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Abstract 

 
The sole aim of this work is to develop a mathematical model for 

dredging (excavating) three open channel sections, namely, the circular, 
parabolic and trapezoidal sections using the conditions for best hydraulic 
performance for the channels. Applying the model to a numerical example, 
new dimensions of the new channel for the three channel sections are 
determined and compared with the original ones, if the cross sectional area, 
bed slope and Manning’s friction factor remain unchanged for each channel 
and if the side slopes are also stable with respect to the trapezoidal channel. 
Furthermore, a combination of our model with Darcy’s formula can provide 
an alternative method for comparing the hydraulic performances of the three 
channel sections. 

 
 
 

1.0 Introduction  
An open channel is a conduit for flow with a free surface, e.g. canals, rivers and pipes which are 

not running full. The pressure at the surface is constant, usually atmospheric. Hence the flow is not due to 
pressure differences along the channel, but is caused by differences in the potential energy head due to the 
slope of the channel (Chow [1]). Various investigations have been done in open channel flows. For 
instance, in studying flow in a channel with a slot in the bed, Nasser et al. [2] tried to provide an insight 
into some aspects of spatially varied open channel flow. Other investigators include, notably, Bradley and 
Peterka [3], Repogle [4], Rand [5],  Pnueli and Pekerlis[6],Baddour and Abbink [7],Scott-Moncrieff 8], 
Eyo [9], Khurmi [10], etc. 

In this work the flow is assumed to be uniform and steady. Mathematical model governing the 
excavation of circular, parabolic and trapezoidal channels is developed and the three channels sections are 
compared. From the numerical results, for a channel flow problem, it is noticed that the parabolic section 
is hydraulically and economically the most effective section, followed by the circular and trapezoidal 
sections. 

 
2.0 Conditions of hydraulic performance 
2.1 Circular section of a channel 

Consider a circular section of a channel shown in Figure 1 with the free surface subtending an 
angle 2θ at the centre O. Let h be the depth of flow and r the radius of the circular section. 
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The cross sectional area of the channel is 
   Ac = r2(θ – ½ sin 2θ)       (2.1) 
where the subscript ‘c’ refers to the circular channel  
The wetted perimeter is P = 2 r θ       (2.2) 
 
 
 
 O 
 
  θ   θ 
  A        B 
 
  h 
 
 
 C 
 

Figure 1: Circular section of an open channel 
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For effective hydraulic performance the velocity u in Chezy’s law [1] 
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must be maximum where C = Chezy’s coefficient, S0 = bed slope, M, P and Ac are as above. This 
maximum requires  

     0=







P
cA

d

d

θ
     (2.5) 

Thus differentiating (2.3) with respect to θ we find  
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which on simplification gives   2θ  = tan 2θ     (2.6) 
The solution of this equation gives 2θ  = 257. 50     (2.7) 
Therefore     θ  =  128.750     (2.8) 
or     θ = 2.2474 rad.     (2.9) 
Here the notation ‘rad.’ = radians, Depth of flow (see Figure 1) is  
     h = r - r osθ     (2.10) 
substituting (2.9) into (2.2) we obtain  
     Peffective = 4.4948r    (2.11) 
as a condition for best hydraulic performance for the circular channel. Similarly, substituting (2.7) and 
(2.9) into (2.3) we find  Meffective = 0.6085r    (2.12) 
while substitution of (2.8) into (2.10) yields  heffective = 1.6259r   (2.13) 
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as other conditions for effective hydraulic performance  
2.2 Parabolic section  
The cross sectional area of flow is (see Figure 2) 

   
3

2Bh
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where B = top width and h is above.  The subscript ‘P’ denotes the parabolic channel (Figure 2 here). 

The wetted perimeter is   
B
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The hydraulic mean depth is  
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Figure 2. Parabolic section of an open channel 

From (2.14)  B =
h
pA

2

3
       (2.17) 

Substituting (2.17) into (2.16) we have  

         (2.18) 

For efficient performance the hydraulic mean depth must be maximum for a given value of Ap. This 
requires  

      0=
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    (2.19) 

that is, 
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Substituting (2.20) into (2.18) for conditions of efficient hydraulic performance we find  

    Mefficient = 2
h       (2.21) 

for parabolic channel. Substituting (2.20) into (2.17) we obtain another condition 
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    22=
h
B       (2.22) 

which determines the relationship of top width to depth of flow. 
2.3 Trapezoidal section of a channel  

Consider a trapezoidal section of a channel shown in Figure 3 with side slopes of 1 vertical to k 
horizontal.  Let h be the depth of flow and b the bottom width.  The cross sectional area of the trapezoidal 
channel is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Trapezoidal section of an open channel 
 
    AT = h(b + kh)      (2.23) 
Here the subscript ‘T’ refers to the trapezoidal channel.  The wetted perimeter is  
  P = b + 2h(1 + k2)½        (2.24) 
Therefore the hydraulic mean depth is  
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From (2.23) we find   kh
h
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Substituting (26) into (25) we have   
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where    α = 2(1  +  k2)½ – k      (2.28) 
For best hydraulic performance the hydraulic mean depth M must be maximum for a given value of AT. 

This requires   0=
dh

dM
     (2.29) 
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where    AT = αh2       (2.30) 
Substituting (2.30) into (2.27) for conditions for best hydraulic performance we find 
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   Mbest   = 
2

h
       (2.31) 

Combining (2.26), (2.28) and (2.30) we obtain another condition  

   
h

b
= 2(1 + k2)½ - 2k       (2.32) 

which determines the relationship of bottom width to depth of flow.  
 
3.0 Development of mathematical model for dredging the three open channels  

Throughout, the two systems in dredging an open channel shall be denoted by the symbols 0 and 
N where 
 System 0  = original open channel (i.e. open channel before dredging) 
 System N = new open channel (i.e. open channel after dredging) 
3.1 Mathematical model for circular channel 
(i) Determination of the new radius rN 

For constancy in the cross sectional area, we have  
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(ii) Determination of the new wetted perimeter PN 

From (2.11)  PN  =  4.4948rN       (3.3) 
(iii) Determination of the new hydraulic mean depth MN 
From (2.12)    MN = 0.6086rN      (3.4) 
(iv) Determination of the new depth hN 
From (2.13)  hN = 1.6259rN       (3.5) 
(v) Determination of the new discharge QN

 

 

From Manning’s formula [1] 
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where Q = discharge, n = roughness factor, S0 = bed slope, A and M as above, we find  
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(vi) Determination of the new mean velocity uN 
From the relation   Q = Au       (3.8) 
we obtain    QN = AcuN      (3.9) 

so that     
cA
NQ

NU =       (3.10) 

Alternatively, from Manning’s formula (3.6), we have 
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(vii) Determination of θN 

From (2.8)   0525702 ⋅=Nθ       (3.12) 

or, from (2.9)   θNrad = 2.2474rad     (3.13) 
3.2 Mathematical model for parabolic channel  
(viii ) Determination of hN 

From (2.22)   BN = hN(2√2)      (3.14) 
Since the cross sectional area is constant, we find 
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Combining (3.14) and (3.15) and simplifying we obtain   
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(ix) Determination of BN  

Substituting (3.16) into (3.14) we find   22
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(x) Determination of PN  

From (2.15)  
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(xi) Determination of MN 

From (2.21)   
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(xii) Determination of QN 
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(xiii)  Determination uN 

From (3.8)   
pA
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3.3 Mathematical model for trapezoidal channel   
(xiv) Determination of hN 

From (2.32)   
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Since the cross sectional area is constant for both channels, we find  
   hN(bN + khN) = AT = h0(b0 + kh0)     (3.23) 
Combining (3.22) and (3.23) and simplifying we obtain  
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(xv) Determination of bN 

Substituting (3.24) into (3.22) we find 
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(xvi) Determination of PN  
From (2.24)     PN = bN + 2hN(1 + k2)½    (3.26) 
(xvii)  Determination of MN 

From (2.31)    
2
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(xviii)  Determination of QN 

From (3.6)   ( ) 2
1
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(xix) Determination of uN 

From (3.8)   
TA
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The expressions (3.2), (3.3), (3.4), (3.5), (3.7), (3.10) or (3.11), (3.12) and (3.13) constitute the 
mathematical model for dredging the circular channel.  For the parabolic channel the model is given by 
the expressions (3.16) – (3.21) while the expressions (3.23) – (3.29) constitute the model in respect of the 
trapezoidal channel. 
 
4.0 Alternative method for comparing hydraulic performances of the channels 

From Darcy’s formular [1] the head loss hf due to friction in an open channel is  
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Thus  
(xx) Head loss in the original channel (hf)0 : 

    
( )

gM

ufL

fh
20

2
00

0
=





      (4.2) 

(xxi) Head loss in the new channel (hf) N : 
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(xxii) Decrease in head loss due to dredging (hf)0 – (hf)N : 
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Here the relations (4.2) – (4.4) constitute the alternative model for comparing the hydraulic performances 
of the three channel sections.  
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5.0 Numerical illustration  
Consider, for example, a channel with bed slope 1 in 500, bottom width 20 m and conveying water at a 
depth of 5m, Manning’s coefficient n is 0.012. Using the model we wish to determine, after dredging, the 
new dimensions of a channel to give the maximum discharge, the new discharge, the new mean velocity 
and the percentage decrease in head loss in 
(a) Circular section of  radius 20m 
(b) Parabolic section of  top width 20m 
(c) Trapezoidal section of sides 1 vertical to 2 horizontal  
5.1 Solution  
5.1.1  Circular section  

For the original channel: 
  r0  = 20m, h0 = 5m, θ0 = 410 = 0.7156rad.,  
  n = 0.012, S0 = 1/500, Ac = 88.24m2, P0 = 28.62m 
  M0 = 3.08m, Q0 = 695.597m3/s, u0 = 7.883m/s 
The dimension rN of the new (excavated) circular channel is obtained by substituting (3.12) and (3.13) 
and the value of Ac above into the model expression (3.2).  This yields rN = 5.679m.  The parameters PN, 
MN, hN of the new channel are determined respectively from the expressions (3.3), (3.4), (3.5) using the 
value of rN.  Thus we find PN = 25.528, MN = 3.456m, hN = 9.234m.  Other parameters of the new circular 
channel, namely, QN, uN are computed respectively from the relations (3.7), (3.10) or (3.11) via 
appropriate substitution.  The result is QN = 751.157m3/s, uN = 8.512m/s 
5.2 Parabolic section  

Here 
  B0 = 20m, h0 = 5m, n = 0.012, S0 = 1/500, Ap = 66.666m2 
  P0 = 23.333m, M0=2.857m, Q0= 499.911m3/s, u0 = 7.497m/s 
for the original channel.  For the new parabolic channel the parameters hN and BN are obtained 
respectively by substituting the value of AP above into the model expressions (3.16) and (3.17). Thus, hN = 
5.946m, BN = 16.818m.  The remaining parameters, PN, MN, QN, uN of the new parabolic channel are 
determined respectively from the expressions (3.18), (3.19), (3.20), (3.21) through appropriate 
substitution of the above data in these relations. This yields, PN = 22.424m, MN = 2.973m, QN = 513.323, 
uN = 7.699m/s  
5.3 Trapezoidal section  

For the original channel 
  b0 = 20m, h0 = 5m, k = 2, n = 0.012, S0 = 1/500, AT = 150m2,  

P0 = 42.361m, M0 = 3.541m, Q0 = 1297.611m3/s, u0 = 8.651m/s 
The dimensions hN and bN of the excavated trapezoidal channel are obtained respectively by substituting 
the appropriate data above in the model expression (3.24) and (3.25). Thus, hN = 7.789m and bN = 3.677m.  
Other parameters PN, MN, QN, uN of the new trapezoidal channel are determined respectively from the 
model expressions (3.26), (3.27), (3.28), (3.29) through appropriate substitution. Thus, we find PN = 
38.513m, MN = 3.894m, QN = 1382.561m3/s, uN = 9.217m/s 
5.4 Application of the alternative method  

From the alternative method (4.4) we obtain  
(a) Decrease in head loss in circular channel due to dredging: 
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Therefore percentage decrease in head loss in the circular channel = 70.49% 
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(b) Decrease in head loss in parabolic channel due to dredging 
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Therefore percentage decrease in head loss in the parabolic channel = 14.79% 
(c) Decrease in head loss in trapezoidal channel due to dredging: 

 
( ) ( )

20940
8192

22179
8943

67730120
8192

26518
5413

200120
0

⋅=














⋅×
⋅








⋅
⋅×⋅−















⋅×
⋅








⋅
×⋅=





=







Nfhfh  

Therefore percentage decrease in head loss in the trapezoidal channel = 81.19% 
 
6.0 Discussion and conclusion  

Tables 1, 2 and 3 show respectively the results (corrected to two decimal places) of the analysis 
of the flow problem for the original and new (excavated) circular, parabolic and trapezoidal channels. The 
new dimensions for the new channel sections are also shown in the three Tables. For instance, the new 
dimension rN  for the circular section is displayed in Table 1. Table 2 shows the new dimensions hN and 
BN for the parabolic section, while Table 3 shows the new dimensions bN, hN in respect of the trapezoidal 
section. Furthermore the three Tables show that whereas for each channel the new depth, new wetted 
perimeter, new hydraulic mean depth, new discharge and the new mean velocity are greater than the 
original ones, the new width for each channel is lower than the original one. Comparison of the wetted 
perimeters of the three channel sections shows that the parabolic section has the minimum perimeter for a 
particular cross sectional area, and hence it becomes more effective hydraulically than the circular and 
trapezoidal sections. Moreover, the parabolic section is economically better than the other two sections 
because its wetted perimeter is minimum and this therefore results in minimum excavation and lining 
costs. From the results obtained from (4.4) we observe that the parabolic section has the smallest 
percentage decrease in head loss due to friction (see the three Tables). This percentage is in direct 
proportion to the wetted perimeter of each channel section. Thus, in view of this minimum percentage 
(and hence minimum wetted perimeter) the parabolic section still becomes (of the three sections) the most 
effective hydraulic section. 

Finally, it is clear from the three Tables that the new channel is deeper than the original one as a 
result of dredging, and this therefore removes the danger of a ship grounding if it sails too fast. Besides, 
apart from economic cost due to dredging and lining, the new channel is much more effective 
hydraulically than the original one with the parabolic section the most effective.  

Table 1: Result for circular channel  
Circular channel 

Original channel New channel 
Bed slope 1/500 1/500 
Manning’s n 0.012 0.012 
Angle θ 410 128.750 
Radius r 20m 5.68m 
Depth h 5m 9.23m 

Area of cross section Ac 88.24m2 88.24m2 
Wetted perimeter P 28.62m 25.53m 
Hydraulic mean depth M 3.08m 3.45m 
Discharge Q 695.60m3/s 751.16m3/s 
Mean velocity u 7.88m/s 8.51m/s 
Decrease in head loss 0.1739 
% Decrease in head loss 70.49% 
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Table 2: Result for parabolic channel 
 

Parabolic channel 
Original channel New channel 

Bed slope 1/500 1/500 
Manning’s n 0.012 0.012 
Tope Width B 20m 16.82m 
Depth h 5m 5.95m 

Area of cross section Ap 66.67m2 66.67m2 
Wetted perimeter P 23.33m 22.42m 
Hydraulic mean depth M 2.86m 2.97m 
Discharge Q 499.91m3/s 513.32m3/s 
Mean velocity u 7.50m/s 7.70m/s 
Decrease in head loss 0.0356 
% Decrease in head loss 14.79% 

 
Table 3: Result for Trapezoidal channel 

 
Trapezoidal channel 

Original 
channel 

New channel 

Side slope 1vertical to 2 
horizontal 

1vertical to 2 
horizontal 

Bed slope 1/500 1/500 
Manning’s n 0.012 0.012 

Width b 20m 3.67m 
Depth h 5m 7.79m 

Area of cross section AT 150m2 150m2 

Wetted perimeter P 42.36m 38.51m 
Hydraulic mean depth M 3.54m 3.89m 
Discharge Q 1297.61m3/s 1382.56m3/s 
Mean velocity u 8.65m/s 9.21m/s 
Decrease in head loss 0.2094 
% Decrease in head loss 81.19% 
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