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Abstract 
 

By means of certain extended derivative operator of Salagean type, 
the author introduces and investigates three new subclasses of p-valently 
analytic functions. The reason for this is to use generalized Salagean 
derivative operator to bring together many earlier inroduced subclasses of p-
valently functions to become special cases of the newly defined subclasses, see 
[2,8].The various results obtain for these functions include coefficient 
inequalities, coefficient bounds and convolution properties. These results 
coincides with many existing results using different choices of n and β  
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1.0 Introduction 

Let )( pT  and )( pM  denote the classes of functions )(zf  and )(zg  of the forms 
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which are analytic and multivalent in the unit disk }1|:|{ <= zzE  and in the punctured unit disk 

}1||0:{ <<= zzU  respectively , see [2,5]. 
The author here wishes to define the following subclasses as follows: 
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where fD pn,  is the extended Salagean derivative operator defined as 
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for every ),( βpMg n∈ , see [4]. These three new subclasses are the extension of the classes introduced 

in [2] and the result obtained for them are new.  Also with different choices of βandn  other existing 

results can be obtained see [8].  The Hadamard product (or convolution) of the function )( pTf ∈  is 
given by  
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see [6]. 
To prove our main results the following shall be necessary. 

Lemma A [1,3], Aini et al.  
If Pp ∈  then, 2|| ≤kc  for each k  

 
2 0 Coefficient inequalities 

In this section we shall state the following theorems: 
Theorem 2.1 
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3.0 Coefficient bounds 
Theorem 3.1 

Let ),( βpTf n∈ . Then we have the following inequalities. 
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Proof 

Since ),( βpTf n∈ , we have   )()1(
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for Pp ∈ . Setting L+++= 2
211)( zczczp  and comparing coefficients in (3.1) the results follow. 

Theorem 3.2 
Let ),( βpKf n∈ . Then we have 

 
n

j
jp

c
a

2

)1( β−
=+  or mja

njp ,...,2,1,
2

1
||

1
=−≤ −+

β
 for ,...2,1,0,10 =<≤ nα  

 
Proof 

Since ),( βpTf n∈  we have 
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Comparing the coefficients in (3.2) the result s follow. 
Theorem 3.3 

Let ),( βpMg n∈   then we note that the coefficient bounds for the functions in the subclass 

),( βpMg n∈  are zeros. 

 
Proof 

Since ),( βpMg n∈  

 
4.0 Convolution properties 
Theorem 4.1.  
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Proof 

With the aid of theorem 2.1 we need to find the mγ  such that  
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Hence, by Cauchy-Schwarz inequality, we have  

  1
1

|2,||1,|
)21)(11(

)20)(10(21
≤∑

∞

+= −−
+++

pk
kaka

nn

ββ
βαβαα

   (4.2) 

In order to prove that ),())(( 221 γpTzff n
∗∈∗  it is sufficient to show that 
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Hence it is sufficient to find the largest 2γ  such that 
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It is readily seen that the right hand side of (4.3) is an increasing function of k . Hence the large value of 

2γ  is given by 
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Hence conclusion follow by induction. 
Theorem 4.2 
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Proof 

The method of proof is similar to that of Theorem 4.1 with the use of Theorem 2.2. 
Theorem 4.3 
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Proof 

The method of proof is the same as in Theorem 4.1 using theorem 2.3. 
 
2.0 Conclusion 

In conclusion, we are able to unify some existing subclasses under these three subclasses by 
different choices of  βandn  see [2,8]. 
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