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Abstract 
 

 The paper studies the unsteady free-convection flow near a moving 
infinite flat plate in a rotating binary mixture of an incompressible fluid. Both 
Soret (thermal diffusion), Dufour (diffusion-thermo) and radiation effects are 
considered when there is no chemical reaction. By imposing a time dependent 
perturbation on the constant plate temperature and concentration and 
assuming a differential approximation for the radiative flux, the coupled non 
linear problem is solved for the temperature and the concentration. First a 
critical value for the Soret was determined as 0.10 and the effects of Dufour, 
Soret and radiation show that while both Dufour and Soret have no effect on 
the temperature field, they both affect the concentration field with the Dufour 
causing an overwhelming increase and the Soret just a slight decrease. 
Furthermore radiation decreases both the temperature and concentration 
field. 

 
 
1.0 Introduction 

The study of heat and mass transfer to unsteady free-convection hydromagnetic rotating flows 
have been carried out because of its vast application in MHD power generators and hall accelerators [1], 
in re-entry problems [2], in astrophysics, meteorology and engineering [3-8]. For example Bestman, 
Alabraba and Ogulu [2] investigated the fully developed hydromagnetic flow of a slightly rarefied gas 
with radiative heat and mass transfer in a vertical channel as a model for space shuttle re-entry. Recently 
Israel-Cookey and Alagoa [4] analyzed the effects of magnetic field, radiation, free convection and 
frequency on the rotating boundary layer flow. Also the three authors Alabraba, Bestman and Ogulu in 
two other papers [6,7] studied the hydromagetic thermally radiating flow of a binary mixture with 
attendant Dufour and Soret effects associated with mass transfer. The analysis was carried out with the 
fluid chemically inert [6] and then chemically reacting [7]. 
 In another study Bestman and Adjepong [3] tackled the problem of three dimensional MHD free 
convection flow with radiative heat transfer past an infinite moving plate in a rotating incompressible 
viscous and optically transparent medium by making fairly realistic assumption. Due to high temperatures 
involved, its application in astrophysical studies cannot be overemphasized. What this research ignored 
was mass transfer with its attendant Dufour and Soret effects. 
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This paper therefore complements the work of Bestman and Adjepong [3] by incorporating mass transfer 
in a hydrogen-air mixture as a non chemical reacting fluid pair. 
 
Nomenclature 

(u’,v’) dimensional velocity components  1−=i  
(x’,y’,z’) dimensional Cartesian coordinates  E rotation parameter 
k thermal conductivity    M2 magnetic parameter   
g gravitational acceleration   Gr  free convection parameter due to temperature 
cp specific heat at constant pressure   Dm mass diffusivity 
Dm mass diffusivity    Sf Soret parameter 
T’   dimensional temperature    Sc Schmidt’s number 
C’ dimensional concentration 
T∞  reservoir temperature     Greek symbols 
C∞ reservoir concentration   σc electrical conductivity 
Tw constant plate temperature   µ magnetic permeability 
Cw constant plate concentration   υ  kinematic viscosity 
Tm mean temperature    β coeff. of volume expansion for  temp. 

zq ′′   radiative heat flux    ζ coeff. of volume expansion for conc. 

q complex velocity    ε small parameter 
kB Boltzmann constant    η constant exponent in the Arrhenius term  
H0

’2 constant transverse magnetic field  χ  concentration susceptibility 

Tk  thermodiffusion constant   ε′ dimensional activation energy 

2
rk′   constant associated with chemical  ε  dimensionless activation energy 

 reaction in the Arrhenius term  Ω plate angular velocity 
Pr Prandtl number    ρ∞  reservoir density 
R radiation parameter    α absorption coefficient 
Df Dufour parameter    σ Stefan Boltzmann constant 
 
2.0 Mathematical formulation 
 The physical model for three dimensional incompressible unsteady flow past an infinite vertical 
heated flat plate which moves in its own plane along the positive x’ direction with velocity U0 and rotates 
about the z’-axis with angular velocity Ω as shown in Figure 1. The plate temperature and concentration 
are maintained at )](1[ tfwT ′+ ε  and ( )[ ]tfwC ′+ ε1  respectively in which Tw  the constant plate 
temperature is high enough to provoke radiative heat transfer, f(t’) is an arbitrary function of time which 
for this problem will be taken as a Heaviside step function ( ) ( )tHtf ′=′ . 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The physical model and coordinate system 
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A constant transverse magnetic field is applied in the z′ direction and under the usual Boussinesq 
approximation [9], the basic equations governing the physics of the problem following the argument of 
Tokis [5] and Alabraba [6] are 
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where on  z′ = 0: u′ = U0, v′ = 0, T′ = Tw[1 + εf(t′)], C′ = Cw[1 + εf(t′)] 
z′ → ∞: u′ = v′ = 0, T′=T∞ , C′ = C∞              (2.6a,b) 

Equation (2.5) is the differential approximation for radiation in one space coordinate z′.  For optically thin 
medium with relatively low density where α « 1, Equation (2.5) in the spirit of Bestman et al [3] becomes 
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Equations (2.1) - (2.4) subject to equations (2.6) and (2.7) become 
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where we have introduced the following dimensionless quantities 
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Equations (2.8) - (2.10) are subject to the boundary condition 
z =0: q = 1, θ = θw[1 + εH(t)], C = Cw[1 + εH(t)] 

  z →∞: q = 0 , θ = 1 , C = 1              (2.11a,b) 
q = u + iv  
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The heat and mass transfer problem therefore entails the solution of equations (2.9) and (2.10) subject to 
equation (2.11). 
 
3.0 Method of solution 

Equations (2.9) and (2.10) are highly nonlinear and so will involve a step by step numerical 
integration. However if ε in equation (2.11) is small, we can advance analytical solution by adopting 
regular perturbation expansion of the form  

q = q(0)(z) + εq(1)(z,t) + … 
  θ = θ(0)(z) + εθ(1)(z,t) + …       (3.1) 
  C = C(0)(z) + εC(1)(z,t)+… 
Substituting equation (3.1) in (2.8) - (2.10), ignoring 0(ε

2) and simplifying, we get the zero order 
equations as 
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z = 0: q(0) = 1, θ(0) = θw, C(0) = Cw 
z→∞: q(0) = 0, θ(0) = 1, C(0) = 1               (3.5a,b) 

and the first order equations as 
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0,0)1()1()1(:0 fzCqt ==== θ ,             (3.9a,b,c) 
Thus by asymptotic expansion for the flow velocity, temperature and concentration, the problem is split 
into a steady flow on which is superimposed a first order transient component. 
In the absence of chemical reaction equation (3.4) is rewritten as 
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which when combined with equations (3.3) and (3.5) give the solution for θ
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Also integrating equation (3.10) twice and combining with equation (3.5) gives the solution for C(0) as 

   ( ) ( ) ( )wfwf SCSC θθ ++−= 00                (3.12a) 
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Imposing the boundary condition equation (3.5b) on the last equation gives an expression for Cw as 
   wffw SSC θ−+= 1                 (3.12b) 

The solution for q(0) can therefore be got from equation (3.2) as  
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To solve equations (3.6) - (3.8) we take Laplace transform with respect to time, representing the 

transformed variable by s and placing a bar over the transformed function, the equations satisfied by ( )1q , 
( )1θ  and ( )1C  are 
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We first consider solution for )1(θ  which is possible if 1−wθ  is of order 0(1), that is the difference 

between Tw and T∞ is small, then θ(0) = 1 and the equations (3.15) and (3.16) give rise to a quartic 

equation in )1(θ  as 
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From equation (3.15) we have ( ){ } )1(2)1(2 4Pr
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Integrating the  )1(C  equation twice and without loss of generality we get 
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Equation (3.18) subject to equation (3.17) gives 
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Equation (3.22) subject to equation (3.17) and equation (3.23) gives 
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Substituting equations (3.22a,b) and (3.24) in equations (3.18) and (3.22) results in 
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These two equations after substituting equation (3.20) and equation (3.21) and applying partial fraction 
give 
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By the first shifting theorem and inverse Laplace transform we deduce θ
(1) and C(1) as 
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such that 1−L  denotes the inverse Laplace transform.  We can show that by writing 

   

( ) ( )

∞→













=
−

=
±

=
±

=
−

=
−

s

sasas

sasasas
,

111

1111

22
4

2
3

341
 

Equations (3.27) and (3.28) become 
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Also substituting iEMs 222 ++=ξ  in equation (3.14), we get 
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By applying the shifting theorem and later convolution gives 
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The solution is now complete. 
 
4.0 Results and discussion 
Asymptotic solutions have been obtained for the temperature and concentration fields of the problem of 
three dimensional unsteady MHD free convection flow near a moving infinite vertical flat plate in a 
rotating hydrogen-air mixture as a non chemical reacting fluid pair. By invoking the differential 
approximation for the radiative flux in the optically thin limit, the non linear problem is tackled by 
asymptotic approximation resulting to a steady flow on which is superimposed a first order transient flow. 
 We have used for the numerical computation Pr = 0.71, Sc = 2.0, R = 1.0 and 2.0, θw = 10, t = 
0.01, ε = 0.1.  Equations (3.11), (3.12a) and (3.13) gives solution for the steady state component of 
temperature θ(0), concentration C(0) and velocity q(0) with  θ(0) evaluated by numerical integration.  Figure 2 
shows the influence of Df, Sf on the concentration and also determines an acceptable range for Sf. The 
result shows that the concentration is overwhelmingly sensitive to Dufour than to Soret.  The acceptable 
limit of the Soret is 0.1, hence we have chosen a range of Df and Sf to be between 0.01 to 0.1. 
 

 
Figure 2: Concentration profile against boundary layer z. 

 
In Figure 3 the temperature profile is depicted for various values of Df, Sf and R.  The result show that Df 
and Sf have no effect on the temperature while increase in R causes a decrease in 

 
 

Figure 3: Temperature profile θ against boundary layer z for different Df , Sf and R 
 
 
temperature which is in good agreement with the result of  Israel-Cookey [10]. 
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 Finally in Figure 4 we also notice that increase in R like the temperature causes a decrease in the 
concentration field. 

 
Figure 4: Concentration profile C against boundary layer z for different R 

 
Figure 5: Three-dimensional plot of Concentration C against boundary layer thickness z and time t for  Df = Sf = 

0.01, Sc= 2.0, R=1.0, θw = 10.0 

 
Figure 6: Three-dimensional plot of Temperature θ against boundary layer thickness z and time t for Df = Sf = 0.01, 

Sc= 2.0, R=1.0, θw = 10.0 
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5.0 Conclusions 

 While for fully developed two dimensional laminar flow of electrically conducting binary fluid in 
a vertical channel [6], the following holds. 

(i) The concentration field (C) follows the same pattern as the temperature field (θ) and increase 
in Df and Sf cause a corresponding increase in C and θ. 

(ii)  Increase in radiation parameter cause a corresponding increase in θ and C. 
For the unsteady three dimensional flow near a moving infinite vertical plate in a rotating binary fluid, the 
following is obtained. 

(i) Though the flow patterns for the transient component equation (3.29) follow the same 
patterns for θ and C, the steady state component equations (3.11) and (3.12a) are in opposite 
direction. Df and Sf have no effect on the temperature field but has effect on the concentration 
field with the Dufour being overwhelming. 

(ii)  Increase in radiation parameter causes a decrease in the temperature and concentration fields. 
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Appendix A 
The following constants have been used 
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