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Abstract

A particular class of non-linear models which hdseen
found to be useful in many fields is the bilinearadels. A special
class of it is discussed in this paper. In gettitige estimates of the
parameters of this model special attention was paidhe problem
of having good initial estimates as it is propos#utat with good
initial values of the parameters the estimates dbiag by the
Newton-Raphson iterative technique usually not ordgnverge but
also are good estimates. In this paper we examitteglinitial and
final estimates of the bilinear seasonal time serimodel. The Box-
Jenkins linear convergence process, the Newton-Raph iterative
procedure, the Fortran Progran and the MINITAB softare
package were all employed in achieving both thetiali estimates
and the final estimates of the bilinear seasonah# series model
studied. The results showed considerable closertastsveen the
initial estimates and the final estimates for bosimulations (n -
100 and n -500). This confirmed that the initial estimates are go
enough. The implication of this is that in estimahs of this nature
efforts should be made using the right procedureséchieve good
initial estimates so that the final estimates coulse achieved
quickly after few iterations.

Keywords Bilinear seasonal models, Box and Jenkins liceavergence process,
Newton-Raphson iterative procedure, Initial estesaFinal estimates

1.0 Introduction

Linear time series models are widely used in nfégigs because these models can be
analysed with considerable ease and they providey fgood approximation for the true
underlying generating random process. Howeverutigerlying structure of the series- may
not be linear and what is more, the series maybeoGaussian. In these situations, second-
order properties, such as covariances and spearano longer adequately characterize the
properties of the series and one is lead thennsider non-linear models which can provide a
better fit. A particular class of non-linear mal@thich has been found to be useful in many
fields is the bilinear models. Bilinear models &éween extensively discussed in the control
theory literature. One could check Rubert, Isidord d’Alessandro (1972) [14] and Bruni,
Dupillo and Koch (1974) [4] for further details. ntil recently, the theory of bilinear models
dealt with the structural theory of deterministitinear differential equations. The study
ofbilinear models as stochastic models was initidtg Granger and Andersen (1978) [6] and
Subba Rao (1981) [12].
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Let g, t 0 Z be a sequence of independent and identically bliggd random variables

with E(e) =0 and E(et2)=a2 <. Leta;,a,-,a,,;€, €2 Cq and bij, 1<i<m, 1

p
<j £k be real constants. The general form of the klimaodels, as defined in Granger and
Andersen (1978) is:
p q m Kk
Xt 2 ajXi—j+ 2 cjep—j+ X X bjjXe-je-1+e (1.1
=1 =1 1=1j=1
for every tZ. |If X,,t0Z satisfies (2.1), Subba Rao (1981) uses the notétian

X,,t0Z,is BL (p,gmk) where BL is the abbreviation for bilinear mod&larious simples
forms of (1.1) are discussed in the literature lwy following authors: Granger and Andersen
(1978) [[6]; Subba Rao (1981) [12]; Pham, T.D [@daTran, L. T. (1981) ; Subba Rao and
Gabr (1981) [13]; Tong (1981) [14], Quinn (1982P[1Bhaskara Rao M and Subramanyam
(1986) [2].

20 Theoretical framework and methodology
According to Nwogu and lwueze (2003) [[8] and lwaeand Chikezie (2005) [7] the
convariance analysis of the bilinear seasonal siemes model;

Xt :axt—s +:8et—s +yxt—s t&, s21 (2.1)
which is a subset of (1.1) has been identified etsabing like the non-seasonal ARMA(1,1)
except that fors = 2, the coefficients which appear at lags 1, 2,.3n the non-seasonal
ARMA(1,1) now occur at multiples of lag(s, 2s, 3s,...).

Proceeding from the foregoing and having obtaitiex following useful results for
model 1.2:

1)  wu=EX)=0’yll-a), |a|<1 (2.2)
2 2
@ p=E(xp =TTt ) 23)

provideda® +o’y* <1
3 RS =aR0)+*(B+ )

=aR(0)+0? + (- a)u? (2.4)
4) R(2s) = aR(s) (2.5)
(5)  p2s=aps (2.6)

we solve to obtain
(6) a = p2s/ ps (2.7)
0 p=TE a(o;; U-a)u 2.8)
@ y=L"OH (2.9)
o

9@ o°= pol-a’) (2.10)

1+ B2+ oyt + 20+ 2L+ a + B)

The estimates of the parameters of (1.1) can be\aih by replacing theoretical moments with
their sample equivalents in (2.7) through (1.10).
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Thus:
é’ = rzs /rs (211)

Mo(-a?)
1+ B2+ Moy + 203+ 2)X 1+ d + B)
Cs—-aCo - (L-G)X 2

&= (2.12)

B= 5 (2.13)
g
and
f/zm (2.14)
o
where
X=¥Xj/n
Mo =>Xj/n (2.15)
CkZZ(Xt_X)r(]XHk_X) k=01 2.,
3.0 Numerical illustrations

Having obtained a =r,,/r,, we adopt an iterative procedure called “Linear
convergence process” by Box and Jenkins (197609) [B] to obtain initial estimates ¢ Y~
andd®. We can compute the estimai@$, 3, j in this precise order using the iteration (2.12),

(2.13) and (2.14). The paramet@randY ando? to be used in any subsequent calculation are
the most up to date values available. See Tabléofillustration.

Table 1. An illustration of Box and Jenkins iterative prdoee involvinga?, fand Yfor Region 4,
(X(bar) =-0.13M, = 4.06,C, = 4.04,C, = -3.15).

teration o B Y
0 - 0.00 0.00
1 2.33 -0.24 -0.09
2 1.66 -0.33 -0.13
3 1.45 -0.38 -0.14
4 1.36 -0.40 -0.15
5 1.32 -0.42 -0.16
6 1.26 -0.43 -0.16
7 1.28 -0.44 -0.17
8 1.24 -0.44 -0.17
9 1.24 -0.44 -0.17

Table 1.2 and Table 1.3 give a summary of the samgtimates of model (1.2) in Region 1, s =
1,2,3,4,6, 12 for n =100 and 500 respectively.

Table 1.4 and Table 1.5 give the initial and thalfestimates. The convergence of the
final estimates adopting the Newton-Raphson itegatechnique {see Table 1.6} and the
closeness to the “true’ values make the initiaingstes good enough and the entire procedure
of achieving the final estimates adequate. Thegnam for estimation adopting the Newton-
Raphson procedure is written in Fortran 77 languaggwever, for want of space only as
much are reported here. Other regions discussétinmgu and Iwueze (2003) [8] and Iwueze
and Chikezie [7] can be obtained similarly.
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Table 1.2: Sample estimates of model (1.2) in Region 1, s2 B, 4, 6, 12 for n =100

X(bar) Co Cs Cos M, a

0.8455| 6.4006 5.3612| 3.6873 7.1155| 0.69
0.777¢ | 5.95¢ | 5.096¢ | 3.882¢| 6.564% | 0.7¢
0.9340| 8.0267 7.098 | 5.7925 8.8990| 0.82
0.916¢ | 6.950¢ | 5.916¢ | 4.382. | 7.791:| 0.7
0.9939| 7.7649 6.7171| 5.1642 8.7527| 0.77
0.6547| 5.85014.6278| 3.0314 6.2788| 0.66

[EEY
o OB |WIN P »

Table 1.3: Sample estimates of model (1.2) in Region 11s2, 3, 4, 6, 12 for n =500

X(bar) Co Cs Cos M> a
1.1556| 8.6551 7.7553| 6.3715 9.9906| 0.82
1.0206| 6.2559 5.3795| 3.9920 7.8968| 0.74
1.0100| 6.629% 5.7376| 4.4287 7.6496| 0.77
0.9812| 6.2970 5.3811| 3.9816 7.2597| 0.74
0.9107 | 5.613(| 4.736( | 3.841: | 6.442% | 0.7
9592 | 7.0123 60.857| 4.7866 7.9324| 0.79

[EEY
o OB |WINIF»

Table 1.4: Initial and Final estimates for Region 1, s 213, 4, 6, 12 for n =100

Initial estimates Final estimates

0771041 ] 118 | 124 | 0.8 | 035 | 0.0¢ | 1.40
066| 036 113 172 079 043 0.9 099

S| a B y o’ a B y o’

1 | 070 050f 0200 130 0.78 0237 0.25 097
2 | 076| 036] 016 117 076 036 0.16 096
3 1082 026 112 140 080 031 0.07 1p1
4 | 074) 050, 1213 100 08D 033 023 0p7
6

12

Table 1.5: Initial and Final estimates for Regionsls 1, 2, 3, 4, 6, 12 fan =500

Initial estimates Final estimates
S| a B y | o | a B y | o
1 ] 082 ] 04C | 0.2C | 1.01 | 0.81 | 0.4C | 0.2C | 1.0C
2 0.74| 041 023 104 080 040 0.20 1)0
3 0.77| 0.38| 0.13 1.3¢ 0.79 037 0.05 134
4 0.74| 039 0.21y 114 0.76 042 0.11 1p5
6 0.76 | 0.18| 0.14] 1.41 0.78 035 0.02 137
12 | 0.80| 0.16] 010 164 081 0.36 0.p4 137

40 Conclusion

In this paper we have examined the initial andlfiestimates of the bilinear seasonal
time series model (1.2). Table 1.6 showed convesgeafter few iterations which lends
credence to the proposition that with good inivalues of the parameters the estimates
obtained by the Newton-Raphson iterative technigsally not only converge but also are
good estimates. The closeness of the initial esém and the final estimates for both
simulations § = 100 anch = 500) also confirms that the initial estimatesgoed enough.
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Table 1.6: An lllustration of the Newton-Raphson iterative@gedure for arriving at the Final estimates

(1]
(2]
(3]
(4]
(5]
(6]
(7]

(8]
9]
(10]
(11]
(12]

(13]

(14]

for Region 1, s =3 and n = 100

Iteration a B y o
0 0.8200 | 0.2600] 0.120¢ 1.4000
1 0.793¢ | 0.444: | 0.077. | 2.218:
2 0.7913 0.4024| 0.06943 1.4551
3 0.7920 | 0.3355| 0.067% 1.336p
4 0.7972 0.3081 0.0664 1.3096
5 0.7978 | 0.3052| 0.0663 1.307p0
6 0.797¢ | 0.305: | 0.C66: | 1.307(
7 0.7978 | 0.3052| 0.0663 1.307p0
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