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Abstract  
 

In this study, a mathematical model for the interception of a target 
governed by a linear ordinary control system is derived. The condition for 
interception is stated. The interception criterion is the intersection of certain 
well defined set functions. The equivalent of the condition is controllability of 
the linear control system.  This research has made its modest contribution to 
mathematical modeling as well as provided example of an optimal control 
problem. 
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1.0 Introduction  
Every life problem, be it social, economic psychological and technological has a mathematical 

dimension. The necessity to translate a real life problem into a mathematical model, therefore cannot be 
over-emphasised. Most of these models are governed by differential systems whose solutions provide 
clues leading to break-throughs to real life problems. Little wonder immense interest is on mathematical 
modeling. Population, economic, disease control and technological models abound in the literature (see 
[6] [8] [9] ), from simple population models such as dp/dt  = kp (describing the rateof increase of 
population), we have more complex models governed by control systems such as x& (t) = A(t)x(t) + 
B(t)u(t). 

With the realization that most action in life are not instantaneous, - that is, causes do no produce 
their effects immediately there is therefore need to incorporate time delays in our models; giving rise to 
delay systems. These models are found in the study of nuclear reactor dynamics and technological 
dynamics where the decisions in the control function are often shifted or twisted before affecting the 
evolution. In the study of dynamics of diseases, Yorke [10] obtained the following model for the control 
of measles.  

x& (t) = - B(t)x(t)[2τ + x(t – 14) - x(t – 12) + τ] 
where x(t) denotes the number of susceptible individuals that have not yet been expose to the disease; h1 = 
12, h2 = 14  are delays. Quite recently, Chukwu in [1] [2] [3] and Onwuatu and Iheagwam [7] have 
provided economic models governed by neutral differential systems for the control of the capital stock of 
nations.  
 Models of pursuit games have motivated interest in the study of capture problems and rescue 
operations. Markus and Sell reported in Gahl [5] have obtained conditions under which a derelict 
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spaceship drifting in some astronomical system could be saved by a rescue ship. The operation dynamics 
furnished a nonlinear equation given by  
    x& (t) = K(t, x(t), u(t))     (1.4) 
where x(t) is the state of the rescue ship and u(t), the engine thrust.  It was found that the onditions for 
rescue of the derelict ship collapsed to the controllability of system (1.4).   
 In military quarters where the interception of enemy advances is a common feature, (interception 
of enemy missiles and menacing aircrafts) the questions that readily come to mind are: What are the state 
and energy requirements of the weapon for interception operation?  In a situation requiring pursuit, what 
is the state trajectory?  
This study is a mathematical response to these questions.  
 
2.0 Notation and preliminaries  
 Let E denote the real line. For a positive integer n, En denotes the space of real n tuples with the 
usual Euclidean norm | . | and C([a, b],En) is the Banach space of continuous functions from the interval 
[a, b] into En with the topology of uniform convergence. The norm of φ in C([a, b], En) is given by  
    || φ || = sup | φ (x) | 
     a < x < b 

In this paper, the state space will be En or C([-h, 0], En ) the control space will be L2 ([0,∞), En) ; 
the control set will be a closed and bounded subset U of L2 with values in Cm = {u : u ε Em ; |uj| < 1, j = 1, 
2, …, m} 
 The target G(t) may be a moving point set or a compact set function in the appropriate space.  
 Consider the system of interest, 

x& (t) = Ax(t) + Bu(t)      (2.1) 
on J = [0, ∞ ), x(to)  = xo ε En or φ(to) ε En. 
A is an n x n constant matrix and B is an m × n constant matrix  
 Consider the homogeneous part of (2.1)  
   x& (t) = Ax(t)       (2.2) 
The solution is given by x(t, φ, 0), where x(t, φ, 0) = X(t, s)x(to).  X(t, s)  is the fundamental matrix 
solution of (2.2). That is, X(t, s) satisfies  the equation.  
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where I is identity matrix.  The variation of constant formula for system (2.1) thus becomes  
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From (2.3), we extract the attainable set - the set of all possible solutions of system (2.1) given as  
  A(t) = {x (t, u): u ε U}  
We shall show in the next theorem, that A(t) is convex and bounded.  
Theorem 2.1  

The Attainable set A(t) is convex and compact.  
 

Proof 
The convexity of A(t) follows trivially from the convexity of the control set U. To show that A(t) 

is bounded; we let the set S to be a convex and compact subset of the space C of continuous functions. 
Since x(t, φ, 0) is continuous, x(t, S, 0) is bounded. Also, since X(t, to)  
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B(t) is integrable and u(t) ε U, A(t) is bounded in En.  From the weak compactness argument in [3] and the 
compactness of S, it is clear that A(t) is closed in En. Thus, the boundedness and closedness of A(t) 
establishes its compactness. 
Definition 2.1 
System (2.1) is Euclidean Controllable if there exists a control u ε U which can steer the solution x(t) with 
x(to) = xo to x(t1) = x1 for x1 ε En in finite time interval [to, ti j;   t1 > to]. 
 
3.0 Main results  
3.1 A mathematical model for the interception of a moving target 

We shall in this section formulate a mathematical model for the interception of a moving target. 
Models of this type are expected to represent – pursuit games. They are even more relevant in military 
adventures, in the interception of bombs and missiles and menacing air crafts.  

We shall state the basic assumptions of the model. 
Let G(t) be a moving target and x(t), the pursuer’s position at any time t.   which is often referred 

to as the state. Let the distance between the target and the state be D(t) for any time t.  Assume D(t) is 
decreasing with increasing time. That is, if to < t1 < t2< … < tn then D(to) > D(t1) > D(t2) > … >D(tn). 

Assume further that the rate of change of state, x(t) varies as the distance D(t). that is x& (t)αD(t).   
This implies that    x& (t) = kD(t);    (3.1) 
k is the constant of variation.  Define 

D(t) = max|xi(t) - Gi(t) |                   (3.2.1) 
1< i <n 

where  ∑
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tixtx
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From (3.1) and (3.2), we have    x& (t) = k(x(t) – G(t))   (3.3) 
Let u(t) be the control energy requirement for the pursuit. Let the amount of control energy 

needed to increase the speed of the state vary between 0 and 1. i.e 0 < u(t) < 1, u = 0, when no energy is 
applied. Ofcourse there may be times when there will be the need for the application of brakes in the 
pursuit. This reverse operation places u(t) between –1 and 0. That is, u(t) lies in the interval –1 < u(t) < 0. 
Evidently, u(t) is defined on -1 < u(t) < 1 and so is an admissible control.  

Incorporating the control energy into (3.3), we have  
x& (t)  = k(x(t) – G(t))u(t)      (3.4) 

Describing the configuration of the distance between the state and the target by a family of curves f(t, x(t), 
u(t)); (3.4) becomes x& (t) = f(t, x(t), u(t) )    (3.5)  
which is a non linear dynamics. However using the method in [9] where f is such that 

   )(tAx
x
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, where A is an n × n matrix 

   ),(tBu
u
f =
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∂

 where B is an m × m; 

(3.5) becomes   x& (t) = Ax(t) + Bu(t)     (3.6) 
which is the model we are interested in.  
 
3.2 State trajectories  
 We have however provided a model describing the state of the act. To obtain the configuration of 
the trajectories of the state of (3.6), we consider the homogeneous part of (3.6) given by 
 

x& (t)  = Ax(t)      (3.7)   
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The matrix function X(t) such that ),,(),( stAXst
t
X =

∂
∂  and X(0) = I (identity matrix) is called the 

fundamental matrix solution of (3.6), and has the following exponential form X(t) = eAt such that the 
solution of (3.7) has the representation.  
    x(t) = X(t)xo = eAt xo      (3.8) 
where x(to) = xo, a given initial vector.  
 The origin (0,0) is the only critical point under the assumption that matrix A is non-singular that 
is, the determinant |A| ≠ 0. The graph of the vector equation (3.8) is the trajectory that starts at xo = (yo, 
zo). Because eAt can sometimes be complicated it may not be easy to picture such a trajectory. However, 
by similarity transformation of A, we obtain the diagonal matrix N. That is, we can find a non-singular 
matrix P such that P-1 AP = N.  N is simpler than A but still preserves the basic properties of A. By the 
same similarity transformation, we have that eAt = PeAtP-1 = PeNt P-1.  The trajectory equation x = eAtxo thus 
becomes P-1 x = eNtP-1.  If we set M = P-1x.  Our equation becomes  M = eNtMo.  
  (3.9)  
The equation M = P-1x can be viewed as representing a fairly simple transformation of the XY plane to 
MX- plane. This transformation maps the trajectory x = eAtxo onto M = PNt Mo.  The similarity 
transformation does not only preserve the basic properties of A but that of the system trajectory, thereby 
enabling us to obtain basic facts about the phase portrait of equation (3.6) through studying the phase 
portrait of equation. 

x&  = Nx        (3.10) 
where N = P-1AP.  
Note that the diagonal elements of N are the eigenvalues of A.  For a 2 × 2 matrix A, let these eigenvalues 
be λ1, λ2.  They are non-zero since |A| ≠ 0 and so we can write eNt as 
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te

iteNte
20

0
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λ
     (3.11) 

From here, we obtain in component form equation (3.9) as  
x = eλ1t xo, y = eλ2t yo     (3.12) 

 With these as parametric equations, λ  being the parameter, we can obtain possible trajectories of 
equation (3.6) vis-a-vis equation (3.9)  

For an illustration, obtain equations for the state trajectory of the system  
     x&  = Ax(t)     (3.13) 

where 







=

11

01
A , x&  = (x1, x2).  Re-writing the equation, we have 

     x& 1 = x1                (3.13a) 
     x& 2 = x1 + x2.               (3.13b) 
Let x1 = αeλx and x2  =  βeλt  where α, β are constants  
Evidently, λ = 1  (twice repeated) and so we have the parametric equations for the state trajectory as, x1 = 
0, x2 = et, where α =  0 and β set equal to 1.  
 Sometimes, certain equations yield themselves to direct integration, like equation (3.13) above.  
Integrating (3.13a), we have Inx1 = t + c = x1 = Aet. 
Assuming the solution of system (3.13a) passes through the point (x0, y0) at time t0, we have x1 = x0e

t.   
Substituting this result in the integration of (3.13b) we have the problem of finding the solution of the 
resulting linear equation x& 2 - x2 = x0e

t whose solution is given as etx2 = ∫x0e
2t dx + B, where B is a 

constant.   With the initial condition, x2(0) = y0, the solution becomes x2(t) = x0e
t + (y0 - x0

t)e-t.  The state 
trajectory therefore, becomes the pair of equations.  
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3.3 The question of controllability 
System (3.6) comes into play, when we want the trajectories to follow a desired pattern or to 

reach a certain target. In this case, we commence a search for a control function capable of transforming 
the initial state x(to) of system (3.6) to some desired final state xf in finite time. This, of course raises the 
question of the controllability of system (3.6). 
 Consider, our system of interest x& (t) =Ax(t) + Bu(t), where A is an n × n constant matrix and B is 
also a constant m x m matrix.  For any non singular matrix P of order n × n let x = Pz, then z is also a state 
vector.   Equation (3.6) can be re-written as  
   P z& = APz + Bu or as z&  = P-1APz + P-1Bu   (3.14)  
Set N = P-1AP and M = P-1B so that (3.14) becomes z&  = Nz + Mu, where N is a diagonal matrix and can 
be written as N = diag (λ1, λ2,.., λn) where λi  are the  eigen values of A.   Let us consider the simple case 
where m = n = 2, then equation (3.14) takes the form 
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Simplifying, we have  
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where b1
i  = max(bi1, bi2) for each i. bij are components of B.  It is seen from (3.15) that if b1

i, the ith row 
of M has all zero components, then z& i = λi zi + 0 and the control function u(t) has no influence  on the ith 
mode of the system, in which case the mode is said to be uncontrollable. And a system having one or 
more such modes is uncontrollable. On the other hand, where all the modes are controllable, the system is 
said to be completely state controllable.  
 To obtain controllability criterion for the system under study, we make B in equation (3.6) a one 
column matrix, b, of course the result obtained using the column vector b holds for the more general case.  
 Equations (3.6) and (3.14) then becomes  
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Q1 being a vandermonde matrix has all the columns linearly independent and is non-singular. 

Recall that bnAPbnNbAPbNAbpNbbpb 11
1
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−−=−−=−=−= L , so that 
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|]1|,|,|,[ bnAAbbQ −= L      (3.16) 
From the sequel, system (3.6) is controllable if the components of Q are not zero. This means that Q is 
non-singular and so has n linearly independent columns. The rank of matrix Q is therefore n. 

 Clearly, system (3.6) is controllable if nbnAAbbRank =− |]1|,|,|,[ L . In the general case, where 

the system is multivariate (B has many columns) ]1,,,[ BnAABBQ −= L  

nBnAABBrankRankQ =−= ]1,,,[ L     (3.17)  
provides a computable criterion for the controllability of system (3.6) credited to R E. Kalman. 
3.4 Conditions for interception of a moving target.  
 We shall now state conditions under which it will be possible to intercept a moving target where 
the target is either a moving point function or a compact set function.  
Theorem 3.1  
 Consider the system  
    x& (t) = Ax(t) + Bu(t)     (3.18) 
where A is an n × n constant matrix and B an m × n constant matrix.  Suppose  
(1) system (3.18) is controllable, 
(2) the set functions, reachable set R(to,t1), Attainable set A(t1,to) and target set G are compact then 

A(t) ∩ G(t) ≠ φ.  (That is, the interception of the target G(t)).  
 
Proof 
 Let G(t) be the target. We shall prove that there exists a control u, such that the state x(t,u) ε A(t) 
can be found G(t) in finite time.  Let un be a sequence in U.  Since U is compact, .lim unu

n
=

∞→
  Now x(t, 

φ, un) ε A(t) and x(t, φ, un) = x(t, φ, 0) + X(t, to) dssnusB
t

t
stX )()(

0

),0(∫  
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⇒ )0,()0,,(),,( ttXtxutx += φφ dssusB
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t
stX )()(

0

),0(∫ , since A(t) is assumed compact x(t, φ, u) = G(t) ε A(t).  

This shows that A(t) ∩ G (t) ≠ φ.  This completes the proof.  
Remark 3.2 

From theorem, (3.1), it is evident that the required control function must be able to steer the state 
into the attainable set as well as the target set. That is the condition that A(t0, t1) ∩ G (t1) ≠ 0. 
 
4.0 Discussion of results 

This study has not only provided a model for the pursuit and interception of a moving target, but 
has established conditions for the interception. It raises the following questions: what is the state 
trajectory to the target what is the choice of appropriate control function to steer the state of the system to 
the target what is the duration for the journey of meeting the target.  
4.1 Determination of state trajectory 
 For quick and vivid understanding of the analysis, we illustrate using the following optimal 
control problem. Consider the system.  
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x& = Ax(t) + Bu(t), x(0) = (x0, y0), {u ∈ Cm: ||u|| < 1}      (4.1) 
Cm is a unit cube in Em, the m-dimensional Euclidean space. Where A and B are given by  
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First of all, we test the system for controllability using Kalman’s criterion  
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Since the computated rank is the same as the dimension of the state space E2, we conclude that the system 
(4.1) is controllable on a finite interval [t0,t1]. (See [6] ). This shows that any target can be intercepted in a 
context described by the control system. The next issue to be addressed is obtaining the control capable of 
steering the state to the target at the shortest possible time. i.e. the optimal control u*  = sgnηT (X-1B); η ∈ 
E2 where X(t) is the fundamental matrix of the homogeneous part of system (4.1) given by  
     x&  = Ax(t)     (4.2) 
and X-1 (t) its inverse. That is, X(t)  is a matrix solution of (4.2) such that X(0) = I (identity). The 
exponential characterization of X(t) is eAt. Evidently  
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Clearly, (4.1) is normal since B is a column matrix, (see [6]) hence there exists optimal control that is 
unique and Bang-bang (maximum control power) as given below: 
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T is matrix transpose.  
For some non-zero vector η = (η1 η2)

 T.  We can easily calculate  
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and has only one switch between –1 and 1. The switch time is obtained by equating - η1t + η2 to zero to 
have t = η2/η1.  Evidently, the optimal control exists and is unique and Bang-bang. There is no loss of 
generality in assuming that the target is the origin.  
 To obtain the optimal trajectory therefore, we re-state system (4.1) and with u* = 1, we have  
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By the method of separation of variables, we have  cx
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which is a parabola with x2   increasing.  
 Taking the other value of the control, that is u* = -1, we have 
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Figure 1: arc, C1   (when u* =1) increasing optimal trajectory. 

By direct integration, we have cx
x

+−= 12

2
2 .  Since this solution passes through the initial point (x0, y0), 

we have  
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1 yxxx ++−=     (4.5) 

In this case x2 is decreasing  
 
   
 
 
 
 
 
 
 
 
 

Figure 2: arc C2  decreasing optimal trajectory 
Bearing in mind that we have to reach the origin which is our target, we start a search for the optimal 
trajectory. We can construct the optimal trajectory as follows.  
 
  
 
 
 
 
 
 
 
 
 

Figure 3: arc C3  optimal trajectory 
To lend concreteness to our: discussion here, let the initial point be (5, -1).  That is, x0 = 5, y0  = -1, 

starting with the choice of control u* = -1, from equation (4.4), we have )2
211(
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12112 xx −−= , since x2 < 0.  At the point of intersection, we change control to u = 1 and there 

x2 

x1 

(x0, y0) 
. 

x2 

(x0, y0) 

x1 

. 

x2 

u  = -1 

u = 1 
0 



Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 577 - 586 
Model for the interception of a moving target Vincent A. Iheagwam   J. of NAMP 

122 xx −=  (since 2
2

1 x
dx

dx
=  with the resulting curve passing through the origin) and so 

4
11

11114121211121211 =⇒=⇒=−⇒−=−− xxxxxx  then =−−= )
4
11(2112x  

 

).22(
2
1

4
22 −=−   From the point of intersection ).22

2
1,

4
11( −  of the two arcs, a straight line to the 

origin completes the pursuit.  
 The next and final question is: what is the total time taken for this pursuit to intercept the target?  
Solving the state equations (4.4), we have  

22
2
1

01)(2 =+−= yttx  so, 22
2
1

1 −=t  - 1 (since 10 −=y ),  

which implies 122
2
1 +=  (since time is positive.)   

Similarly, after switching to u = 1 traversing the curve c1  
12,21 == xxx &&   

from ).22
2
1,

4
11( − to the origin (0, 0) and solving for x2, we have  

)22
2
1

2)(2 −= ttx   

with )(2 tx  now 0, we have  

22
2
1

2 −t  = 0 .22
2
1

2 =⇒ t    

The total time taken for the pursuit is  








 +−
=+ 22

2
1

2
222

21 tt = 122
2

22222 +=++
. 

From the foregoing, the capture problem is an illuminating application of the theory of optimal 
controllability.   
 
5.0 Conclusion 

This study furnishes a model governed by an ordinary control system for the interception of a 
moving target. It is evident from the model that the primary concern in the pursuit for the interception of a 
target is the state of the weapon and the control energy requirement. The control energy should be such 
that has the potential of steering the state from its initial position through the phase portrait described by 
the moving target to reach it. This is communicated by the assumption that A(t) ∩ G(t) ≠ φ. This condition 
in other words is the controllability of the system.  Clearly (3.17) provides a computable criterion for the 
interception of a moving target in the context described by an ordinary differential autonomous system.  
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