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Abstract

The aim of thiswork isto study Hamilton-Jacobi-Bellman equation
for quantum control driven by quantum noises. These noisesare
annhihilation, creation and gauge processes. We shall consider the solutions
of Hamilton-Jacobi-Bellman equation via the Hamiltonian system measurable
intime.

1.0 Introduction

Control systems with state constraints often deal with dyrsawiiich are merely measurable in
time together with constraints depend upon the time. Due to thiskdwska, H. et al in [6], extended
the viability theory to such case, in which the invariance probleensaarsidered as well.

Hamilton-Jacobi equations arise in optimal control theory ariduscontrols problems, [2], [3],
[5]. Most of these problems deal with non smooth functions, hence Hstodment of generalized
gradients for non smooth functions by Clarke, F. [4]. Given a a@bpttoblem, the solution to this
problem can be achieved via the solution to a differeiméhlision corresponding to the problem. Theory
of differential inclusions and multifunctions with applicationsctmtrol theory like feedback, optimal
control for Mayer’s problem and others have been extensively dealt wRh [B]} [6] and [8].

In [7], Hudson and Parthasarathy introduced, Quantum stochastieif&iequations driven by
guantum noises; annihilation, creation and gauge operators. Thesempaistd processes were shown
to be stochastic processes. The control problem arisingtfrese noises is our main focus in this work.
The main result is the generalization of the classiclltref Hamilton-Jacobi-Bellman equation in non
commutative setting. This is a new result specifically dfiomethe Quantum Stochastic calculus of
Hudson-Parthasarathy [7].

The work shall be arranged in sequel as follows: In sectiare Ehall give a brief introduction
of differential inclusions and set-valued maps. In section 2shedl consider the quantum stochastic
differential equations, and the main result on Hamilton-Jacobi-Bellmani@guat
1.1 Multivalued maps and differential inclusions
1.1.1 Definition

Let X, Y be sets, A mapF : X - 2"is said to be a multivalued (set-valued) map or
multifunction if F(x) OY for allxOX. By a selection off, we mean a single-valued map
f, f:X 5 Y, suchthatf (X) OF(x) for all Xx(1X .There are various selection theorems depending
on the topologies properties of F.
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1.1.2 Differential inclusions

By a differential inclusion we mean a multivalue differ@ntequation, that is an ordinary
differential equation in which the right hand sklg, x) is a multifunction (multivalued map), as stated in
(1.1) below. The initial value problem involving inclusion;

xL(t) OF (t, x(1))

x(to) =xg
can be solved depending on the properties.oln this work we shall be considering the case of lower
semicontinuous and upper semicontinuous differential ifurias Also given an ordinary differential
equation with discontinuous right hand sklg x), as in (1.1), such problem can be solved via differential
inclusion. The solution of such O.D.E. has been shtavibe a generalized solution of an upper
semicontinuous differential inclusions [2].

(1.1)

Let F: 1 xOM - 0", a multivalued mapl| 00O, by a solution to (1.1) we mean an absolutely
continuous function x:1 - 0", such x(.) satisfies (1.1) a.e. Given a control problem
u'(t) = f (t,U(t)), whereU(t) are the state constraints we seek the space of admissiblel<déot the
problem. We can transform the problem to a differentialusioh asu’'(t) JF(t, y(t)), where
F(t,u(t)) ={f(t,u(t)):u(t)JU(t)}. Hence the set of solutions of the differential inclussatssfying
given initial conditions is the space of admissible costfol the problem.

2.0  Hamilton-Jacobi-Bellman theory
2.1 Quantum noises

The quantum noises in this work arise from annihilataseation and gauge operators. They are
infinitesimal forms of Weyl representation of Euclideaouy of a Hilbert space [9]. The stochastic
processes of the closure of these operators are respedingliigilation, creation and guage processes,

N, A (,),Ag+ . The differential equation driven by these processes is;

X (t) = EdA 77(t) + FdAf (t) + GdAg (t) + H (t)
X (0)=xg
for almost allt L1l . Where E,F,G and H are square integrable, locally boundguteatiprocesses. In
sequel we denote b§, 1 (X,) the solution set of (2.1) oh=[t,,T].
2.2 Mayer’s problem
Let g:0" - O 0O{+0), the Mayer's problem is the minimization problanm{gx(T)):
xOStg,T](X0)} - The value functiony is defined a8/ :[0,T] x 0" - O O{+) such that/(t,x) =
min{gx(T)): xO S, r; (%)} O(t,x) O[0.T].

We assume that:
() E, F, G, H, has non-empty convex compact images.

(ii) OxO0O", E(.,x), F(.,x), G(.,x) and H(.,x) are measurable
(iiy ~ There exists 4.,y ,Us MO [0T] such that for almost alltJ[0,T], we have
IE® Q)| < a2, |F %) < 46, |G, X)| < 6, |HE X < 44y OxOO"(ie. each of them is

integrably bounded)
(iv) g is lower semicontinuous. (2.2)

(2.1)
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2.3 Proposition
If the assumption above holds true and for almost all t (1[0, T], F(t, X), is upper semicontinuous

(usc), then Vislower semicontinuous (Isc) and

@ Dty %) B0 T] x 0% V(ty, %) = min{g(x(T)) : X0 Spp7; (%)}
Furthermore, the set-valued map
(b) t P@t)={(x,r)00"x O:r =V(t,X)} is absolutely continuous.

Proof
€)) V is lower semicontinuous from the definition above, alserg existsy/ [0 L*[0,T] such

that for almost al J[0,T], OxOO", |[E(t, X)| < (), |F ¢ )||< w(t),
IG(t,x)| < u(t) and |H(t x)|<ut). Hence the maps are upper Caratheodory and the arbitrary
intersection of directionally continuous selections B&fF,G,H is the solution. Therefore
V (to, %) = min{g(x(T)) : XU Sp.71 (%)} -
(b) Graph (P) is equal to the epigraphvVdfEpi. V), hence

g(X) =V(T,X) = ltlrr'l] infV(t,x), V(0,X) =tlim0 inf V (t, x)
Assume E, F, G, H has non-empty compact images, we defiirathiétonian

H:[OT] xO'xO" - 0O

by H(t,x, p)=x 0" max < p,v>, where<.,.>is duality map anav (t, x) ={( E(t, X), F(t,

VIOM (t,X)
X),G(t, x), H (t, x,.)} . ThenH(t,x,.) is convex and positively homogeneous []. Furthermosesstimption
(2.2) holds them(t,..,p) is use andH(.,x,p is measurable. [ ]

24 Solution of Hamilton-Jacobi-Bellman equation
Consider the Hamiltonian measurable in tinké;: [0,T] x O"x 0" — 0 and the Hamilton-
Jacobi-Bellman Equation

_0V(t,x)+H(t,x—6V(t,x)j:0 2.3)
ot ot

We assume:

0] H(t,x,p) is Caratheodory

(i) H(t,x,p) is convex

(iii) H(t,.,p) is c(t) —Lipschitz on KB where B denotes the closed unit balllih

(iv) H(t,x,.) is Lipschitz continuous (2.4)
Define M (t, X) = ﬂ{vD 0" :< p,v><H (t,xp)}

Ipl=L
We can study the solution of (2.3) via the Hamilton-JacainBan equation with new (conjugate)
Hamiltonian.
2.5 Theorem

If assumption 2.4holds, then M isa solution of (2.3)and OvOO n sup <p,Vv>=
vM (t,x)
=H(t, X, p)

Proof
To prove the theorem it suffices to show that M saishesumption 2.2 and alspt) —

Lipschitzian. FixxJO"and consider a dense sub§Bt.., of the unit sphere in". For
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everyi 21, define the set-value map :[0,T] - O" B (t) ={VDD N<[pi,v><H(, X, pi )}

by R (t) :{vDDn <[pj,v><H(t, X pj )}. From the separation theorem and the continuitid(bk,.) it
follows that M (t, X) = ﬂ P(t). P is measurable. Hence M is use and measurable, M is alsmabijeg

i1

bounded, hence the multivalued m¥éft,x) is upper Caratheodory. M @(t) —Lipschitz on KB, follows

from the definition. Furthermore, for allvOM(t,X);< p,v><H(,X p), therefore
sup < p,v><H(t, %, p)and converselyH (t,X, p) ;== max < p,v>< sup < p,v>, therefore
VOM (t,%) VOM (t,X) VOM (t,X)
sup < p,v>=H(t, X p). H
VEOM (t,x)

3.0 Conclusion

The Quantum control problem driven by quantum field opesatannihilation, creation and
gauge operators is stochastic. It has been shown in thisthat; the value function for the Hamiton-
Jacobi-Bellman equation for the problem is the viscositytisoltio the equation.
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