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Abstract

Sufficient conditions for the Euclidean null controllability of
perturbed infinite delay systems with limited control are developed. The results
are established by placing conditions on the perturbation function which
guarantee that, if the linear control base system is completely Euclidean
controllable, then the perturbed system is Euclidean null controllable with
limited control.
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1.0 Introduction

Due to the fact that actions and reactions take time toeff&et in real-life problems, one often
introduces time delays in the variables being modeled. This pitdts delay differential and delay
difference equations, which are special class of diffedlemtipuation called functional differential
equation. The study of functional differential equation has applicatipopulation dynamics, conveyor
belts, metal rolling system, urban traffic apapacity management etContributors in this field of
study include Hale [11], Driver [9], Lakshmikantham [15], Aiello and Freedrbpn [

Controllability problems for such linear and nonlinear delay modele baen the subject of
many investigations. In particular relative controllabila§ linear and nonlinear delay systems with
limited and unlimited controls has been studied by Davies [7], Deckal@Bhka [12, 13, and 14]. Others
who reported researches are on null controllability of delayesys, they include Chukwu [3, 4], Eke
[10].

However, for controllability of infinite delay systems, not indtas been reported. Sinha [16],
developed sufficient conditions for the null controllability of hoear infinite delay systems with
restrained control. Balachandran and Dauer [2] developed suffa@adttions for the null controllability
of a nonlinear infinite delay system with time varying multiple gela the control. Davies [6] developed
sufficient condition for the Euclidean controllability of infinite aglsystems with limited control.

In this paper, we shall establish sufficient conditions for Enelidean null controllability of
perturbed infinite delay systems with limited control. Tlil extend the work in Davies [6] of the form
(2.1) to its perturbation of the form (2.2). The research aitrshowing that, the uniform asymptotic
stability of the uncontrolled linear base system and the progenidbe controlled linear base system
guarantee the Euclidean null controllability with constraints haf perturbed system under certain
conditions onf .
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20 Basicnotationsand preliminaries

Let E denote the real line ant= [to, ti] an interval inE . For a positive integar, we denote by
E", the space of real-tupples with the Euclidean norm denoted by |.|. ke h>0 pe given real
numbers { may be+oo). The functiom: [-y, 0] — [0, ] is Lebesgue integrable ory[-0] positive and
non-decreasing onyf-0]. LetB = B([-y, 0], E") be the Banach space of functions which are continuous

and bounded or{-y0], and such thaip|=  sup |¢;(0)|+j9y/7(9)¢(0)d0 < o, for any
60[-h,0]

X:[t=-yt] - EN

Let x: [y, 0], E" be defined byxt (6) =x(t+8), 8011[-y 0] . Let Wz(l) denote the Sobolev
spacevvz(l) ((-h,0], EM) of functions@:[—-h,0] = E" whose derivative are square integrable.

We consider the infinite delay system given as
X(t)=L(t, %) +C(t)u(t) +] 900 A@)x(t+68)db (2.1)
and its perturbation
X(t)=L(t, %) +C(t)u(t) +[ 900 A@)x(t+8)dE + T (t, x(t), x(t —7),u(t),u(t — 1))

X(t) = ¢(t), tO(=0,0] (2.2)

N
where L(t,p) = X Ak ¢(-tk) (2.3)
K=0

satisfied almost everywhere ditQ,t1]. L(t,#) is continuous int, linear in ¢. Ak is a continuoufl X N

matrix function forO<tk <7, A(d)is an N X N matrix whose elements are square integrabl€ oee 0]

and C(t) is a continuousn X M matrix function. The n-vector functiorf is continuous and absolutely

continuous. The controlg are square integrable with values in the unit @y ={ uDe™M: ul <1,j =1,
...,m} The variation of constant formula for systeml(2by Davies [6] and all its necessary assumpson i

X(t,u)= X (t,tg) @(0) +| % X (t,s)C(s)u(s)ds
o t% X (t,5)] O A@)x(t +8)dods @4)
where X satisfy the equation:;—t X(t,s)=L(t, Xt ((B)), t=s

0, s—-7<t<s
X(t,s) =

[, t=s
and Xt (s)(6) = X(t+8,s), —1<6<0 .

The corresponding result for (2.2)taF t; is given by
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x(t,u, f)= X (t,tg) @) +| t% X (t,s) C(s)u(s) ds

+j % X(t,9)[ O A@)x(t +6)d6ds 5

+] t% X (t,s) f (s, X(s), X(s = 7),u(s),u(s—7) ds

For simplicity of notation leY (t,s) = X (t,S)C(S). We now give some definition upon which our
study hinges
Definition 2.1

The controllability matrix of system (2.2)is given by W(t1) = | t% Y(t, S)YT (t,s)ds where T

denotes the matrix transpose.
Definition 2.2

The Reachable set of system (2.1)is given by R(t1,8) = { It% X(t,s)C(s)u(s) ds} .

Definition 2.3

@

n
System (2.2)is Euclidean controllable if for each CDDWZ » XIUE™, thereexistsa t] > tg
and an admissible control Usuch that the solution X(i1,tg,¢,u, f)of (2.2) satisfies

xg(to, @ u, f)=@and X(t,t,, U, f)=x
Definition 2.4
The system (2.2)is Euclidean null controllableif X; = O in Definition 2.3.

3.0 Controllability results
Here, we give theorems which will summarize our result on Euclideanamitibdlability of the

system (2.2).
Proposition 3.1
The control system (2.1) is proper in E" on the interval [ty,t,] if and only if

rank Qn (t1)=n.

Proof
This is Theorem 2.1 of Davies [6] [}
Proposition 3.2

System (2.1) is proper on [ty,t,], t, >t if and onlyif the originisan interior point of R(t,) .

|
Proof
This is Theorem 2.3 of Davies [6] u
Proposition 3.3
The system (2.3)is completely Euclidean controllableon [t,,t,] if and only if W isnonsingular.

Proof
The proof can be observed from proposition 3.1 of Dauer and Gahl [5] |
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4.0 Main result of this paper
Theorem 3.1
In (2.2) assume that
) (2.1) (vith u =0) isuniformly asymptotically stable
(i) (2.1)is completely Euclidean controllable

(i) @00 ="ftgy+ftg

(o]
and|| f1(t,¢) | < (1) D(t. @), | f2(t.@) | <O0| D(t.@)| where M = | 7(t)dt <o
to
(iv) f ¢€,00,00=0
Then the system (2.2) is Euclidean null controllable with constraints

Proof
Suppose that the solution of (2.2) witq (Llty,u, f) = ¢ satisfies x(t;,u, f) =0 for some

ullU , then by (2.5)
0= X (t,t0) @(0) +] %Y(t,s)u(s) ds+ | % X (t,5)[ O, A@)x(t +6)dads

+ | t% X (t,s) f (s,%(s),X(s=7),u(s),u(s—7) ds
so that

X (t,t0) @(0) = — | %Y(t,s)u(s) ds- | t% X (t,s)] O A@)x(t + 8)dbds

- t% X(t,s) f (s,x(s),x(s—T1),u(s),u(s—r)ds
Recall the definition ofR(t,, S) and now define
Y1) = {—j t% X(t,s) f(s,x(8),x(s—1),u(s),u(s-r)ds:udU }

If we now set

~1 By, 9us)ds— [ L Xt 9)] O A@B)x(t+6)dads
V=1 O 0

- t% X(t,s) f(s,x(s),x(s—1),u(s),u(s—r)ds: ulu

Then V(1) DRt D+Y(t1 )
By definition, the domai of null controllability of (2.2) is the collectiog [JC of all initial functions
such that, there exist and ullJU such that the solution of (2.2) witk, (t,, @ u, f)=¢ satisfies
X(t,t,,@u, f)=0. By (ii) and Proposition 3.200int R(t; 1)) and so there is an open b&8lsuch that
O0SOR(ty.]). HenceS+Y(t, ) is a ball around(ty 1) .
Therefore,00Y(t1,) Oint V(t1 1), for t >1, so thaDUint D, suppose that0Oint D . Because of (iv),
00D, hence there exist a countable sequdigeg,” [ C such thatgy — 0 asi — o andg; O D for
any i sothatg # 0. Let x(t1,4.,0) =&, then, sincep;TD for anyi, Dx(t1,¢,u) # 0 for anyi so, by
the variation of constant formula, we have a sequence
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&10E™no ¢ isinV(t,]) foranyt, & — 0 asi — o, thereforeOOintV(t,,1); a contradiction.
This contradiction shows th&int D . Therefore there exists a bdl, around the origin contained in
D such tha® O B OintD . By (i) and (iii), every solution of the system.

X(t)=L(t,x)+] 900 A@)x(t+8)da+ f (t,x(t),x(t—71),0,0)
(which is a solution of (2.2) witlhu = 0) satisfiesx(t,0) - 0 ast — «. Hence at soméy <o we have
Xto (0 OB2. Therefore for somaiJU , and somg, >t,, the solutionx(tg,xt2 @0),u, f)of (2.2)
satisﬁesx(tg,xt2 ,u, ) =0, proving the theorem. [ |

Corollary 3.1
For system (2.2), assume that
(1) The zero solution of (2.1)with u = O isuniformly asymptotically stable.

()  rankQ,(t)=n
(iii) f(t,8,00=f o+ 1,1

0]
and||f1(t, @) < (t)| Dt )|, |f2(t, @] <0| D(t, )| where M = [ 7(t)dt < co
to
(iv) f(t 0,0 00) =0
Then system (2.2)is Euclidean null controllable with constraints. [

Proof
Immediately from Theorem 3.1 and Proposition 3.1

40 Example
Consider the system.

X(t) =A0X(t) + AX(t—7) + Cu(t) +co O, expir@)x(t + 6)d8 @1
and its perturbation
%(t) = Agx(t) + ApX(t—7) + Cu(t) +cof O exp@)x(t + 6)d8
1
1+t2

_[01], _[00]a_T0 _foo
where Aq = [—1 —2}’ AL = [0—1}0‘ [1] Co = [o —1}

f= ( 1 [ sin(x(t) + x(t = 7)) cos(u(t) +u(t - 7))] x(t - r)j

1+t?
The uniform asymptotic stability and the Euclidean null controllabilitthefsystem (3.1) have
been shown by the author [6]. Moreovef (t, X(t), X(t = 7), 0,0)| < 72(t)| x(t - h) | where

+

[sin(x(t) + x(t - 7)) cos(u(t) +u(t - 7))] x(t - 7) (4.2)

1 _00 B _1 (o] _ T _

and M= dt—[tan t} =—<o also, f(t,0,0 0,0)=0. Hence all the
1+t 01+t 0 2

conditions of Theorem 3.1 are satisfied and so we conclude ystans (3.2) is Euclidean null

controllable.

mt) =
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5.0 Conclusion

We have developed and proved computable criteria for thedeadlinull controllability of
perturbed infinite delay systems with limited control. Thesaditions are given with respect to the
stability of the free linear base system and the coabititly of the linear controllable base system, with
the assumption that the perturbation function satisfies some sms®thnd growth conditions. An
example is also given.
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