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Abstract 
 

The Hubbard Hamiltonian was diagonalized using Valatin-
Bogojiubov transformations. The following results were obtained: 
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Vi  and Ui are numbers defined for positive values of i. The energy of the 
quasiparticle vacuum was found to be  
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And the number of particles in the ground state was found to be No  
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where ςi = (λ - tij), ∆i = -ΣΣΣΣUUiVi, t is the hopping parameter, U is the on-site 
interaction, λ is the Lagrange multiplier.  

 
 
 
1.0 Introduction 

The Hubbard Hamiltonian describes electrons on a lattice with one orbital per site.  The 

Hamiltonian has the form: ∑
><

∑ ↓↑++=
σ

σσ
,ij i

iniunajiaijtH  where tij is the hopping matrix element 

between different sites.  Electrons on the same site are the only ones that interact.  σσσ iaiain +=  is the 

occupation number operator. 
In Fock space, all systems with an arbitrary number of particles in them, get diagonalized 

simultaneously. This is why Fock space calculations are more powerful then configuration space. Once 
our physical problem is expressed in the term of a diagonalization of a certain matrix one can resort to 
any approximate method that is justifiable mathematically. One of the most powerful methods of 
approximating the eigenvalues of H involves the transformation to a scheme that mixes states of different 
numbers of particles. 
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Bogoljubov and Valatin suggested the following canonical transformation from ia  to the 

operators iα  through  

 0, >++−=−
+
−−= iiaiViaiUiiaiViaiUi αα     (1.1) 

Here Ui and Vi are numbers defined only for positive values of i.  

0, >++
−=+

−−−+=+ iiaiVaaiUiiaiViaiUi αα    (1.2) 

The αI operators satisfy the anticommutation relations σδδ
σ

αα ′=
+







 +
ajijia ', , iU  and iV  satisfy 

122 =+ iViU .  It is observed that since the αi’s obey Fermion anticommuntation rules the numbers 

operator in “α space” ii αα +   will have eigenvalue 1 or 0. Equations (1.1) and (1.2) can be inverted to 

express the ai’s in terms of the :siα ′  

0, >+−−=−
+
−+= iiiViiUiaiiViiUia αααα    (1.3) 

0, >−++=+
−−−+=+ iiiViiUiaiiViiUia αααα   (1.4) 

 
2.0 Calculations 

The non interacting part of the Hubbard Hamiltonian is diagonalized first. 
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To solve for the energy of the system described by Ho subject to the condition that the average number of 

particles is fixed one has to introduce the  Lagrange multiplier λ multiplying the number operator  N̂ , 

where ∑
><

+=
n

ij
jaiaN̂ .  We are thus looking for the eigrenvalues and eigenfunctions of  
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where λ is to be fixed by the prescribed expectation value of N̂ .  NN ˆ=  

The operators αα ++
ii  and ii −− αα , however, do not commute with αN̂ .  Hence to diagonalize H-λ N̂ , 

we choose iU  and jV  such that the last two terms in equation (2.2) vanish.  This leads to the result 

   Ui Vi = 0 for all i’s    (2.3) 

Taking equation (2.3) with the condition 122 =+ UV ii .  We have that if  

Vi = 0, Ui = 1 or Ui = 0, Vi = 1 

The lowest eigenstate of H - λ N̂  is the quasi-particle vacuum 10 > α. It satisfies 

( ) αλ 0N̂H − ( )∑ −=

σ
αλ

ij
iVijt 02  
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The lowest eigenvalue of H - λ N̂  is obtained by setting λ<== ijtifiiV U 0,1 , Vi =0, Ui = 1, if 

 

λ>ijt .  The value of λ can be determined by the condition ∑ ==
i

oiVN N20ˆ0
αα

.  Let us now go 

over to the Hubbard Hamiltonian ∑ ∑
++++=

α
σσσσσσ

ij i
iaiaiaiaUjaiaijtH  (2.4) 

Introducing the transformations of equations (1.3) and (1.4) we have H = A + H11 + H20 + H� 

where ∑ ∑+=
ij i

iVUiVijtA 42  
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H′ is proportional to terms containing four α’s operators and is neglected in this work. 
 To ensure that there is a fixed number of real particles in the quasiparticle ground state one 
imposes the condition.  

( )∑ =−−+−= −−
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+
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This can be achieved by diagonalizing H-λ N̂ , and choosing the lagrange multiplier λ, so that equation 

(2.6) is satisfied. One is thus led to the problem of diagonalizing the operator HHHAH ′+′+′+′= 2011

, where A� = A - λ∑
i

iV 2 , ( )∑ −
+

−
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1111  

( )∑ −
++ +−=′ iiiiiiii UVUHH V ααααλ2020 .  The diagonalization of 

20110 HHAH ′+′+′=′  amounts 

to choosing ii VandU  such that 020 =′H  
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3.0 Introducing the notations 
 ( )t iji −= λς  

 iU
i

iUVi ∑−=∆        (3.1) 

and noting the mutual independence of the operators for different valyes of i, we see that H′20 = 0 leads to 
the equations:  

 0
2 =+ ∆ VVU iiiiiς       (3.2a) 

 

 0
2 =+ ∆ UVU iiiiiς       (3.2b) 

 ( ) 02
22 =− UVUVUU iii

      (3.2c) 

 VU
i i

2
= 0         (3.2d) 

If we assume that for some values of i, that the product VU
i i

2
≠ 0, from equation (3.2a) and the 

condition 1
2

2 =+VU i i
we obtain 
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and  22 1 iUiV −=       (3.3) 

The remaining part of the Hamitonian A� + H�11 is then diagonal in the α-scheme. The 
quasiparticle vacuum |0 > α has the energy 
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determine the determine the Lagrange multiplier λ we use 
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 (3.5) 

 
4.0 Conclusion 

The many electron problem has been studied using the Hubbard model. The powerful tool of Bogojiubov-
Valatin canonical transformation has been  used to derive the ground rate energy which has a remarkable simple 
form.  Equations (3.1), (3.3) and (3.5) have remarkable resemblance to the celebrated superconducting solutions of 
BCS, where the Bogoljubov transformation was first used. 
This gives credence to the belief that the physics of high-Tc superconductivity may yet be found in the Hubbard 
model or variants of it. 
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