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Abstract

In this study, the model of interest is that of a rational distributed lag
function Y on X plus an independent Autoregressive Moving Average (ARMA)
model. To investigate the model structure relating X and Y we considered the
inverse cross correlation function for the observed and residual seriesin the
presence of outliers. A two stage identification procedure is presented which
involves fitting univariate time series model to each series and identifying a
dynamic shock model relating the two univariate model series. The models so
far obtained were combined to identify a dynamic regression model, which
were fitted in the usual ways. From our findings, there was a reduction in the
error variance of the final model with the outlier free stationary series which
isan indication that the two-stage procedureisreliable and efficient.

Keywords: dynamic shock model, inverse cross correlatiompmat distributed lag
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1.0 Introduction
In identifying regression models relating two time series, a methoddagiyaduced. If it is felt

that X leadsY, then one may attempt to build a dynamic regression modéhgetae two series. By a
dynamic regression model or distributed lag model we mean @ss2gn ofy;, y at timet, on the present
and past values, x(s<t). The model form of primary interest is thatyadn x plus an independent noise
term of the general mixed autoregressive moving aveygge tTo identify the relationship between the
two seriesX andY, Haugh and Box (1977) [5] characterized each of their uaitearnodels separately
and the relationship between the two univariate residual seingsgdeach time series. At the first stage,
an autoregressive integrated moving average processeaieardéd each oKX andY series. The residual
seriesU, andU, from these fits are then inverse cross correlaﬁggu y thereby identifying a tentative

dynamic shock model which relatdgto U,. By recombining the two univariate models ¥oandY with

the identified model connecting, andU, a distributed lag model relating X to Y may be identified, fitted

and checked using the methodology by Box and Jenkins (1970) [1]. This method can be used for both the
outlier free (OF) and outlier contaminated (OC) series andatlying observations found are removed
accordingly.
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20 Theinversecross-correlation estimator

H ¢ =50 O +k—#4y)]
ox0y

and o denote the mean and standard deviation. Metand y» be stationary series such that

The cross-correlation functign,(-) at lagk is defined asoxy(k) = where u
E(yjt ) =Hj, (j=212) andVar(yjt) =Vj :ajz(j =12). Then the cross covariance betwggandy,,
_x is defined asCov(y]I Yoi_k) = E[y]I y2t_k]—,ul,u2 :ylz(k). Oluwuezi and Shangodoyin

(2005) [6] defined the inverse auto-covariance function at &gy

s (1) 2
yK=27 Y [—j 1 sin2sk 2.1)
k=—o K Vi
which was expressed as
72}/”2 k=0
vicky=1 %

4m'y [1}[1]sin 27, k%0
j=1 Yk
where Vi is the auto-covariance function at lag k am@l is the variance of the process. The inverse

. K
cross correlation function is given ln( (K :}Ll_L—g(z) =2;—72 +47D T SIN/K, Whererk :W.
12 0 12¥V7172

3.0 Theinverseco-variance structure
Let X andY be jointly covariance stationary time series. For any additiveeostiries we have
Xt =V(B)Ux +a &)
.
YW(BU y, +srél’)

where g and g are the estimates of the outliers at tife= t, for the two series respectively. From
equation (3.1), the inverse covariance structureXofnd Y defined since the innovations of the
specification X, Y;) are independent may be written as

Vi, 0 =VE2 Y, (0 +ria ()
Hy () =W(B)* Uiy () + 115 (K) (32)

(3.1)

Yixy =V BW(B)iuyuy * Vias (k)

where
Vu,(K)=0for all k#0; j=xy

Y., ) =0 forall k=0

y() existsfor all t =T and zero

Otherwise, using equation (2.1), the inverse covariance structures become
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2 .
, - 2| 21 ® sin27k |
k) =V (B +47 Yy ———+ k
Vix (K) (B) { Vo =1 KVux (K) Via ( )}

2 0 o
2| 2 sin 27K
v (K) =W (B + 4 +yig (kK
Viy (K) (B) { Yo =1 kray (K) vig( )]
© 27K
and Vi (K) -V(B)W(B){ ary ST ) yﬂ,;(k)}
Hence the inverse cross correlation estimator is derlved as
0ip(K) = i+4ﬂZTk sin27k
0
where T, :#
ky:l.20-10-2

4.0 Ildentification of thejoint univariate model
Using Haugh L.D. and Box G.E.P. (1977) approach we define for the OF white noise process

Ut =X =u e

Ux(B) Uxy(B)
U(B)=
Uyx(B) Uy(B)

We define U,(B)=6;(B) g (B)™
and U, (B)=6,(B) ¢,(B)™
for j1=x,yand6,,(0) =0

At negative lags when no significant inverse cross cdivelaccurs betweebl, and Uylwe
now form a complete OF model farandY. If we assume that there are no feedback effect in that no
significant inverse cross correlation occurs at negatags and thatU, (B) =0,U,(B)=1 and
a, =@ then the full model relating X and Y could be written out fddiive and innovative outlier
models as

Yt :VY(B) UYX(B) Vx (B)_lxt _Vx (B)_l DXA,T + DYA,T +VY(B) UY(B)at'
and
Y, =Vy (B) Uy (B) Vi (B) X, =V (B) "V iy DX 1 +Vy s Dysr +V4 (B) Uy (B)ay

Let us now illustrate the relative merit of identifyitige series interrelationships using inverse

cross correlation function for the observed and residual series jmgbence of outliers. The comparison
is performed with respect to the model residual variance and the diagresistatistic.
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5.0 [Hlustration

To illustrate the feasibility of the method, three seriesused. Series A is the stack-loss data
[Brownlee (1965)], Series B is the Gas Furnace data [Box anéhdgiil®76)] Series C is the simulated
data of size 100.

A two-stage identification procedure is presented which invdittasg univariate time series
models to each series and identifying a dynamic shock modehgethe two univariate models which
are combined to identify a dynamic regression model. We a&sbam additive outlier models and used
Tsay (1986) testing criteria for outlier detection.

5.1 SeriesA
The autocorrelation function (ACF) and its inverse (IACF) ssted an AR(1) for both the OC
and OF series. We fitted these models.
5.2 OC Series
(L-09858) X, =U, (02 =770
and
(1-092398) Y, =U, (02 =3489)
53 OF Series
(L-0.9898B) X, =U, (02 =2479)
and
(1-093768) Y, =U, (07 =1193)
A reduction of about 67.81% and 65.81% are achieved for both X and Y respestively with the OF
series. At the second stage, meuy # 0 for k = 0 and 1 leads to the dynamic shock models given as

54 OC Series
U, =1-0874B)U,
With no outlier found in eithet, or U, series
55 OF Series
U, =@-06528)U,
5.6 Completing identification
A substitution of the identified univariate models ¥mndY into the preceding relationship

leads to the dynamic regression models of the form
5.7 OC Series

Y = (1-1.8596B)(1- 0.923B) ' X, + (1-0.4938B)(1- 0.923B) "4,
with o; =1239
5.8 OF Series
Y, = (1-1.6428)(1- 0.93768)‘1Xt +(@1-0.701B)(1- 0.93768)‘1at
The error variance of the final model is reduced by 55.77% with the OF statsmnay.
591 SeriesB
The ACF and IACF suggested an AR(1) for the X series anthé first difference to the Y

series. We fitted these models.
5.10 OC Series

(1-0.061B)X, =U, ; (g; =41598
and (1-0.0986MB)Y, =U, (07 =7849
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511 OF Series
(L-0949(B)X, =U, (02 =0114
and (1-0.8208B)Y, =U, (o7, =0.1839

A reduction of about 99.72% for the X series and about 99.76% for thegies svere recorded in the
residual variance of the OF models. At the second stage gyjth # 0 for k = 0 and 1 leads to the

dynamic shock modeld, = (1+0.866B) U,

With no outlier found in eithed, orU, series

T =28, 33, 45, 62, 190, 203, 464.
and T =21, 60, 119, 226, 240
For the OF series we havd, = (1+0.7913B) U,

512  Completing identification
The model

Y = (1+0.804B)(1-0.9867B) ' X, + (1+ 0.756B)(1- 0.9867B) "a,
with o; =1231
was obtained for the OC stationary series and the model for the OFaataBenes give us

Y, = (1+0.1575B)(1- 0.8206B) - X, +(1-0.6530B)(1- 0.82068)_161{
with oz =010
The error variance of the final model is reduced by 99.19% with the OF series.
513 SeriesC

We fitted an ARMA (1,1) for the outlier stationary serieand Y. We then fitted the following

models for both the OC and OF models.
5.14 OC Series

@+0.9898B) X, = 1+ 0.9728B)U (Uil =106713
and @+0.056B)Y, = 1-0.969B)U (ny[ =3.5097)
515  OF Series
@+0.0083B)X, =(1-09824B) U, ; (fot = 0.9667)
and @+0.834B)Y, = (1-0.980B)U (wa =0.94849
A reduction of about 99.09% for the X series and about 72.98% for teeies svere recorded
in the residual variance of the OF models. At the second sidgeoy,, # 0 for k=0 and 1 leads to

the dynamic shock models
5.16 OC Series

(1+0.0617/B)U = @1-0.75938) U %
With no outlier found inUXt or Uyt series
5.17 OF Series

(1+0.9218B)=U " (1-0.6320B) UXt

5.18 Completing identification
The model

Y, = 1-1.77288)(1+ 0.05618) " + (1- 0.1914B)(1+ 0.0561B) "4,
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with Ui =8.936 is obtained for the OC stationary series and for thew@Fhave
Y, = (1-15426B)(1- 0.8348) ' X, + (1- 0.329B)(1- 0.834=1) "4,

with o; =0831

The error variance of the final model is reduced by 90.70% with the OF statsmnany.

6.0 Conclusion

This study revealed that ontk andU, have been obtained at the first stage of identification,
the bivariate dynamic shock identification which follows dependso way on the univariate models
employed. There is a reduction in the error variance of tia fiith the OF stationary series which is an
indication that the two stage procedure is reliable and efiiciA problem deserving future investigation
is the distribution of the residual inverse cross correlation function thieeseries are not independent.
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