)}.
2] Let yp :B(G) > Zbe a map defined by y.([G/H]) =|(G/H)" |, where
(H),(F)OSulG). Theny is a ring homomorphism. Moreover,
y=_ [ 8G) -z
(F)DsuyG)

is an injective ring homomorphism
[3] For each finite G-set X, [X] has the following regentation in B(G).

[X1= 2 (eysue Ae[G/ Fl, whereA. {x|x0OX and (G,) = (F)}} I/|G/F |,

] For an elementy [ B(G), the following three statements are equivalent:
0 a0BO(G)
(ii) a’® =1y

iy  yor0z>He)
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Theorem 2.2 [1]
The Burnside ring B(G) can be viewed as a subrinf Map(Sub(G), Z), where
y OMap(sul(G), Z) is contained in B(G) if and only if

STIN(H)/N(H) n N(K)|[K/H*| p((K)) 00 mod| N(H)/H | for all (H)SukG),
(K)
where the sum is over N(H)-conjugate classes (kh $bhat H is normal in K and K/H is cyclic, and K/H
is the set of generators of K/H.
Definition 2.3:

A subsetS of SUHG) is called a basic subsetS3fatisfies the following two conditions:

(i) GOS,<1>0S and, for(H)OS,H is a normal subgroup @.

(ii) If (H ),(F)D S, then (H [F),(H | F)D Swhere H [F is a subgroup o6 generated by
andF. Now, for eachH # G in'S, put
S(H) ={(F)OSuUdG)|F OH,andH =H'if FOH'OHandH'OS}
a non-empty set. Next, define a partial ordeSait(G) by setting(K)< (P) if K is conjugate irG to a
subgroup oP. Further, define with respect to this partialerd bijection
t(S(H)): S(H) - {1K ,| S(H) [}
satisfying
(K)£(P) if t(S(H)) ((K))<t(S(H)) ((P)).

Finally, we have the following theorem:
Theorem 2.4 [5]
Let S be a basic subset of Sub(G). Then we have

1B(GY) = 2{[T] ryser | M sy (265 )1 2560,
where M5y =(@;; (t(S(H)))) = (V- ([G/K])) is the | S(H ) [x| S(H)| structure matrix of

B(G) overS(H) subordinate ta(S(H)) and wheret(S(H)) ((P))=j and t(S(H)) ((K)) =i.
Theorem 2.5 [5]
Let SulfG) be the set of conjugate classes of all subgrougs, tfien we have

SOl 2,5

where M is the |Sub(G)k |Sub(G)| structure matrix of B(G) over Sub(G) sulimate to a bijection t
defined on Sub(G).
Theorem 2.6 [5]

If G is a finite abelian group, then we hajg#(G)|= 2™, where m =|{H|H is a subgroup of G
with |G/H| = 2}].
Theorem 2.7 [1]

If G is a finite group of odd order, then we hdBYyG)| = 2.

3.0 Units of Burnside ring of Abelian 2-group of exponent2and rank 1
Lemma 3.1 A
Let[G:1] = 2" then we have for each unique subgroypHs,[G : H] = 2".
Proof:
This is trivial asG is cyclic.
Lemma 3.2

Let a denote a generator of G and puyt:= a® ! so that
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Ho=<a,> H,=<a; > j#0,j=12K,n
with l:=<a, ><<ag, ><K =<a, >=<a>=G.
Then we have the following list of distinct conjugalasses

SulG) ={{ <a, >}, {<a, >}, K,{<a, >}}.

Proof:
This is trivial because for alj, N (< a; >) =G.
Lemma 3.3
Let A be set of generators dfl, ,i = 0,1,2,K n, then we have
|A LA FLK JA, [F27 and| A 2"
Proof:

Let g be an arbitrary element &, theng = & for all k. It also follows from above lemma that

<g> = H; for somej, that < a“>=<a® ! >. So we can rewrite each membeiSak{G) in terms of its
set of generators in the following way:

e
)
M

= {az, A ae, a2n—1}
A = {a' A a2n—3,a2n—1}

<

Ay
A
M
A

and hence the result follows.
Now, since| N(H)/ N(H) n N(K)| =1 in this case, applying Theorem 2.2 we obtain the
congruences

y(Hy) + y(H,) +2y(H,) +4y(H;) +K 2n_2y(Hn—1) +2n_1y(G) 002"
y(H,) + y(H,) + 2)(H3) +K 2" p(H, ) +K 2"?(G) 0 0(2"™)
M M K M M M M M
y(H.o)+ ¥G) 0O 0@
Theorem 3.4
Let y(H,)O{£D for i =0,K ,n—1then
y(Hi)+y(Hi+1)+2y(Hi+2)+/\ +2j_1y(Hi+j)+/\ +2n_i_2y(Hn—l)+2n_i_ly(Hn)DO(Zn_i)
forall i = 0,L,K n=1ifandonlyify(H,) =y(H,) =K =y(H, ) =% y(H,)

Proof
To see 1" is easy, since

YH )+ AH L)+ 2/H L) +A + 2772 (H, L) =277 )(H,)
and by assumption we must have that
y(H) + y(Hp) +2)(H,,,) +K #2777 p(H ) D0@2"™) for alli.

To see “=" w use induction om — .

Journal of the Nigerian Association of Mathematical Physics Volume 12(May, 2008) 23 - 28
Precise order of some finite Abelian groups Michal EniOluwafe J of NAMP



For n—i=0=1i=n itis easy to see that(H,) = y(H,). Similarly fori=n-1. Now
assume that the induction hypothesis is trud fé —1, that is,n—i >1, so that we have
yO = V(Hi+1) = y(Hi+2) =N\ = V(Hn—l) = iy(Hn)'
Then we obtain by hypothesis
y(H)+ (@7 =Dy 22" y(H,) 00(2™")

This implies, y(H,) + 2““‘1(yoiy(Hn))— ¥, 00(2"™")
But since (yoi y(Hn)) is either 0 or £2 we get that 2" (), = ){H,)) DO(Zn_i) and
y(Hi)— Yo DO(Z'H) also sincél —1 @1, y(Hi)Z{i ]}, Yo :{il} we cannot get that 1 —1(4)

for instance, so it follows thza;t/(Hi ) =), and the proof is complete.

Remark 3.5
The above theorem 3.4 implies tH&t(G)|= 2

4.0 Units of Burnside ring of Abelian 2-group of exponent™and rank r > 1
Lemma4.1

= 0K 0 n=>1 <G. =
Let G EzﬂqCéF"Z 1(4 4C3n and H £ G. Then the number of G/H such that |G/H|

r-times

2is2r-1

Proof:
Let ?éf Ezzl-|:|4 2n4D 4D4C3n r¢1,n>1 and H a subgroup G of ord@" ", then we
r—times
define a subgroup base fidras (I’ —1), r-tuples generatingl. This can be represented (’{s— 1)-rows of
I X1 -matrix whose rows genera@ Now, letC, :=Tta @, then we can choose the following number
of r subgroup bases, for eathof G and through each subgroup base, the number oic ayabtients
satisfying|G/ H= 2| is determined. Thus, the precise number distinct subgroup bases, for edgh

of G is determined from the following set.
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a2 1 1A 11 1N(a& 1A 11 1YalgANAh 111
1 a1A 1111172 1A 111]|lagAh1l111
1 1aA 111112 12 aANn 11 1](t1a&ANA111
MMMO MMM MM MO MMM/MMMO MMM,..
1 11A a11/l/1 1 1 AN allj|11 1 AN allil
1 11A 1 a1/l 1 1 AN 1 alj|jl111AN1al1l
1 1 1A 11a/l 1 1 AN 11a/{111A11a
allK O 11(al11K 10 1)(a 11K 11 0O
1 alK 0O 11/|1 a1l K 1 0, 1/|1 a1 K 11 0O
1 1aK 0O 11||1 1 aK 1 0, 1/ |1 1 aK 1 1 0
MM MOM MM,/M MMO M M M|,|M MMO MM M |},
1 1 1K a® 11|11 1 1K a 0O, 1|1 1 1K a 1 0O,
1 1 1K 1 a1l1lf|1 1 1K 1 a*1/ |1 1 1K 1 a 0
1 1 1K 1 1ajl1 1 1K 1 1 a)l1 1 1K 1 1 a°

where J,[0{a'}, 0<| <1 We obtain a total sum of number of cyclic quotiefttem the above
distinct subgroup bases, for eddtof G as:
1+2+22 +K +2r—3 +2r—2 +2r—1,
which yields the formula:
2" -1, and any integer >1
Finally, the main result of this paper counts thenber of factor groups of order 2 in abelian

group G in order to write down the order @&*(G) by Matsuda’s Theorem is seen in the following
Theorem 4.2.

0K O >1 nz1 *(G)|F2*
LetG:= %Zﬂchl?244 C r>1, n=1 then we havg¢ B* (G)|=2

r-times
Proof:
This follows from Lemma 4.1, and from Matsuda’s &tem.

5.0 Conclusion
It is desirable to generalize the computation®8dfG), G a cyclic group of order "2to more
general cyclic groups, or more generally to fimigotent and solvable groups of even order.
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