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Abstract 
 

A Mathematical model of the pressure equation was obtained and 
solved to show the effect of pressure as a load on the basilar membrane 
deformation (motion) and that the basilar membrane motion is in opposite 
direction to pressure (load) application on it. This means that when pressure is 
exerted on the basilar membrane, it pushes it down and vice versa. This 
movement of the basilar membrane also results in the movement of the Oval 
and Round windows which also move in opposite direction relative to the one 
another as well as to the load exerted on the basilar membrane. As expected, it 
was seen that the pressure difference at any point inside the cochlea and thus 
the basilar membrane is a function of the location of interest since x1 and x3 
are implicated in the expression for the pressure difference. 

 
 
 
1.0 Introduction 

This paper presents a mathematical model on the mechanism of transmission of the noise in the 
ear through the fluid found in the inner ear. We define noise here as the sound that cause discomfort to the 
hearer but this definition is not scientifically enough as noise to one person may not be so for another, 
Chalupnik (1977 [5]). Therefore, put more scientifically, noise can be defined as sound that measures 
above 85db (db means decibel, the unit of measurement of sound). Most noise come as irregular 
vibrations. Every sound has two major aspects which are the frequency or pitch and the intensity or 
amplitude, Cheremisionoff, P.N and Cheremisionoff, P.P (1978 [6]). The frequency is determined by how 
rapidly the generated sound wave s vibrates. In terms of the sound intensity, the human ear has a wide 
range to which it can be exposed. The range is from one billionth (10-9) Watt to 107 Watt. Silence which 
we describe as the arbitrary threshold level of sound is represented by zero decibel while the faintest 
sound audible to the human ear is represented by 1db. 
 The greatest physiological effect of noise in a man is temporary deafness or permanent hearing 
loss, Rau and Woolen (1980 [19]) and increase in blood pressure. Other effects are discomfort, tiredness, 
stress and feeling of irritation, aplynopsys (inability to sleep), low blood resistance to diseases and many 
more others. Noise has been implicated as one of the causes of  
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Ulcer and the allergies like hives. It can also lead to somatic manifestations such as gastric acid problems. 
In particular,, temporary exposure to noise can lead to impairment in hearing which is termed auditory 
fatigue while exposure to noise for a very long time without enough time for recovery usually lead to 
permanent hearing loss. 

In general therefore, we see noise as a multidimensional problem because of multiple ways it can 
be interpreted and understood. Hence, a proper mathematical model and analysis of noise involves 
associating a random variable with multidimensional physical processes causing the noise. 

 
2.0 Mechanism of hearing 

The details of the structure of the ear can be found in the work of Adagba [1], Burtons and 
Hopkin [4]. For a given sound to be heard there must be the presence of air medium. Thus when a sound 
is generated, it results in generation of waves as a result of the vibration of the object that produced the 
sound. These sound waves are collected by the pinnae and directed through the external auditory meateus 
to impinge on the tympanic membrane or the ear drum. This vibrates the eardrum and then passes the 
energy of vibration , which is the pressure, on to the middle ear. The middle ear is open to the throat 
through the Eustachian tube so that the air pressure through this tube equalizes the air pressure on both 
sides of the eardrum and then the transfer of the energy of vibration ( the pressure ) from the outside of 
the eardrum to the middle ear is possible. At the middle ear, we have a series of three bones which help in 
the transfer of the vibrations coming from the outer part of the eardrum to the inner part. These bones are 
the malleaus, incus and stape. These bones are connected such that they connect the tympanic membrane 
with the oval window of the cochlea which is the organ where the vibrations are again converted into 
energy impulse. In the cause of conducting the vibrations to the cochlea by these bones, the vibration is 
increased in strength or rather amplified. It is known that sound pressure received at the tympanic 
membrane are relatively lost as most is transmitted at the cochlea where they are amplified to a 22-fold 
greater pressure, Burtons and Hopkin (1983 [4]), Wegel et al (1932 [22]), Wever and Lawrence (1930b 
[23], 1950a [24]).  the mechanical forces that are transferred by the bones of the middle ear are 
transformed into the hydraulic pressure when the stape strikes the oval window. Since the oval window is 
filled with fluid, this pressure applied to the oval window by the striking of the stape is transmitted 
through this fluid which eventually causes a vibration of the basilar membrane, a slight structure which 
extends from the cochlea to the auditory nerves and totally lying in the fluid. This region of the ear is 
called the inner ear. The basilar membrane has Hair cells on its surface such that the vibration of the fluid 
and thus the basilar membrane produces shearing movement between the hair cells and the tectoral 
membrane of the organ of Corti. This initiates wave impulse in the fibres of the auditory nerve. It is 
generally agreed that sound waves are analysed at the cochlea and that each frequency has its own place 
in the basilar membrane. The auditory nerve will then send this received impulse to the brain for 
interpretation and subsequent response to it. Mathematically we shall not go into how we respond to this 
noise here but rather we shall look at how this noise is received and how the ear structures respond to it.  
 In this paper therefore, we wish to draw a mathematical model on the pressure (Vibration) on the 
Cochlea as a load on the basilar membrane. We will show how this pressure deforms the basilar 
membrane which results in impulse generation and the subsequent transfer to the brain through the 
auditory nerves for interpretation. 
 
3.0 The fluid mechanics of the Cochlea as a result of external pressure. 

As stated earlier, the cochlea is the part of the inner ear which is a small fluid-filled chamber and 
contains the biological structures that converts mechanical signals into neural signals. In addition to the 
signal conversion, it does process signals. Thus, a clear understanding of the mechanism requires that we 
understand the cochlea fully as it relates to audition; Lesser and Berkkley (1972), Ranke (1950b [18]) and 
Lamb (1904 [12]). 
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 To model the pressure on the Cochlea as a load on the basilar membrane which is inside the 
cochlea, the following points and assumptions are noted: 
1. The model is a two dimensional model in an enclosed cavity containing a structure of spatial 
variable elastic properties. 
2. The spiral cochlea is unwound 
3. The central duct in the cochlea which contains the organ of Corti and which is enclosed by 
Reisner’s membrane and basilar membrane will be represented by a single elastic partition. 
4. The mechanical properties of each partition are represented by the assumption that each point acts 
as a damped harmonic oscillator point to point, coupling being only through the surrounding fluid. This 
assumption leads to representing the partition by a mechanical impedance z(x1 ,w), x1 being the distance 
from the oval window along the partition. 
5. The endolymph is considered incompressible for it has the same sound speed as water, which is 
likely, the wavelength of an acoustic signal at 500Hz ( at high frequency for hearing ) is about 30 cm 
while the cochlea is only 35cm. 
6. The fluid flow will be considered inviscid though we shall regard this as a first step in an 
expansion procedure. 
7. The endolymph is considered inviscid 
8. One point that is needed to be remembered is the fact that the motion of the basilar membrane is 
small, a displacement of about 10-6cm corresponds to normal amplitude of sound. 
9. Man can detect sound corresponding to the basilar membrane and eardrum displacement of 10-

10cm. Also known is the fact that non-linearity does exist in mechanics, though many of these are to 
become noticeable over a long period of time. The works of Goldstein (1967 [8]), Goblick and Pfeiffer 
(1969) in electrophysiology include the presence of non-linearities in cochlea mechanics. 
10. There exists non-linearity caused by eddy in the cochlea and this is different from the above 
linearity talked about. This eddy called the Bekesy eddy, is understood as resulting from the combination 
of viscous and non-linear effects. 

From all these, we have that the flow pattern in cochlea model excited by an oscillatory 
disturbance, which is the original pressure exerted on the tympanic membrane by the sound that was 
generated, exhibits a steady streaming motion as well as motion typical of a fluid with a free surface. As 
the excitation is purely oscillatory, the steady motion must result from a non-linear interaction, Morse 
(1948 [16]), Pain (1976 [17]) and Rhode (1971 [20]).  
 
4.0 The mathematical model. 

To be able to get the required model that will describe the cochlea mechanics, we assume that the 
basilar membrane motion is caused by the pressure exerted on it which we considered as a load and is 
primarily controlled by potential flow. Physical measurements by Von Bekesy (1947 [21]) shows that the 
maximum basilar membrane slope is sufficiently small and this supports the linearization of the equations 
involved. Our model here is for an enclosed two-dimensional cavity and the basilar membrane appears in 
it as a thin plate immersed in the fluid in the cavity. We shall consider the linear short-time scale aspect of 
the cochlea behaviour. Thus, for the figure below, we assume a linearised two-dimensional potential flow, 
that is: 
 
 
 
 
 
 
 
 



Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 557 - 570 
Load on the Basilar membrane       G. C. E. Mbah and O. H. Adagba J of NAMP 

 
Figure 1: Potential flow model of the Cochlea 

 
We denote the upper domain where x3 > 0, with the subscript 1 while for x3 < 0, we use the subscript 2.  
 Using the work of Green and Naghdi (1967), the equation of motion of such plate is given by: 
  33,33 uFu &&ρα αα =+     (4.1) 

where α3 is the elastic constant, ρ is the mass density of the membrane, u3 is the velocity of the vibration 
of the membrane while F3 is the load on the membrane which can be viewed as external forces acting on 
the membrane. The equation of motion characterizing the flow of a non-viscous incompressible fluid in 
such cavity is given as: 
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where ρ is the fluid density, Pi is the fluid pressure, i = 0,1,2 and the U and V are the velocities on both 
axes.  Since the flow motion of interest is that motion with small amplitude, we neglect the product terms 
in equations (4.3) and (4.4) and we obtain 
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We shall assume a velocity potential Ф such that ),( VU=Φ∇  where VandU  are the x1 and x3 fluid 
velocity components and equation (4.2) is satisfied. 
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Now, 

 








∂
Φ∂

∂
∂=









∂
Φ∂

∂
∂=

∂
∂

txxtt

U

11
   (4.7) 

 








∂
Φ∂

∂
∂=









∂
Φ∂

∂
∂=

∂
∂

txxtt

V

33
    (4.8) 

If we substitute 
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This implies that in the upper and lower chambers,  
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Substituting equations (4.7) and (4.8) into equations (4.5) and (4.6) gives us : 
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Thus, we have the pressure equations in the upper and lower chambers as 
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Having derived these equations, let us then solve the equations to be able to carry out some analysis and 
discussions of the results. 
 
5.0 Solutions of the pressure equation and the equation of motion of the fluid 
 The equations of the motion of the fluid in both chambers was given as 
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We therefore seek for its solution by noting that this is a well known Laplacian equation and that the field 
variables will be proportional to eiwt = est . In this case therefore, we write: 
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so that the equations of motion as well as the pressure equations become: 
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Thus the solutions of the Laplace’s equations are known to be of the forms : 

 ( )( )31311211)3,1(1 xSinhBxCoshAxSinkxCoskxx λλλλ ++=Φ   (5.1) 

 ( )( )32321211)3,1(2 xSinhBxCoshAxSinkxCoskxx λλλλ ++=Φ    (5.2) 
These solutions and their derivatives with respect to x1 are finite and continuous at all points except 
possibly at some points on the boundary of the field. Thus, the smoothness of the velocity distribution is 
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ensured at all points of the fluid except at these points stated; Barbel et al (2002 [2]), Bell and Holmes 
(1986b [3]), Gupta (1987 [10]), Harold (1982 [11]). 

 Now the boundary conditions on Φ  at x1 = L and x3 = l is: 

0
3

2,3

0
3

1,3

0
1

2

1

1,1

=
∂
Φ∂

−=

=
∂
Φ∂

=

=
∂
Φ∂

=
∂
Φ∂

=

x
lxAt

x
lxAt

xx
LxAt

 

Now =
∂
Φ∂

1

1

x
(-λk1Sinλx1 + λk2Cosλx1 ) (A1Coshλx3 + B1Sinhλx3 ).  So that at x1 = L, we then have

 0 = -λk1SinhλL + λk2CoshλL and for λ ≠ 0,  

we get that  k2 = 
LCos

LSink

λ
λ1 s     (5.3) 

Similarly, on x3 = l, we have 

( )( )31311211
3

1 xCoshBxSinhAxSinkxCosk
x

λλλλλλ ++=
∂
Φ∂

 

lCoshBlSinhA λλ 110 +=⇒  

that is, 
lCosh

lSinhA
B

λ
λ1

1
−

=     (5.4) 

Substituting equations (5.3) and (5.5) into equation (5.1), we get 
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Equations (5.7) and (5.8) are the solutions of the fluid equation in potential form where the velocities can 
be determined very easily. The term Coswt is to take care of the fluctuation with respect to time. If the 
noise is not a function of time in which case t can be assumed to varnish, then Cos0 = 1 and we have our 
equations (5.5) and (5.6) still describing our potentials at both  
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sides or chambers with appropriate substitution for λ. Now for the pressure as a load on the Basilar 
membrane, we solve to get the expression for the pressure equations from the equations: 
 0,0 2211 =Φ+=Φ+ sPsP ρρ .     (5.9) 

From this equation, we get that ( )2121 Φ−Φ=− sPP ρ . 
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The pressure difference at any point inside the cochlea is given by: 
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Now using the fact that 102 PPP −= , the problem as presented can be simplified by redefining the 
arbitrary time function in the introduction of the velocity potential. Thus, for region 2, where - l < x3 < 0, 
we have: 
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Substituting this in equation (5.9) we have that: 
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For the vibrations in the Oval and Round windows, we had earlier obtained the expressions, Mbah and 
Adagba (2006 [15]),: 
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for the upper chamber and 
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for the lower chamber. 
The motion of the basilar membrane which is equivalent to the basilar membrane deformation, 

equation (4.1), as a result of the exerted pressure (which we call the load ) is given as, Mbah and Adagba 
(2006 [15]): 
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which can be simplified further as: 
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This is oscillatory with two traveling waves, one in the positive direction and the other in the negative 
direction but with the same speed, Jeffery and Jeffery (1956), Milkilin (1970), Murray (1977).  However, 
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6.0 Analysis and discussion of the results 
 We have seen how the pressure exerted on the tympanic membrane as a result of the noise is 
transferred to the cochlea which then formed the load on the basilar membrane that eventually enables the 
transmission of the noise to the Brain for interpretation. Equation (5.1) is the net pressure on the basilar 
membrane so that if -β = λ, then the equation becomes: 
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This is the net pressure (Load) on the basilar membrane and it pushes the basilar membrane downwards 
thereby increasing the pressure in the scalar tympani and bulges the round window outwards as seen in 
the Figures 2 and 7 respectively. We can also see from these figures that a negative pressure draws the 
basilar membrane upwards such that these alternations cause the vibration.  
 In terms of this pressure, equation (6.1), we can write the deformation of the basilar membrane 
as: 

 
ρα

ρ
α
ρ

ρα
ρ

α
ρ

2

),1(

3
tanh

32

),1(

3
tanh

3
),1(3

txP
lw

w

txP
lwwtxU −=−=  (6.2) 

 This shows that if the net pressure is negative, the deformation of the Basilar membrane, u3(x1,t ) 
is positive. This means that the basilar membrane is pushed upwards if the pressure from below the 
basilar membrane exceeds the pressure from above and vice versa. See the basilar membrane motions as a 
result of the pressure exerted on it as shown in Figures 1, 2 and 4. Figures 3 and 5 show the pressure 
effect on the cochlea. 
 For the motion of the Oval and Round windows shown as equations (5.16) and (5.17), we can see 
that we can rewrite them in terms of the Pressure equation. Their motion as earlier said will be such that 
ξ1 will be in opposite direction with basilar membrane motion while ξ2 will go in the same direction, see 
Figures 6 and 7  
 The major results obtained from this study therefore are: 
1. We obtained the expression for the load on the basilar membrane which we called the net 

pressure. 
2.  We showed that if the basilar membrane deformation expression u3(x1,t) is written in terms of the 

pressure (load ) expression, then the basilar membrane motion is in opposite direction to the 
manner of exertion of pressure on the cochlea. 

3.  We showed that the Oval window motion ξ1 moves in opposite direction to the pressure exertion 
while the round window moves in the same direction as the pressure is exerted. 

4.  An expression for the pressure difference at any point inside the cochlea was also obtained and it 
is found to be dependent on the location of the point 

 Concluding therefore, we may say that noise effect in the ear is transmitted effectively in the 
Cochlea through the fluid in which the exerted pressure due to the noise impinges on the basilar 
membrane as a load. The basilar membrane is immersed in the fluid and the rocking of the foot of the 
stape on the Cochlea transmits the noise to the fluid in the cavity in the form of vibration. It is this 
vibration that sets up this motion in the fluid as well as the basilar membrane deformation. Therefore, 
whether the hearing ability in an individual is lost or not does not in any way affect the establishment of 
fluid motion in the Cochlea and thus load on the basilar membrane once there is noise or even sound 
entering the ear. However, the load level on the basilar membrane affects the elasticity of the microvilli, 
the HC and in general, the basilar membrane performance of its function in audition. 
6.1 Deformation of the Basilar membrane 

Choosing values for the variables as:
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6.2 Load on the basilar membrane (Net Pressure)
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Figure 1: Deformation of the membrane at different times. 
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Figure 2: The pressure on Basilar membrane over time 
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6.3 Component pressure in the Cochlea 
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Figure 3: Pressure on the Cochlea over time 
 
6.4 Deformation of the Basilar membrane along the x-axis 

Choosing values for the variables as below, we obtain the graph: 
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Figure 4: Pattern of membrane deformation 
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6.5 Net pressure in Cochlea 
We demonstrate the pattern of pressure exertion on the Cochlea using the values given below for 

the variables: 
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Figure 5: Pattern of pressure exertion on the Cochlea 
 
6.6 Displacement at the oval window 

Using the values for the variables as given below, we obtain the graph for the displacement at the 
Oval window over time as: 
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  Y    Time 

Figure 6: Pattern of displacement at the oval window over a period of time 
 
6.7 Displacement at the round window 

Using the values for the variables as given below, we obtain the graph for the displacement at the round 
window over time as: 
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Figure 7: Pattern of displacement at the round window over a period of time. 
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