# Certain inequalities and convolution properties for multivalent and meromorphically multivalent functions 

${ }^{1}$ Abiodun Tinuoye Oladipo and ${ }^{2}$ M.O. Ogundiran<br>${ }^{1}$ Department of Pure and Applied Mathematics<br>Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria<br>${ }^{2}$ Department of Physical Sciences<br>Bells University of Technology, Ota, Ogun State, Nigeria<br>${ }^{1} \mathrm{e}$-mail: atlab_3@yahoo.com, 08033929030


#### Abstract

By means of certain extended derivative operator of Salagean type, the author introduces and investigates three new subclasses of p-valently analytic functions. The reason for this is to use generalized Salagean derivative operator to bring together many earlier inroduced subclasses of $p$ valently functions to become special cases of the newly defined subclasses, see [2,8].The various results obtain for these functions include coefficient inequalities, coefficient bounds and convolution properties. These results coincides with many existing results using different choices of $n$ and $\beta$


Keywords: Analytic function, P-valent, Meromorphic, Multivalent, Salagean, and Convolution.

### 1.0 Introduction

Let $T(p)$ and $M(p)$ denote the classes of functions $f(z)$ and $g(z)$ of the forms
and

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k},(p \in N=\{1,2, \cdots\}) \tag{1.1}
\end{equation*}
$$

which are analytic and multivalent in the unit disk $E=\{z:|z|<1\}$ and in the punctured unit disk $U=\{z: 0<|z|<1\}$ respectively, see $[2,5]$.

The author here wishes to define the following subclasses as follows:

$$
\begin{align*}
& T_{n}(p, \beta)=\left\{f \in T(p): \operatorname{Re} \frac{D^{n+1, p} f(z)}{D^{n, p} f(z)}>\beta, \quad n=0,1,2, \cdots, p \in N\right\}  \tag{1.3}\\
& K_{n}(p, \beta)=\left\{f \in T(p): \operatorname{Re} \frac{D^{n, p} f(z)}{z^{p}}>\beta, \quad n=0,1,2, \cdots, p \in N\right\} \tag{1.4}
\end{align*}
$$

$$
\begin{equation*}
M_{n}(p, \beta)=\left\{f \in M(p): \operatorname{Re}-\frac{D^{n+1, p_{g(z)}}}{D^{n, p} g(z)}>\beta, \quad n=0,1,2, \cdots, p \in N\right\} \tag{1.5}
\end{equation*}
$$

where $D^{n, p} f$ is the extended Salagean derivative operator defined as
$D^{0, p} f=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}, D^{1, p} f=(1-p) f(z)+z f^{\prime}(z), \ldots, D^{n, p} f(z)=z^{p}+\sum_{k=p+1}^{\infty}(k+1-p)^{n} a_{k} z^{k}$ for every $f \in T_{n}(p, \beta)$ and $K_{n}(p, \beta)$ and

$$
D^{0, p} g(z)=z^{-p}+\sum_{k=p}^{\infty} a_{k} z^{k}, \ldots, D^{n, p} f=(1-2 p)^{n} z^{p}+\sum(k+1-p)^{n} a_{k} z^{k}
$$

for every $g \in M_{n}(p, \beta)$, see [4]. These three new subclasses are the extension of the classes introduced in [2] and the result obtained for them are new. Also with different choices of $n$ and $\beta$ other existing results can be obtained see [8]. The Hadamard product (or convolution) of the function $f \in T(p)$ is given by

$$
\prod_{j=1}^{m} f_{j}(z)=\left(f_{1} * \ldots * f_{m}\right)(z)=z^{p}+\sum_{k=p+1}^{\infty}\left(\prod_{j=1}^{m}\left(a_{k, j}\right) z^{k}\right)
$$

and

$$
\prod_{j=1}^{m} g_{j}(z)=\left(g_{1} * \ldots * g_{m}\right)(z)=z^{p}+\sum_{k=p}^{\infty}\left(\prod_{j=1}^{m}\left(a_{k, j}\right) z^{k}\right)
$$

see [6].
To prove our main results the following shall be necessary.
Lemma A [1,3], Aini et al.
If $p \in P$ then, $\left|c_{k}\right| \leq 2$ for each $k$

## 20 Coefficient inequalities

In this section we shall state the following theorems:

## Theorem 2.1

Let $f \in T(p)$ satisfy $\quad \sum_{k=p+1}^{\infty} \alpha^{n}\left(\alpha_{o}+\beta\right)\left|a_{k}\right| \leq 1-\beta$
where $\alpha=(k+1-p)$ and $\alpha_{0}=(k-p-1)$ then $f \in T_{n}(p, \beta)$ where $n=0,1,2, \cdots, 0 \leq \beta$ $<1, p \in N$, see method of proof in [7].

## Theorem 2.2

Let $f \in T(p)$ satisfies $\sum_{k=p+1}^{\infty} \alpha^{n}\left|a_{k}\right| \leq 1-\beta$ where $\alpha=(k+1-p)$ then $f \in$ $K_{n}(p, \beta), n=0,1,2 \ldots, 0 \leq \alpha<1, p \in N$, see method of proof in [7]
Theorem 2.3
Let $g \in M(p)$ satisfies $\sum_{k=p+1}^{\infty} \alpha^{n}(\alpha+\beta) a_{k} \leq \rho^{n}(2 p-1-\beta)$ where $\alpha=(k+1-p)$ and $\rho=(1-2 p)$ then $g \in M_{n}(p, \beta)$

### 3.0 Coefficient bounds

## Theorem 3.1

Let $f \in T_{n}(p, \beta)$. Then we have the following inequalities.
(i) $\quad\left|a_{p+1}\right| \leq \frac{1-\beta}{2^{n-1}}$
$\left|a_{p+2}\right| \leq \frac{1-\beta}{2^{n-1}}+\frac{(1-\beta)^{2}}{2^{n-2}}$
(iii) $\quad\left|a_{p+3}\right| \leq \frac{1-\beta}{2^{n-1}}+\frac{(1-\beta)^{2}}{2^{n-3}}+\frac{(1-\beta)^{3}}{2^{n-3}}$

## Proof

Since $f \in T_{n}(p, \beta)$, we have $\quad \frac{D^{n+1, p} f(z)}{D^{n, p} f(z)}=\beta+(1-\beta) p(z)$
for $p \in P$. Setting $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ and comparing coefficients in (3.1) the results follow.
Theorem 3.2
Let $f \in K_{n}(p, \beta)$. Then we have
$a_{p+j}=\frac{(1-\beta) c_{j}}{2^{n}}$ or $\left|a_{p+j}\right| \leq \frac{1-\beta}{2^{n-1}}, \quad j=1,2, \ldots, m$ for $0 \leq \alpha<1, n=0,1,2, \ldots$
Proof
Since $f \in T_{n}(p, \beta)$ we have

$$
\begin{equation*}
\frac{D^{n, p} f(z)}{z^{p}}=\beta+(1-\beta) p(z) \tag{3.2}
\end{equation*}
$$

Comparing the coefficients in (3.2) the result s follow.
Theorem 3.3
Let $g \in M_{n}(p, \beta)$ then we note that the coefficient bounds for the functions in the subclass $g \in M_{n}(p, \beta)$ are zeros.

Proof
Since $g \in M_{n}(p, \beta)$

### 4.0 Convolution properties

## Theorem 4.1.

If $f_{j}(z) \in T_{n_{j}}^{*}(p, \beta), \quad(j=1, \cdots, m)$, then $\prod_{j=1}^{m} f_{j}(z) \in T_{n}\left(p, \gamma_{m}\right)$ where

$$
\begin{equation*}
\gamma_{m}=1-\frac{\prod_{j=1}^{m}\left(1-\beta_{j}\right)}{\left(\frac{1}{2}\right)^{n-\sum_{j=1}^{m} n_{j}} \beta_{1} \beta_{2}+\prod_{j=1}^{m}\left(1-\beta_{j}\right)} \tag{4.1}
\end{equation*}
$$

where $n-\sum_{j=1}^{m} n_{j} \geq 0$

## Proof

With the aid of theorem 2.1 we need to find the $\gamma_{m}$ such that

$$
\sum_{k=p+1}^{\infty} \alpha^{n}\left(\alpha_{0}+\gamma_{m}\right) \prod_{j=1}^{m}\left|a_{k, j}\right| \leq 1-\gamma_{m}
$$

Note here that if $m=1$, then $\gamma_{1}=\beta_{1}$. Now suppose $m=2$. Then for functions $f_{1}(z) \in T_{n_{1}}^{*}\left(p, \beta_{1}\right)$ and $f_{2}(z) \in T_{n_{2}}^{*}\left(p, \beta_{2}\right)$, we have

$$
\sum_{k=p+1}^{\infty} \alpha^{n_{1}}\left(\alpha_{0}+\beta_{1}\right)\left|a_{k, 1}\right| \leq 1-\beta_{1} \text { and } \sum_{k=p+1}^{\infty} \alpha^{n_{2}}\left(\alpha_{0}+\beta_{2}\right)\left|a_{k, 2}\right| \leq 1-\beta_{2}
$$

so that $\sum_{k=p+1}^{\infty} \frac{\alpha^{n_{1}}\left(\alpha_{0}+\beta_{1}\right)}{1-\beta_{1}}\left|a_{k, 1}\right| \leq 1$ and $\sum_{k=p+1}^{\infty} \frac{\alpha^{n_{2}}\left(\alpha_{0}+\beta_{2}\right)}{1-\beta_{2}}\left|a_{k, 2}\right| \leq 1$.
Hence, by Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} \sqrt{\frac{\alpha^{n_{1}+n_{2}}\left(\alpha_{0}+\beta_{1}\right)\left(\alpha_{0}+\beta_{2}\right)}{\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)}\left|a_{k, 1} \| a_{k, 2}\right|} \leq 1 \tag{4.2}
\end{equation*}
$$

In order to prove that $\left(f_{1} * f_{2}\right)(z) \in T_{n}^{*}\left(p, \gamma_{2}\right)$ it is sufficient to show that

$$
\sqrt{\left|a_{k, 1}\right|\left|a_{k, 2}\right|} \leq \sqrt{\frac{\alpha^{n_{1}+n_{2}}\left(\alpha_{0}+\beta_{1}\right)\left(\alpha_{0}+\beta_{2}\right)}{\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)}}\left(\frac{1-\gamma_{2}}{\alpha^{n}\left(\alpha_{0}+\gamma_{2}\right)}\right)
$$

Since

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty} \alpha^{n}\left(\alpha_{0}+\beta\right)\left|a_{k, 1} \| a_{k, 2}\right| \leq\left(1-\gamma_{2}\right) \sum \sqrt{\frac{\alpha^{n_{1}+n_{2}}\left(\alpha_{0}+\beta_{1}\right)\left(\alpha_{0}+\beta_{2}\right)}{\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)}\left|a_{k, 1} \| a_{k, 2}\right|} \\
& \leq\left(1-\gamma_{2}\right)\left\{\left(\sum_{k=p+1}^{\infty} \frac{\alpha^{n_{1}}\left(\alpha_{0}+\beta_{1}\right.}{\left(1-\beta_{1}\right)}\left|a_{k, 1}\right|\right)\left(\sum_{k=p+1}^{\infty} \frac{\alpha^{n_{2}}\left(\alpha_{0}+\beta_{2}\right)}{\left(1-\beta_{2}\right)}\left|a_{k, 2}\right|\right)\right\}^{\frac{1}{2}} \leq 1-\gamma_{2}
\end{aligned}
$$

But from (4.2) we have for all $k=p+1, \quad(p \in N=\{1,2, \cdots\})$

$$
\sqrt{\left|a_{k, 1} \| a_{k, 2}\right|} \leq \frac{\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)}{\alpha^{n_{1}+n_{2}}\left(\alpha_{0}+\beta_{1}\right)\left(\alpha_{0}-\beta_{2}\right)}
$$

Hence it is sufficient to find the largest $\gamma_{2}$ such that

$$
\sqrt{\frac{\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)}{\alpha^{n_{1}+n_{2}}\left(\alpha_{0}+\beta_{1}\right)\left(\alpha_{0}-\beta_{2}\right)}} \leq \sqrt{\frac{\alpha_{1}^{n_{1}+n_{2}}\left(\alpha_{0}+\beta_{1}\right)\left(\alpha_{0}-\beta_{2}\right)}{\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)}}\left(\frac{1-\gamma_{2}}{\alpha^{n}\left(\alpha_{0}+\gamma_{2}\right)}\right)
$$

That is, we have $\frac{\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)}{\alpha^{n_{1}+n_{2}}\left(\alpha_{0}+\beta_{1}\right)\left(\alpha_{0}+\beta_{2}\right)} \leq \frac{1-\gamma_{2}}{\alpha^{n}\left(\alpha_{0}+\gamma_{2}\right)}$
that is, $\gamma_{2} \leq 1-\frac{\left(1+\alpha_{0}\right)\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)}{\alpha^{n_{1}+n_{2}-n}\left(\alpha_{0}+\beta_{1}\right)\left(\alpha_{0}+\beta_{2}\right)+\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)}$

It is readily seen that the right hand side of (4.3) is an increasing function of $k$. Hence the large value of $\gamma_{2}$ is given by $\gamma_{2}=1-\frac{\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)}{2^{n_{1}+n_{2}-n} \beta_{1} \beta_{2}+\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)}$.

$$
\text { Next we suppose that } \prod_{j=1}^{m} f_{j}(z) \in T_{n}^{\prime}\left(p, \gamma_{m}, \lambda\right), \gamma_{m}=1-\frac{\prod_{j=1}^{m}\left(1-\beta_{j 1}\right)}{\sum_{2^{j=1} m}^{m} n_{j}-n} \beta_{1} \beta_{2}+\prod_{j=1}^{m}\left(1-\beta_{j}\right) \quad .
$$

$$
m+1
$$

Then, by repeating the processes above we obtain the $\prod_{j=1}^{m+1} f_{j}(z) \in T_{n}\left(p, \gamma_{m+1}\right)$ where
$\gamma_{m+1}=1-\frac{\prod_{j=1}^{m+1}\left(1-\beta_{m+1}\right)\left(1-\gamma_{m}\right)}{2^{n+1} \beta_{m+1}+\prod_{j=1}^{m+1}\left(1-\beta_{m+1}\right)}$ so that $\gamma_{m+1}=1-\frac{\prod_{j=1}^{m+1}\left(1-\beta_{j}\right)}{\sum_{2^{m+1} n_{j}-n}^{m} \beta_{j}+\prod_{j=1}^{m+1}\left(1-\beta_{j}\right)}$.
Hence conclusion follow by induction.

## Theorem 4.2

$$
\text { If } \begin{gather*}
f_{j}(z) \in K_{n_{j}}\left(p, \beta_{j}\right) \quad(j=1, \ldots, m) \text {, then } \prod_{j=1}^{m} f_{j}(z) \in K_{n}\left(p, \gamma_{m}\right) \quad(j=1, \ldots, m) \\
\gamma_{m}=1-2^{n-\sum_{j=1}^{m} n_{j}} \prod_{j=1}^{m}\left(1-\beta_{j}\right) \tag{4.3}
\end{gather*}
$$

where
where $n-\sum_{j=1}^{m} n_{j} \geq 0$

## Proof

The method of proof is similar to that of Theorem 4.1 with the use of Theorem 2.2.
Theorem 4.3

$$
\text { If } g_{j}(z) \in M_{n_{j}}\left(p, \beta_{j}\right) \quad(j=1, \ldots, m) \text {, then } \prod_{j=1}^{m} g_{j}(z) \in M_{n}\left(p, \gamma_{m}\right) \quad(j=1, \ldots, m) \text {, }
$$

where

$$
\begin{equation*}
\gamma_{m}=\frac{(2 p-1) \prod_{j=1}^{m}\left(1-\beta_{j}\right)-\rho^{\sum_{j=1}^{m} n_{j}} \prod_{j=1}^{m}\left(2 p-1-\beta_{j}\right)}{\rho^{\sum_{j=1}^{m} n_{j}} \prod_{j=1}^{m}\left(2 p-1-\beta_{j}\right)+\prod_{j=1}^{m}\left(1-\beta_{j}\right)} \tag{4.4}
\end{equation*}
$$

## Proof

The method of proof is the same as in Theorem 4.1 using theorem 2.3.

### 2.0 Conclusion

In conclusion, we are able to unify some existing subclasses under these three subclasses by different choices of $n$ and $\beta$ see $[2,8]$.

## References

[1] Aini Janteng,Suzeni Abdul Halim and Maslina Darus, (2006). Coefficient inequality for a function whose derivative has a positive real part. J. Inequalities in Pure and Applied Math. pp 1-11.
[2] Imark, H. and Owa, S. (2003). Certain inequalities for multivalent Starlike and meromorphically multivalent Starlike functions. Bull. Inst. Math. Acad. Sinica, pp 11-21.
[3] Ram Sing, (1973). On Bazilevic functions. Proc. Amer. Math. Soc., pp 261-271.
[4] Salagean G.S. (1983). Subclass of univalent functions, Complex Analysis. Fifth omanian-Finish seminar, part I (Bucharest, 1981) lecture Notes in Math. Springer, Berlin, 1013; 362-372.
[5] Nehari, Z. E. Netanyah, (1971). On the coefficients of Meromorphic schicht functions. Proc. Amer. Math. Soc. 125138.
[6] Owa, S. and Srivastva, H. M. (2002). Some generalized convolution properties associated with certain subclasses of analytic functions J. Ineq. In Pure and Applied Mathematics vol. 3, Issue 3, Article 42, 1-13
[7] Oladipo,A.T., Babalola, K.O, and Opoola, T.O (2007). Generalized convolution properties for certain classes of analytic functions. Research Journal of Applied Science, 2(3) 289-294
[8] Srivastava, H.M. and Owa, S. (1992). Current Topics in Analytic Function Theory World Scientific Company, Singapore, New Jersey, London, and Hong Kong

