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Abstract 

 Outliers in time series, depending on their nature may have a 
moderate to significant impact on the effectiveness of the standard 
methodology for time series analysis with respect to model identification, 
estimation and forecasting.  The suggested procedure used for identifying the 
outliers graphically in time series data was investigated by considering the 
influence function for the inverse autocorrelation function (IACF).  Form the 
findings, it was noticed that for large series the influence was almost positive 
in values while for relatively short series the large negative influence are 
noticeable.  The model order determination technique was also proposed. 
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1.0 Introduction 
 Time series data are often subject to uncontrolled or unexpected interventions from which various 
types of outlying observations are produced.  An outlying observation is one that appears to deviate 
markedly from the other members of the sample in which it occurs.  Outliers can take several forms in 
time series.  Fox (1972) [10] proposed the formal definitions and a classification of outliers in time series 
context.  He proposed a classification of time series outliers to type I and type II.  These two types have 
later been renamed as additive and innovational outliers. For a properly deduced stationary process, let Xt 
be the observed series and Zt be the outlier-free series.  Consider a familiar time series model. 
   1)( azB t =Π        (1.1) 

where L−Π−=Π 2
211)( BBzB  . 

{ αt} is a sequence of independently distributed normal variables with zero mean and variance σ2.  The 
function Π(B) is often expressed as a ratio of  

)(

)(

B

B

ϑ
φ

 

where  
ρ

ρφφφ BBB L11)( −=   

and qBqBB θθθ −−−= L11)(  

 
 



Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 627 - 634 
Influence function using the inverse autocorrelation function N. P. Olewuezi J. of NAMP 

are stationary and invertible operators sharing no common factors.  The models commonly employed on 
the outlier-free time series Zt are the additive outlier (AO) and the innovational outlier (IO) which are 
defined respectively of a single outlier for a simple cases as 
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where xt is the observed series, D is the magnitude of the outlier and 1)( =T
tDξ , if t = T  and 0 otherwise, 

which is the time indicator signifying the time occurrence of the outlier. 
 In general, the presence of more than one outlier of various types in a model is specified by 
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at time t = Tk and n is the number of outliers. 
 Fox (1972) [10] made no methodological proposals to distinguish between the two basic types of 
outliers.  This is remedied in the work of Muirhead (1986) [13] who presents a text of discordancy for a 
single outlier of unknown type and proceeds to examine the properties of an appealing likelihood–ratio 
based rule for distinguishing whether the outlier is of AO or IO type.  He also compares this rule with 
corresponding Bayesian procedure.  When the timing and type of an outlier are unknown, Abraham and 
Box (1979) [1] proposed a Bayesian approach, Martin (1980) 9[12], robust method and Chang and Tiao 
(1983) [4] an iterative procedure for resolving the estimation problem.  An empirical study of the 
detection of outliers in time series of body temperature of cows is described by de Alba and Zartman 
(1980) [9].  They employ a model similar to that used by Stoodley and Mimia (1979) but incorporated the 
specific prospect of innovational outliers.  Shangodoyin (1993) [16] found out that the estimates of the 
magnitude of outliers for additive model favoured the comments of Cook (1979) [8] on the sequential 
deletion of outliers and residual correlations. 
 
2.0 Inverse autocorrelation function (IACF) 
 Cleveland (1972) [7] introduced the concept of the IACF.  He defined the inverse 
autocovariances as the associated with the inverse of the spectral density of the series which Parzen 
(1974) [14] called the inverse spectral density.  That is, let for the discrete stationary process {Xt}, 
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be integrable on the interval (0, 1).  The inverse autocovariances of { Xt}, are defined by 
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The inverse autocorrelations are defined by .,1,0,
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As suggested by Clevenland (1972) [7] the two methods of estimating the IACF stem from either the 
autoregressive method or the window method.  Chatfield (1979) [5] gave the time domain definition of 
the IACF.  Olewuezi and Shangodoyin (2005) [15] derived an orthogonal relationship between 
Autocorrelation function (ACF) and IACF and defined the inverse autocovariance function at lag k by 
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where γk is the autocovariance functions at lag k and γ0 is the variance of the process. 
 The IACF of a time series are useful at the identification stage of model building. In practice this 
quantity must be estimated from the data.  The IACF of an Autoregressive (AR) process cuts off at lag k.  
It turns out that IACF has similar properties to the Partial Autocorrelation function (PACF). 
 
3.0 The influence function 
 This is a convenient tool for studying both outlier and robust estimation.  An influence function 
for an estimate is the result of an infinitesimal change in the weight given to an observation in the 
theoretical distribution function.  It depends on the parameters being estimated, the observation vector 
whose influence is measured and the distribution function of that observation vector. The parameter θ can 
be expressed as a function of the distribution function F and is written as T(F).  The influence function as 
defined by Hampel (1974) [11] is given by  
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is the point of interest in the observation space, ∈ is a position number and σx is the distribution function 
that has all its probability mass concentrated at the point x. 
 Chernick et al (1982) [6] comment that outliers (of unspecified type) can seriously distort 
estimates of autocorrelations is stationary time series.  They considered a discrete time series x1, x2, …xn 
choosing a fixed number m of lags (with m much smaller than n), we are advised to consider an nxm 
matrix  

 { }),)((, kjj yykHI +ρ  

where yi is the standardized observation σµ)( −ix (with µ and σ the mean and standard deviation of xi 

independent of yi and I(.) is the influence function, which the authors show to have the simple form. 
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Using the result employed by Shangodoyin (1993) in his study of the influence function of the 
autocorrelation function and with the transformation of the kji yy +  to the Gaussian processes 
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and so    2,,1,,)(21),(),(, kjUkjUkkjyjykHI 




 −=+ ρρ    (3.2) 

are the influence function matrix of the autocorrelation function.  Extending further, the similarity 
between ACF and IACF as model identification tolls, equation (3.2) becomes 
    2,,1,,)(21),(),(, kjUkjUkikjyjykiHI 





 −=+ ρρ    (3.3) 

where   ( ) ( ) )(1)(1
2
1

1,, kkjyjykkjyjykjU ρρ −+−−+++=  

and   ( ) ( ) )(1)(1
2
1

2,, kkjyjykkjyjykjU ρρ −+−−+++=  

 Hence, for a stationary Gaussian process with µ, σ and ρI (k) all known, 1,,kjU  and 2,,kjU  are 

observations from independent standard normal distributions.  The quantity  ),(),(, kjyjykiHI +ρ   has 

the distribution of a constant times a product of standard normal  
random variables.  This distribution can be used to determine what values for the influence function 
would be unusually large for a realization from a stationary Gaussian process.  Since yi’s are Gaussian, 
then the distribution of the influence function depends on ρi(k). 
 
4.0 Detection procedure 
 To investigate the effect of outliers on times series data we investigate the performance of the 
estimate used in equation (7) based on the standard error, 
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Let n be the number of observations and k be a fixed number of lags with k considerably less than n and 
we consider an n x n k matrix with the (j, k) entry given by  ),(),(, kjji yykHI +ρ  where yi is the jth 

standard observation. 
 The observation yj which is an outlier have drastic effects on estimates of the correlation 
coefficients which influences several lagged autocorrelation estimates.  Chernick et al (1982) [6] 
proposed that yj appears in the computation of every element in the jth row and also in the diagonal 
elements of the proceeding rows beginning in Column I of row j - I and proceeding up to the  right.  An 
outlier will often have a very large positive or negative influence on each estimate of correlation.  If all 
the elements in the jth row and the above diagonal are large in absolute value, this will indicate that the 
jth observation is probably an outlier.  To clearly see the patterns in the influence function matrix, they 
proposed choosing a critical value.  Influence function estimates exceeding this critical value in absolute 
value are designated plus (+) or minus (-) depending on the sign of the estimate.  Other observations are 
left blank.  The matrix will then appear with patterns of +s and –s and the cloths–pin effect should be 
evident to the eye.  Thus lags (k) with the highest number of blanks and for which ρi(k + 1) cuts off are 
the possible order of the model.  If ρi(k) cuts off after lag (k) it indicates that the process satisfies an 
Autoregressive (AR) model of order k. 
 
5.0 Illustration 
 The influence function matrix (IFM) as described above was applied to three sets of data.  Results 
of the analysis of the series are presented and influence function matrices of the series are given.  Series A 
is the Stack – loss data [Brownlee (1965) [3]].  Series B is the Gas furnace data [Box and Jenkins (1976) 
[2]].  Series C is the Nigerian composite consumer prince index monthly series from January 1988 to 
December 19991. 
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5.1 Series A 
 The IFM for the IACF is shown in Table 1 which gives large values in rows 3 and 17 which 
indicates that observations at these points are possible outliers.  The IFM also suggest that cut off takes 
place only after lag I.  Hence from our procedure an AR of order I will be suitable for this series when 
outliers at the third and seventeenth positions have been screened out. 
5.2 Series B 
 The IFM for this series is shown in Table 2 which indicates that there are large values in rows 9 
and 11 and by our procedure it shows that these observations are possible outliers.  The proposed 
procedure identified an Autoregressive moving average (ARMA) model of order (1, 1). 
5.3 Series C 
 The IFM is shown in Table 3 which gives large positive values in rows 1 – 6, 20 – 22 and 39 – 46 
which indicates 20 outlying observations. There are cut off after lag 1.  Hence an AR(1) was identified. 
 

Table 1: IFM for Series A (Inverse Autocorrelation) 
 

Lag Time 1 2 3 4 5 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

+ 
- 
- 
 
 
 
 
- 
 
- 
 

+ 
 
 
- 
 

+ 

- 
 
- 
 
 
 
 
 
 
 
 
 
- 
 
 
 
- 

 
 

+ 
 
 
 

+ 
 
 
 
 
 
 
 
 
 

+ 
 
 
 
- 

 
 
- 
 
 
 
- 
 
 
 
 
 
- 
 
 
 
- 
 
+ 
 
 

 
 
 
 
 
 
 
 
 
 
 
+ 
 
 
 
 
- 
 
 
 
- 

 
Table 2: IFM for Series B (Inverse Autocorrelation) 

 
Lag Time 1 2 3 4 5 
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Lag Time 1 2 3 4 5 
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Table 3: IFM for Series A (Inverse Autocorrelation) 

 
Lag Time 1 2 3 4 5 
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6.0 Results and conclusion 
 From the results, the influence functions that are left blank indicate low influence functions of 
observations while the influence functions estimated and exceeding the chosen critical value  (in 
magnitude) are designated plus (+) or minus (-) depending on the sign of the estimates.  It was noticed 
that for large series (n ≥ 30) the influences are almost positive in values while for relatively short series, 
large negative influences are noticeable.  It was also  
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noticed that since it is not unusual that the values of the IACF, particularly at lower lags, are small so the 
lag with smaller influence could be regarded as the possible order of the model if the value of the IACF is 
significant at this point which also depends on the nature of plot of the IACF. 
 The influence function approach should be extended to other methods like Extended Sample 
Autocorrelation function (ESACF) and the Inverse Partial Autocorrelation function (IPACF) because it is 
appropriate to say that model identification is both a science and an art.  One should not use one method 
to the exclusion of others. 
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