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Abstract

The paper studies the unsteady free-convection flow near a moving
infinite flat plate in a rotating binary mixture of an incompressible fluid. Both
Soret (thermal diffusion), Dufour (diffusion-thermo) and radiation effects are
considered when there is no chemical reaction. By imposing a time dependent
perturbation on the constant plate temperature and concentration and
assuming a differential approximation for the radiative flux, the coupled non
linear problem is solved for the temperature and the concentration. First a
critical value for the Soret was determined as 0.10 and the effects of Dufour,
Soret and radiation show that while both Dufour and Soret have no effect on
the temperature field, they both affect the concentration field with the Dufour
causing an overwhelming increase and the Soret just a dight decrease.
Furthermore radiation decreases both the temperature and concentration
field.

1.0 Introduction

The study of heat and mass transfer to unsteady free-convection hgtetio rotating flows
have been carried out because of its vast application iD liver generators and hall accelerators [1],
in re-entry problems [2], in astrophysics, meteorology and engige§3-8]. For example Bestman,
Alabraba and Ogulu [2] investigated the fully developed hydromagfietv of a slightly rarefied gas
with radiative heat and mass transfer in a vertical chaasal model for space shuttle re-entry. Recently
Israel-Cookey and Alagoa [4] analyzed the effects of magrield, radiation, free convection and
frequency on the rotating boundary layer flow. Also the threloasitAlabraba, Bestman and Ogulu in
two other papers [6,7] studied the hydromagetic thermally radiaktovg ¢f a binary mixture with
attendant Dufour and Soret effects associated with massfér. The analysis was carried out with the
fluid chemically inert [6] and then chemically reacting [7].

In another study Bestman and Adjepong [3] tackled the problem @f dnreensional MHD free
convection flow with radiative heat transfer past an infiniieving plate in a rotating incompressible
viscous and optically transparent medium by making fairlijsteaassumption. Due to high temperatures
involved, its application in astrophysical studies cannot be overemphla What this research ignored
was mass transfer with its attendant Dufour and Soret effects.
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This paper therefore complements the work of Bestman and é&ujgf3] by incorporating mass transfer
in a hydrogen-air mixture as a non chemical reacting fluid pair.
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about the zaxis with angular velocit§2 as shown in Figure 1. The plate temperature and concentration

dimensional velocity components
dimensional Cartesian coordinates
thermal conductivity

gravitational acceleration

specific heat at constant pressure
mass diffusivity

dimensional temperature
dimensional concentration
reservoir temperature

reservoir concentration

constant plate temperature
constant plate concentration
mean temperature

radiative heat flux

complex velocity
Boltzmann constant
constant transverse magnetic field

thermodiffusion constant

constant associated with chemical

reaction in the Arrhenius term
Prandtl number

radiation parameter

Dufour parameter

Mathematical formulation

i=+-1
E rotation parameter
M2 magnetic parameter
G free convection parameter due to temperature
D, mass diffusivity
S Soret parameter
Sc Schmidt’'s number

Greek symbols

electrical conductivity

magnetic permeability

kinematic viscosity

coeff. of volume expansion faemp.

coeff. of volume expansion for conc.

small parameter
constant exponent in the Arrhenius term
concentration susceptibility

><:mmmtt(9

m

dimensional activation energy

dimensionless activation energy

plate angular velocity
reservoir density
absorption coefficient
Stefan Boltzmann constant

ART O m

The physical model for three dimensional incompressible unsteaaypfist an infinite vertical
heated flat plate which moves in its own plane along the pesitdirection with velocity | and rotates

are maintained afl\y[1+ &£ (t')] and Cy, [1+£f (t)] respectively in whichT,, the constant plate
temperature is high enough to provoke radiative heat trafigfers an arbitrary function of time which
for this problem will be taken as a Heaviside step funciﬁ(ﬁt’l) =H (t').
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e physical model and coordinate system
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A constant transverse magnetic field is applied in zhdirection and under the usual Boussinesq
approximation [9], the basic equations governing the physics of tiepn following the argument of
Tokis [5] and Alabraba [6] are

12
] 2,1 2 1
WV ooy =y? i _ZH Ho U 9801 -T.)+ g7(C'-C.) 2.1)
ot’ 07 .,
ov' % o ,L12H0’2V'
—+2Qu'=u -=€ (2.2)
a a 12 ,000
] 21 21
,omcpal = ka T2 -0Od, + Dikr 6_(2 (2.3)
ot' 0z xc, 0z
J 21 12 / '
o _ Dma C2 -k T'7exp - o+ Doy 62T2 (2.4)
ot’ 0z KT’ T, 07
9° , 30T’
a 99 _3g2q, 16007 = 0 2.5)
where on Z=0:uU=Uy,v=0T=Ty1+ gf(t)], C'=C,[1 +¢&f(t)]
z—>oou—v—OT’T ,C'=C, (2.6a,b)

Equation (2.5) is the differential apprOX|mat|on for radiation in quazs coordinat#. For optically thin
medium with relatively low density whete« 1, Equation (2.5) in the spirit of Bestman et al [3] becomes

‘qu' = 4aa(T'4 —Tw4) (2.7)
Z
Equations (2.1) - (2.4) subject to equations (2.6) and (2.7) become
%?HZEq—%—M 2q+Gr(0-1)+Gc(C -1) (2.8)
2 2
pr29 -9 _ppdet-1)+p,2< 2.9)
ot 0z 92
2 2
5% =9C _y 2prex ;{ jc +s, 29 (2.10)
ot o0z 0z

where we have introduced the following dimensionless quantities
t=t 522V ()2 (W) (6.6,)= (r.T,) (©.C.)= (C.Cc) g_Qu
v v

U, T, C. = U2
c U 3
M2 = IH H u Gr = _9pT v Ge= JCY g{C. v Pr:,ooo b ’R:4aauTm2 D, = DkaCw,
pU U, U, k £.cU, XC,T.K
5= k T (21 S, = k. T,
k T Dm D.U, C.T,
Equations (2.8) - (2.10) are subject to the boundary condition
z=0: qgq=10=06,1+¢cH()], C=C,1 +eH(t)]
z—0:q=0,0=1,C=1 (2.11a,b)

g=u+iv
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The heat and mass transfer problem therefore entails the solution obegat®) and (2.10) subject to
equation (2.11).

3.0 Method of solution
Equations (2.9) and (2.10) are highly nonlinear and so will involviee Isy step numerical

integration. However it in equation (2.11) is small, we can advance analytical solutioadbpting
regular perturbation expansion of the form

q=9%) +eq(z.9 + ...

0= e“”gz) +e0W(zZh + ... (3.1)

C=C92) +eCW(z,h+...
Substituting equation (3.1) in (2.8) - (2.10), ignoring®d@nd simplifying, we get the zero order
equations as

2..(0)
2IEQ = _dd‘fz ~M%q@ +Gr(e® -1)+Gdc® -1) (3.2)
Z
2(0) 2~ (0)
0= dd82 ~RP{6* 1)+ D, ddiz (3.3)
Z Z
d*c© 2 [{ £ j d’e®
0= -k ’exp —— [89C@ + S (3.4)
dZ o© " dZ
z=0: dfO))z 1,9‘(°0>)= ew,g);’) =G,
Z—o0. Q7 =0,0" =1, =1 (3.5a,b)
and the first order equations as
aq(l) an(lO
o0 + 2iEq™ =57 M?*q® +Gra® + GeC® (3.6)
Z
A 22,0 2c@
Prait 0 52 ~4rpPro©3® 4 p; OLZ 3.7)
0z 0z
1) 42 - 2
0 | 2exf -2 [gO1 240014700 )+60cO] 15 SO (3
o g2 6@ 022

2=0:qW =060 =g,,cV =¢,, o
Z - Ooq(l) :H(l) :C(l) =0

t=0:q®0 =W =c® =0, 20, (3.9a,b,c)
Thus by asymptotic expansion for the flow velocity, temperatudecancentration, the problem is split
into a steady flow on which is superimposed a first order transient component.
In the absence of chemical reaction equation (3.4) is rewritten as
d’c® d?6®
e S, 07 (3.10)
which when combined with equations (3.3) and (3.5) give the solutiéffas

3 /5(1— D(S;) ¢a. dc
Z= 2RPr .[9(0) \/(55_5(4_4) (3.11)

Also integrating equation (3.10) twice and combining with equation (3.5) givesiition for ¢ as
c9=-s69+(c,+s,86,) (3.12a)
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Imposing the boundary condition equation (3.5b) on the last equation gives an exdi@ssgj, as
C,=1+S, -S6, (3.12b)
The solution for & can therefore be got from equation (3.2) as

L ;{ (M2 +2E): } {M} }

2RPr
§ sinh{(M 2 1 2iE J[2(6°) - z(Z)]}[Gr(Z ~1)+6d-s,¢ +C, +S,8,-1]
.[9(0) (Z5 ~ 5( . 4%

To solve equations (3.6) - (3.8) we take Laplace transform witheceso time, representing the

transformed variable by s and placing a bar over the transfbfumction, the equations satisfied 69) ,
Y andC® are

(3.13)

dg

2—(1) B B
dd(il2 ~(M2+2iE)g® = (Grg® +cac®) 514
Z
2@ _ 250
dd‘; - Pr(4R6?(°)3 + S)H(l) +D, dd(z:Z =0 (3.15)
_ 2~ (M 29 )

se€® =S = dcz:z +5, 97 dfz (3.16)
z=0:69 = &,(_:ﬂ) = &,q(l) -0

S S (3.17a, b)

z-0:09=Cc?=g%=0
We first consider solution fo@® which is possible ifd, —1 is of order 0(1), that is the difference
between J, and T, is small, therd® = 1 and the equations (3.15) and (3.16) give rise to a quartic
equation ind® as

aD*g® -pbD’4" +c8® =0
with solution as

g(l) — Ai(’f)ewlz + Al(—)e—wlz + A2(+)ewzz + AZ(—)e—wzz (3.18)

b+ +/b? —4ac

where /12 = T which translates to
a

1
a_iz = y,S+ (y252 + S+ y4ﬁ + Ve
1

w? = ys— (1S + sty +

1 1
We can Write(y252 +),S+ y4)5 = [( V,S+ \/E)ZT = /1,5 +./y, provided Sc*B* S << (Pr + Sc).
Equation (3.19) can then be reduced to the form

@’ =Rs+R, and @’ =Rs (3.20)

(3.19)
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From equation (3.15) we hau@’C ® = Di{Pr(4R+ s)- Dz}g(l)
f

- Ql(AL(Jr)ewlz + Al(—)e—wlz) +QZ(AZ(+)ewZz + AZ(—)e—wzz)
{Pr{ar+s)- w? _y+Prs-w’

whereQ. = ‘ and can be reduced by substitutipgand equation
: Df Df
Q,=Rs+
(3.20)to _° R R“} (3.21)
Q, =Rs+R,
Integrating the c® equation twice and without loss of generality we get
~ Q + z =) A~ 2 Q + z =) A— 2
Cc® :j(ﬁ( )e@ +AL( g~ )+E22(A2( ) g +A2( g @ ) (3.22)
Equation (3.18) subject to equation (3.17) gives
A1(+): A2(+) =0
5 _ 8 - (3.23a,b)
QI NG
AT =E-A
Equation (3.22) subject to equation (3.17) and equation (3.23) gives
(CW 9,6,
2
- S S
AL = & (3.24)

Q _Q,
a)lz a)f

Substituting equations (3.22a,b) and (3.24) in equations (3.18) and (3.22) results in
ao = a‘f (@ZCW ~ QZBW)e_wlz + (“5.2 (ngw ~ C"izcw)e—wzz
2 2
S(Qla% _Qza{ )

and
2 2
CO = Q;L(“Jz Cz:w - ngzw) O 4 Qz(ngzw —4 C;v) o7
S(Qla% _Qzai ) S(Qlwz _szl )
These two equations after substituting equation (3.20) and equation (3cRapplying partial fraction
give

g(l) - ﬁ_'_ 182 + ﬂ3 e—kx stay ) _ 184 + ﬂS e_ky\/g (325)
s s+a (s+a,) s+a, (s+a)
co = ﬁ+ X2 + A e—kxx/sfal _ ﬁ+ As + Xs e—ky\/E (3.26)
s s+a, (s+a,) s s+a, (s+a,)f
By the first shifting theorem and inverse Laplace transform we déftiead ¢V as
—kx/s ~ky's ks
oD -t pLt e X7 +poL7L e X7 +paLL e Xl
- STa4 (s-as)?
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_ky\/g e_ky\/g

-1 € -1
—BgL | ———— |+hsL (3.27)
s+ag (s+ag)?
—k «/g _kx\/E _kx“/g
CO = gat XL—l e +)(2|—_1 € +X3|—_1 e b=
S— al S_a4 (S_a4)
(3.28)
e—kyfs ) e—kyﬁ ) e—kyJE
-y, Lt + XL + XL ——
X4 S Xs S+a3 Xe (s+a3)2
such thatL™ denotes the inverse Laplace transform. We can show that by writing
1 1 1 }
-a S—aq, S+a3 S
,S — 00
1 _ 1 _i
(sta) (s-a)f ¢
Equations (3.27) and (3.28) become
- k k k
6Y =g erfc{—xj+ erfc{—xj—4t erf{ x j -
ﬁl 2\/{ :82 2\/{ ﬁs 2\/{
p.erf % + 4dtp.erf %
4 \/E 5 2\/{ .
i -0 (3.29)

k k k
CY = yerfd — |+ y,erfd — |- 4ty.erfg —= |} —
{Xl {Zﬁj A L{zﬁj & C{z\/fj}
- y,erf % — y.erf K + 4ty erf K
X4 2\/{ Xs 2\/{ Xo 2\/{

Also substitutingé” = s+ M? + 2iE in equation (3.14), we get

21 B -
ddq2 -&gh = (GrH(l) +GcC (1)) This equation with Wronskian &£ gives the
oéla)
solution ag]® = lj € (Gré?(l) + GCC(l))dZ
27 f
-Z)
== Grj e<1>dz+ch - CY%z
By applylng the shlftlng theorem and Iater convolution gives
_35)\2
0 ™ 2+2iEjr _(z-2) 0
q —TIO I \/_ e 4T H (t - T)dT
, (3.30)
c (M 2+2iE)r —(Z:;) c0 e
+ e -7)dr
b
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The solution is now complete. |

40 Resultsand discussion
Asymptotic solutions have been obtained for the temperature andhtration fields of the problem of
three dimensional unsteady MHD free convection flow near a mowmingte vertical flat plate in a
rotating hydrogen-air mixture as a non chemical reacting fhad. By invoking the differential
approximation for the radiative flux in the optically thin limthe non linear problem is tackled by
asymptotic approximation resulting to a steady flow on which is superimposstiader transient flow.
We have used for the numerical computatsn= 0.71, Sc = 2.0R = 1.0 and 2.09,, = 10,t =
0.01,¢ = 0.1. Equations (3.11), (3.12a) and (3.13) gives solution for the sttatdy component of
temperatur®®, concentration € and velocity § with 6© evaluated by numerical integration. Figure 2
shows the influence of ;DS on the concentration and also determines an acceptable rarfge Toe
result shows that the concentration is overwhelmingly sensdiufour than to Soret. The acceptable
limit of the Soret is 0.1, hence we have chosen a rangeafdsto be between 0.01 to 0.1.
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Figure 2: Concentration profile against boundary layer z.

In Figure 3 the temperature profile is depicted for variolisegof ), § and R. The result show that D
and $have no effect on the temperature while increase in R causes a decrease in
q

RINII 5. s R Graph
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Figure 3: Temperature profil® against boundary layer z for different,[§ and R

temperature which is in good agreement with the result of Is@etey [10].
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Finally in Figure 4 we also notice that increase in Rtlileetemperature causes a decrease in the
concentration field.
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0.8 D¢ S R Graph
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v
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z
0.2 0.4 0.6 0.8 1
Figure 4: Concentration profile C against boundary layeorzdifferent R

Figure5: Three-dimensional plot of ConcentratiGragainst boundary layer thickness z and tifee Di= S =
0.01, Sc=2.0, R=1.0,,=10.0

Figure 6: Three-dimensional plot of Temperat@against boundary layer thickness z and time Bfor § = 0.01,
Sc= 2.0, R=1.09,, = 10.0
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5.0 Conclusions

While for fully developed two dimensional laminar flow of etaxally conducting binary fluid in
a vertical channel [6], the following holds.

(1) The concentration field (C) follows the same pattern asetmperature fieldd) and increase
in Ds and $cause a corresponding increase in Céand
(i) Increase in radiation parameter cause a corresponding incréeaedrC.

For the unsteady three dimensional flow near a moving infinitecaéplate in a rotating binary fluid, the
following is obtained.
® Though the flow patterns for the transient component equation (3.28ftlle same
patterns fo® and C, the steady state component equations (3.11) and (3.12a) are ite oppos
direction. O and $have no effect on the temperature field but has effect on thertoaion
field with the Dufour being overwhelming.

(i) Increase in radiation parameter causes a decrease in the tenepamdtaoncentration fields.
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Appendix A
The following constants have been used
a=1-D§ k., =Rz
b=Scs+P(4R + 9 k, =Rz
¢ = PrS¢4Rs + 9 N, = R(Rf, - RC,)
vy =4PrR
Pr+ Sc
— N, = + - C
= H-bs .= (RR+RR 4, ~RRC,
2 PrSc
= - N, = 8
y2 yl 1_ Dfo 3 R2R7 w
_(n-soy _
== N, = 6,-RC
K 1 bs «=R(RE,~RC,)

_ Yy 2 — _
Vi = (mj Ns = Ry(R#6, - RC,)

Ve =Va Q =R,(Rf,-RC,)

R=p+V Q, =(RR +RR)6, -RRC,

R =V +Vi Q,=RR4,

R=y-V Q, =Ri(RH,-RC,)

Rz Q.= (RR +RR)S, ~(RR *RRC,
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