Journal of the Nigerian Association of Mathematical Physics
Volume 11 (November 2007), 577 - 586
© J. of NAMP

A mathematical model for theinterception of a moving target: contribution to optimal
controllability theory

Vincent A. heagwam
Department of Mathematics and Computer Science
Federal University of Technology
Owerri, Nigeria.
e-mail: vinanyameleiheagwam@yahoo.com. 08035470561

Abstract

In this study, a mathematical model for the interception of a target
governed by a linear ordinary control system is derived. The condition for
interception is stated. The interception criterion is the intersection of certain
well defined set functions. The equivalent of the condition is controllability of
the linear control system. This research has made its modest contribution to
mathematical modeling as well as provided example of an optimal control
problem.
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1.0 Introduction

Every life problem, be it social, economic psychological and techizalogas a mathematical
dimension. The necessity to translate a real life probtema mathematical model, therefore cannot be
over-emphasised. Most of these models are governed by differgygtams whose solutions provide
clues leading to break-throughs to real life problems. Littt@der immense interest is on mathematical
modeling. Population, economic, disease control and technological nadielad in the literature (see
[6] [8] [9] ), from simple population models such dg/dt = kp (describing the rateof increase of
population), we have more complex models governed by control systemsasudl) = A(Xx(t) +
B(t)u(t).

With the realization that most action in life are not ingtaabus, - that is, causes do no produce
their effects immediately there is therefore need torpmrate time delays in our models; giving rise to
delay systems. These models are found in the study of nucle&orregoamics and technological
dynamics where the decisions in the control function are oftétedhor twisted before affecting the
evolution. In the study of dynamics of diseases, Yorke [10] olutaime following model for the control
of measles.

X (1) = - B{O)x(t)[2T + x(t — 14) -x(t — 12) +T1]
wherex(t) denotes the number of susceptible individuals that have not yet been exposeéstaehed =
12, h, = 14 are delays. Quite recently, Chukwu in [1] [2] [3] and Onwuatl laeagwam [7] have
provided economic models governed by neutral differential systanisef@ontrol of the capital stock of
nations.

Models of pursuit games have motivated interest in théysof capture problems and rescue
operations. Markus and Sell reported in Gahl [5] have obtained conditimhesr which a derelict
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spaceship drifting in some astronomical system could be savedebguge ship. The operation dynamics
furnished a nonlinear equation given by

X (t) = K(t, x(t), u(t)) (1.4)
wherex(t) is the state of the rescue ship aift], the engine thrust. It was found that the onditions for
rescue of the derelict ship collapsed to the controllability obsygi.4).

In military quarters where the interception of enemy adwaiscca common feature, (interception
of enemy missiles and menacing aircrafts) the questionseiddity come to mind are: What are the state
and energy requirements of the weapon for interception operalioaituation requiring pursuit, what
is the state trajectory?

This study is a mathematical response to these questions.

20 Notation and preliminaries
Let E denote the real line. For a positive integer"njeihotes the space of reetuples with the
usual Euclidean norrh. | andC([a, b],E") is the Banach space of continuous functions from the interval
[, b] into E" with the topology of uniform convergence. The nornpaf C([a, b], E") is given by
l@ll=suple ()|
a<x<b
In this paper, the state space willBeor C([-h, 0], E" ) the control space will b, ([0,), E" ;
the control set will be a closed and bounded subsstL, with values inC" ={u: ue E™; Ju|<1,j=1,
2,....,m
The target(t) may be a moving point set or a compact set function in the appropriate space.
Consider the system of interest,
X (t) = Ax(t) + Bu(t) (2.1)
onJ=1[0,),X(t,) =X, €E"ort,) € E".
Ais an n x n constant matrix and B israrx n constant matrix
Consider the homogeneous part of (2.1)
X (t) = Ax(t) (2.2)
The solution is given bx(t, ¢, 0), wherex(t, ¢, 0) = X(t, 9x(t,). X(t, s) is the fundamental matrix
solution of (2.2). That is((t, s) satisfies the equation.

%(t,s)zAX(t,s), t-s

0 t<s
and X(t,s) ={
I,t=s
wherel is identity matrix. The variation of constant formula for system (B9 becomes
t
X(t) =X(tty)x(ty) + X(t,ty) [ X(tg,s)B(s)u(s)ds (2.3)
t
0

From (2.3), we extract the attainable set - the set of all possible solutisysterh (2.1) given as
Alt) = {x(t, u): ue U}
We shall show in the next theorem, tA#t) is convex and bounded.
Theorem 2.1
The Attainable se(t) is convex and compact.

Proof

The convexity ofA(t) follows trivially from the convexity of the control set To show tha#\(t)
is bounded; we let the set S to be a convex and compact subsetspatie€ of continuous functions.
Sincex(t, @, 0) is continuous(t, S, 0) is bounded. Also, sincét, t,)
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B(t) is integrable and(t) € U, A(t) is bounded irfE". From the weak compactness argument in [3] and the
compactness 0§, it is clear thatA(t) is closed inE". Thus, the boundedness and closednesA(tpf
establishes its compactness. |

Definition 2.1

System (2.1) is Euclidean Controllable if there exists a cong® which can steer the solutioft) with

X(to) = Xo to X(ty) =X, for x; € E" in finite time interval {,, t; j. t;> tJ].

3.0 Mainresults
31 A mathematical modd for the inter ception of a moving tar get

We shall in this section formulate a mathematical modefhierinterception of a moving target.
Models of this type are expected to represent — pursuit garheg are even more relevant in military
adventures, in the interception of bombs and missiles and menacing air crafts.

We shall state the basic assumptions of the model.

Let G(t) be a moving target andt), the pursuer’s position at any time t. which is often reterr
to as the state. Let the distance between the target aistathebeD(t) for any timet. AssumeD(t) is
decreasing with increasing time. That id, & t; <tx< ... <t,thenD(ty) > D(ty) > D(ty) > ... >D(t,).

Assume further that the rate of change of stqteyaries as the distan@t). that is X (t)aD(t).

This implies that X (t) = kD(t); (3.1)
k is the constant of variation. Define
D(t) = maxki(t) - Gi(t) | (3.2.1)

1<i<n

n n
where X(t)= X x(t) andG(t) = > Gj(t)

i=1 i=1

From (3.1) and (3.2), we have X (t) = kx(t) —G(t) (3.3)

Let u(t) be the control energy requirement for the pursuit. Let theuat of control energy
needed to increase the speed of the state vary between Oi&n@ 4u(t) < 1,u = 0, when no energy is
applied. Ofcourse there may be times when there will be thet loeghe application of brakes in the
pursuit. This reverse operation places u(t) between —1 and OsTi@) lies in the interval —1 4(t) <O0.
Evidently,u(t) is defined on -1 «(t) < 1 and so is an admissible control.

Incorporating the control energy into (3.3), we have

x(t) =k(x(t) —G(H)u(t) (3.4)
Describing the configuration of the distance between the state andgbtettaa family of curveft, x(t),
u(t)); (3.4) becomes  x(t) =f(t, x(t), u(t) ) (3.5)
which is a non linear dynamics. However using the method in [9] Wieraich that

g—; = AX(t) , whereA is ann x n matrix

% =Bu(t), whereB is anm xm;
(3.5) becomes X (t) = Ax(t) + Bu(t) (3.6)

which is the model we are interested in.
3.2 State trajectories

We have however provided a model describing the state afcth&o obtain the configuration of
the trajectories of the state of (3.6), we consider the homogeneous ({3a6) given by

(1) =Ax(t) (3.7)
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The matrix functiorX(t) such that%( (t,s) = AX(t,s), andX(0) =I (identity matrix) is called the

fundamental matrix solution of (3.6), and has the following exponential Xty € such that the
solution of (3.7) has the representation.

X() = X(t)%o = € X (3.8)
wherex(t,) = X,, a given initial vector.

The origin (0,0) is the only critical point under the assumptian matrix A is non-singular that
is, the determinant |A4 0. The graph of the vector equation (3.8) is the trajectorysthds atx, = (Yo,
z,). Because&™ can sometimes be complicated it may not be easy to piataheastrajectory. However,
by similarity transformation of A, we obtain the diagonaltniaN. That is, we can find a non-singular
matrix P such thaP™ AP = N. N is simpler tharA but still preserves the basic propertiesfoBy the
same similarity transformation, we have tfat= PP = P P™. The trajectory equation= €', thus
becomed™ x = e"P. If we setM = P"’x. Our equation becomes M = VM,

(3.9
The equatiorM = Px can be viewed as representing a fairly simple transfismaf the XY plane to
MX- plane. This transformation maps the trajectary &'x, onto M = PM M,. The similarity
transformation does not only preserve the basic propertidsat that of the system trajectory, thereby
enabling us to obtain basic facts about the phase portrait afi@gy3.6) through studying the phase
portrait of equation.

X = Nx (3.10)

whereN = PAP.
Note that the diagonal elementshbare the eigenvalues 8f For a 2x 2 matrixA, let these eigenvalues
beAy, A.. They are non-zero since AP and so we can wrigd" as

Ait
et =[e 0 } (3.11)
0 eAZt
From here, we obtain in component form equation (3.9) as
x=ex, y=e?y, (3.12)

With these as parametric equatiohdyeing the parameter, we can obtain possible trajectories of
equation (3.6) vis-a-vis equation (3.9)
For an illustration, obtain equations for the state trajectory of thiersys
X = Ax(t) (3.13)

10
where Az(1 J, X = (X1, X2). Re-writing the equation, we have

Xl =X (313&)

Xg = X1 + Xo. (313b)
Letx, =ae™ andx, = S" wherea, B are constants
Evidently,A = 1 (twice repeated) and so we have the parametric eqsddtir the state trajectory ag,=
0, %, =€, wherea = 0 andB set equal to 1.

Sometimes, certain equations yield themselves to diregratien, like equation (3.13) above.

Integrating (3.13a), we havexiiet + ¢ = x, = A€\
Assuming the solution of system (3.13a) passes through the ggig)(at timet,, we havex; = x€.
Substituting this result in the integration of (3.13b) we h&aeeproblem of finding the solution of the
resulting linear equatiork, - x, = X,€ whose solution is given asx, = Ix€®* dx + B, whereB is a
constant. With the initial conditiomy(0) = yo, the solution becomes(t) = x€' + (yo - Xo)€". The state
trajectory therefore, becomes the pair of equations.
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3.3 The question of controllability

System (3.6) comes into play, when we want the trajectorieslitwfa desired pattern or to
reach a certain target. In this case, we commence andeara control function capable of transforming
the initial state x¢) of system (3.6) to some desired final statmXinite time. This, of course raises the
guestion of the controllability of system (3.6).

Consider, our system of interest) =Ax(t) + Bu(t), whereA is ann x n constant matrix anB is
also a constant m x m matrix. For any non singular matrix P of nrdarietx = Pz thenzis also a state
vector. Equation (3.6) can be re-written as

P2=APz+ Buor asz = P'APz+ P'Bu (3.14)
SetN = P*AP andM = P"'B so that (3.14) becomes = Nz + Mu, whereN is a diagonal matrix and can
be written adN = diag @1, A,,.., ) where; are the eigen values Af Let us consider the simple case
wherem=n = 2, then equation (3.14) takes the form

. . 1 1
RIS
z 0 Ao )z u

=My + bllu
72 =Aozp + b%u
whereb', = maxpi, bi,) for each iby; are components @. It is seen from (3.15) that if., the ith row
of M has all zero components, then=A; z + 0 and the control functiou(t) has no influence on thth
mode of the system, in which case the mode is said to be unaigolAnd a system having one or
more such modes is uncontrollable. On the other hand, where albttessrare controllable, the system is
said to be completely state controllable.
To obtain controllability criterion for the system under study, we makeeBuation (3.6) a one
column matrix, b, of course the result obtained using the column vector b holdsrwréhgeneral case.
Equations (3.6) and (3.14) then becomes

%(t) = Ax(t) + bu and z(t) = Nz+bju, whereby = p~1b

Define by = |8, B, By B, |t |t transpose an@1=[b1,| Nby [NZb, |- Nn_lbl}

X1 = Xo€l, Xo =

Simplifying, we have

(3.15)

A ML AT
=| 2 d2f2 A3

Bn b AN,
Q: being a vandermonde matrix has all the columns linearly independent andsiagadar.

Recall thathy = p b, Nb, = p~tAb, N2b; =P72A%...N"lp, =p71AM | o that

Q=P b, Ab|,--,| A" b= P71Q where
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Q=[b,| Abl,-+-,| A" o] (3.16)
From the sequel, system (3.6) is controllable if the componerf@sané not zero. This means ti@ts
non-singular and so has n linearly independent columns. The rank of @é#&rikereforen.

Clearly, system (3.6) is controllableRank[b,| Ab|,--- ]| A1y [I=n.In the general case, where
the system is multivariat®(has many columns) =[B, AB,---,An_lB]

RankQ = rank[B, AB,---, AN "1g] =n (3.17)
provides a computable criterion for the controllability of sys(8r6) credited to R E. Kalman.
34 Conditionsfor interception of a moving target.
We shall now state conditions under which it will be possible to intercepviamgitarget where
the target is either a moving point function or a compact set function.
Theorem 3.1
Consider the system
X (t) = Ax(t) + Bu(t) (3.18)
where Aisan n x n constant matrix and B an m x n constant matrix. Suppose
D system (3.18)is controllable,
2) the set functions, reachable set R(t,1;), Attainable set A(ty,t,) and target set G are compact then
A(t) n G(t) # @. (That is, theinterception of the target G(t)).

Proof
Let G(t) be the target. We shall prove that there exists a contsoich, that the stat€t u) £ A(t)
can be founds(t) in finite time. Letu, be a sequence . SinceU is compact, lim up =u. Now X(t,
n- o

t
@ Uy) € A(t) andx(t, @ un) =x(t, @ 0) +X(t t;) | X(t0 ,9)B(S)up()ds

to

t

Taking limits both sides, we havéim X(t,¢,un) = x(t, ¢,0) + X(t,to) | X(to,s)B(s) lim Un(S)ds

n-oo t nN-o0o

0

t
= X(t, ¢,u) = x(t,¢0) + X(t,to) | X(to,s)B(s)u(s)ds, sinceA(t) is assumed compaxtt, ¢ u) = G(t) € A(t).
t
0
This shows tha\(t) n G (t) # @. This completes the proof. |
Remark 3.2
From theorem, (3.1), it is evident that the reqiiicentrol function must be able to steer the state
into the attainable set as well as the targefl$wett is the condition tha&(ty, t;)) n G (t) # 0.

4.0 Discussion of results

This study has not only provided a model for thespit and interception of a moving target, but
has established conditions for the interceptionralses the following questions: what is the state
trajectory to the target what is the choice of appate control function to steer the state ofdjgtem to
the target what is the duration for the journeynekting the target.
41 Determination of statetrajectory

For quick and vivid understanding of the analysig, illustrate using the following optimal
control problem. Consider the system.
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X=AX(t) + Bu(t), X(0) = (o, Yo), {u 0 C™ ||u|| <1} (4.1)
C"is a unit cube ifE", them-dimensional Euclidean space. WhérandB are given by

01 0
A= , B=
00 1
First of all, we test the system for controllalilitsing Kalman'’s criterion

rank[B, AB]=rank(0 1j=2
10

Since the computated rank is the same as the diomeoisthe state spad€, we conclude that the system
(4.1) is controllable on a finite intervab,f;]. (See [6] ). This shows that any target can beraepted in a
context described by the control system. The resxtd to be addressed is obtaining the control tapéb
steering the state to the target at the shortesstilgie time. i.e. the optimal contnol =sgnn’ (X'B); n O
E? whereX(t) is the fundamental matrix of the homogeneous @fasystem (4.1) given by
X = AX(t) (4.2)

andX™ (1) its inverse. That is{(t) is a matrix solution of (4.2) such thD) =1 (identity). The
exponential characterization Xft) is €. Evidently
Xt =eM=1+At+ A%2 +--.:[l Oj{o tj +[0 Oj :(1 tj and X "L(t) =[1 j

2! 01 0 0) \0 0) (01 0 1

Clearly, (4.1) is normal sind® is a column matrix, (see [6]) hence there exiptgmal control that is
unique and Bang-bang (maximum control power) asrghelow:

so) 1if nTx M=o
—1if nT X Bm) <0

T is matrix transpose.
For some non-zero vectnr= (N:N,) . We can easily calculate

1 -t)0))_ _ 1, for sgn[(—fylt+/72)>0
Sgn£(011’72)(0 1)[1B—Sgn(—/71t+/72),henceuD— {—l for Sgn[(—/71t+/72)<0

and has only one switch between —1 and 1. The lswitee is obtained by equating)it + ), to zero to
have t =n,n:. Evidently, the optimal control exists and isqué and Bang-bang. There is no loss of
generality in assuming that the target is the origi

To obtain the optimal trajectory therefore, westate system (4.1) and with= 1, we have

dx dx dx
1_ 2 _ 2 _ 1
Y and @ 1= i - 4.2)
1 2
2
By the method of separation of variables, we ha\%le +c since the solution passes through (
Yo), we have
2 2
X y
_"2 _°0
Xl —7 + XO > (43)

which is a parabola witk, increasing.
Taking the other value of the control, thatifs= -1, we have
dx dx dx

2 :—]_:>_2 :__1 (44)

1 =X
dt dt dx1 X5
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Xzﬁ/
.

X1
(%o, Yo)
Figurel: arc, G (whenu =1) increasing optimal trajectory.
2
X
By direct integration, we haveZ = ~Xq *C. Since this solution passes through the initial pbig yo),
we have
-_1.2 1,2
Xp =75%) +(xo +§y0) (4.5)
In this casex; is decreasing
X2

N, ¥o)
X1
_

Figure2: arc G decreasing optimal trajectory

Bearing in mind that we have to reach the originicivhis our target, we start a search for the ogtima
trajectory. We can construct the optimal trajectsyfollows.

X2

Figure 3: arc G optimal trajectory
To lend concreteness to our: discussion herehéetiritial point be (5, -1). That isg = 5,y = -1,

starting with the choice of contral’ = -1, from equation (4.4), we hava1 :%(11— x%) or

Xy == 11- 2xq sincex, < 0. At the point of intersection, we change cointo u = 1 and there
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d
:—/2x1 (since %:Xz with the resulting curve passing through the ajigiand so

— A ox =— oy = _ 11 __hq_odly
J11 2xq = szl =11-2x) =2x; = 4x) =11=x) == thenx, == [11-2(7) =

- /27‘? = —%1/ (22). From the point of intersectioﬁz—l,—%,IZZ). of the two arcs, a straight line to the

origin completes the pursuit.
The next and final question is: what is the ttitake taken for this pursuit to intercept the taPget
Solving the state equations (4.4), we have

x2(t) =—t1 +y0 =%x/2_2 so,t:L =—:—2L\/2_2 -1 (sincey0 ==,

which implies:%\/2_2+1 (since time is positive.)
Similarly, after switching ta = 1 traversing the cur\@
x1 Xny, —1

from (171,—%1/22). to the origin (0, 0) and solving fag, we have

X5 (1) =ty - ; 22)
with X5 (t) now 0, we have

1
t, - 2‘/_ 0=ty =522

The total time taken for the pursuit is
t, +t2=( [22-2 , 1\/—J \/_2+2+\/_ 2241,

From the foregoing, the capture problem is an |Ithng application of the theory of optimal
controllability.

50 Conclusion

This study furnishes a model governed by an orgicantrol system for the interception of a
moving target. It is evident from the model that grimary concern in the pursuit for the interceptdf a
target is the state of the weapon and the contrelgy requirement. The control energy should bd suc
that has the potential of steering the state frisnmitial position through the phase portrait dixssd by
the moving target to reach it. This is communicdtedhe assumption tha(t) n G(t) # ¢. This condition
in other words is the controllability of the systei@learly (3.17) provides a computable criterionthe
interception of a moving target in the context diésd by an ordinary differential autonomous system
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