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Abstract

By means of certain extended derivative operator of Salagean type,
the author introduces and investigates three new subclasses of p-valently
analytic functions. The reason for this is to use generalized Salagean
derivative operator to bring together many earlier inroduced subclasses of p-
valently functions to become special cases of the newly defined subclasses, see
[2,8].The various results obtain for these functions include coefficient
inequalities, coefficient bounds and convolution properties. These results
coincides with many existing results using different choicesof n and £
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1.0 Introduction
Let T(p) and M (p) denote the classes of functiofigz) and g(z) of the forms

F(@=2P+ YazK (pON={12.-}) (1.1)
k=p+1
and 9(2)=z" +iakz", (pON) (1.2)
k=p

which are analytic and multivalent in the unit disk={z:| z|<1} and in the punctured unit disk
U ={z:0<| z|<1} respectively, see [2,5].
The author here wishes to define the following subclasses as follows:

_ o DMLPt(y) _
Th(p,B) ={f0OT(p):Re————=>p, n=012---, pON} (1.3)
DM Pt (2)
_ o.D"Pi(2) _
Kn(p,B)={fUT(p):Re———=>p, n=012-, pUN} (1.4)

z
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DL Pg(z)

Mn(p,B)={f OM(p):Re -
D™Pg(2)

>B, n=012--, pON} (1.5)

where D™Pf is the extended Salagean derivative operator defined as

DOPf =27+ SaZ, D' f = (- ) f () +£'(2),...D" f (D) = 2+ 3 (k+1- p)"a, 2 for every

k=p+1 k=p+1

f OT,(p,B) and K, (p,B) and

D°Pg() = 77+ 3 82, D"f = (1-2p)' 2" + ¥ (k+1- p)"3,2

k=p
for everyg M, (p,5), see [4]. These three new subclasses are the extensi@naidiskes introduced
in [2] and the result obtained for them are new. Also witfeidint choices oin and [ other existing

results can be obtained see [8]. The Hadamard product (or ctbomplof the function f OT(p) is
given by

m p © m k
N fi@=(10.0fm)@=2"+ X | N (a,j)z
j=1 k=p+1{j=1

and

m o [ m K
N9j@=(a10.-0gm)@=2P+ = | M (a,j)z" |,
j=1 k=plj=1
see [6].
To prove our main results the following shall be necessary.
Lemma A [1,3], Aini et al.

If pOP then, |c |< 2 for each k

20  Coefficient inequalities
In this section we shall state the following theorems:
Theorem 2.1

[o0)
Let f OT(p) satisly  Sa™ag +B)|ak k1-8 (2.1)
k=p+1
wherea = (k+1-p) and a, =(k—p-1) then f 0T (p,S) where n=012,---, 0<
<1, pON, see method of proof in [7].

Theorem 2.2
Let f OT(p) satisfies » a"|a <1~/ where @ = (k+1-p) then f O
k=p+1
Kn(p,B),n=012...,0<a <1 pUN, see method of proof in [7]

Theorem 2.3
Let gOM(p) satisfies > a"(a +Ba, < p"(2p-1-B) where a =(k +1- p)

k=p+1

and p=(1-2p) then gLOM, (p, )
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3.0 Coefficient bounds
Theorem 3.1

Let f OT,(p,B) . Then we have the following inequalities.

) 1-

O la.l< 2—/3

. 1- 1- B)?
i) la.,ls Zn_{g + 4 Zn_/?

1-4, @-p)° , @By

i) 18 1S i+ o+ s
Proof
: D"™*Pf(2) _
Since f OT,(p,B) , we have —==[B+1-£)p(2 (3.1)
D"Pf(2)
for pUP. Settingp(z) =1+c1z+ c222 +--- and comparing coefficients in (3.1) the results follow.
Theorem 3.2
Let f 0K, (p, ). Then we have
1-p)c, 1- .
pt :% | p+j|sF, ] =12,..mforO<a <1 n=012,..
Proof
Since f OT,(p,B) we have
D" f(z
2B e a-ppe) 32)

Comparing the coefficients in (3.2) the result s follow.
Theorem 3.3
Let gOM, (p,B) thenwe note that the coefficient bounds for the functionsin the subclass

gUM,(p,B) arezeros.

Proof
Sinceg OM, (p,5) |
4.0  Convolution properties
Theorem 4.1.
m
I fj(Z)DTnDj (p.B), (j=1--,m), then jrl_lfj(z)DTn(uo,ym) where
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m
N @-5j)
j=1

(4.1)

m
3 " ane R
J:

m
where n—- 3 nj >0

=1

Proof
With the aid of theorem 2.1 we need to find fhe such that

00 n m
X a(a*+ym) N lak,j [s1-ym.
k=p+1 j=1
Note here that iim=1, then ), = . Now supposean = 2. Then for functionsf,(2) DT,E( p, ) and

f,(2) 0T, (p.f3,) . we have

>y aM(ag+p)lak1kl-prand T a2(ap+ ) lak2k1-1o

k=p+1 k=p+1
00 m 00 no
sothat Mmkﬂsl and Y a (a0+’82)|ak’2 I<1.
k=p+1 L1=A k=p+1 1752
Hence, by Cauchy-Schwarz inequality, we have
@ |a"*"2 (ag + B1)(ag + B2)
> \/ 0 PP P2 aky llak 2 | <1 (4.2)
k=p+1 - B~ B2)

In order to prove tha¢f, Of,)(2) OT.(p,y,) itis sufficient to show that

ant (ao + 131)(0'0 + 182) 1- Iz
ER Y S\/ 1-8)1-5,) ( ]

a’(a,+y,)
Since
® n : amhtm (ao + ﬂl)(ao + ﬂz)
k:Zpﬂa (@t B)lalla,ls @ yz)z\/ - 3)0-3) ENEN

< (1—@{( > T Ba, |j( > P a, |]} <1-y,

But from (4.2) we have forak=p+1, (pON={12--}
(1_:31)(1_,32)
a™ (ao + ﬂl)(ao - /82)

Hence it is sufficient to find the largeg} such that

|8, lla, | =
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J -B)A-B) Ja (@ +B)(@ - B,) ( 1-y, ]
a™ (ao + ,81)(0'0 - ﬂz) B (1_ /81)(1_ ﬂz) an(ao + yz)
That is, we have d-A)1-5) < 1=y
a™" (@, + B) o+ B) A" (ao+)s)

(1+0’0)(1—,31)(1—,32)
a™" " a, + B, + ) + L= B)A-5)

thatis, ), <1-

It is readily seen that the right hand side of (4.3) is an increasingdidtk . Hence the large value of
y, isgivenby y, =1- —— _n(l_'gl)(l_ﬂz) .
2B, + (L= AL )

m
m , n @-4j)
Next we suppose thaf] fj @0OTh (P, Ym:A), Vi =1 =1
21
| 2 njn m
2171 pig N a-B))
=1
m+1
Then, by repeating the processes above we obtaimihe j (z) DT (P, ym+1) Where
j=1
m+1 m+1
Ma=Am+1)A-ym) M a-5j)
171 1 j=1
Ym+1 =1 o g so thatymel =1-——7
27" fm+1+ N A~ Fm+1) Elnj—n m+1
j=1 21 B+ N a-8)
=1
Hence conclusion follow by induction. |
Theorem 4.2

m
1@ 0K, (P.B) (1 =L..m), then [ f;A0Kn(pym) (i =L..m)
J:
m
LN
where ym=1-2 17 a-5) (4.3)

where n—an >0

=1

Proof
The method of proof is similar to that of Theorem 4.1 with the use of Tinchz W
Theorem 4.3

m
Ifg;(290M, (p.5) (i =1...m), then _ﬂlgj(Z)DMn(F%Vm) (i=1...m),
J:
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m

m jzzlnj m
@p-1) M @-Bj)-p N @p-1-38j)
where _ ji=1 j=1 (4.4)
Ym =
m
pl=t N @p-1-8))+ N @-8j)
j=1 j=1

Proof

The method of proof is the same as in Theorem 4.1 using theorem 2.3. |

20 Conclusion
In conclusion, we are able to unify some existing subclasses under these tblessealby
different choices ofn and [ see [2,8].
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